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Abstract. 

Based upon quantum-inspired entanglement in quantum-classical hybrids, a simple algorithm for 
instantaneous transmissions of non-intentional messages (chosen at random) to remote distances is 
proposed. A special class of situations when such transmissions are useful is outlined. Application of such a 
quantum-inspired teleportation, i.e. instantaneous transmission of conditional information on remote 
distances for security of communications is discussed. Similarities and differences between quantum 
systems and quantum-classical hybrids are emphasized. 

1. Introduction. 
This paper was motivated by recent discovery and experimental verification of the most fundamental and 
still mysterious phenomenon in quantum mechanics: quantum entanglement.  Formally, quantum 
entanglement as well as associated with it quantum non-locality follows from the Schrödinger equation; 
however, its physical meaning is still under extensive discussions. The most attractive aspect of quantum 
entanglement, in terms of a new quantum technology, is associated with instantaneous transmission of 
messages on remote distances known as teleportation.  However, practical applications of this effect are 
restricted by the postulate adopted by many authors that these messages cannot deliver any intentional 
information.  That is why all the entanglement-based communication algorithms must include a classical 
channel.  The degree of usefulness of entanglement-based communication technology without any classical 
channels has been discussed in [1,2]. The paradigm discussed there is the following. Let us assume that 
agents A and B possess a set of N particles (say, electrons), that are in a one-to-one correspondence such 
that each pair is entangled; and suppose that the agent A performs a sequence of measurements: one particle 
per unit time-step.  Each measurement performed by the agent A has two equally probable outcomes.  In 
case of electrons, these outcomes can be spin-up (+) or spin down (-).   If (+) and (-) are converted by the 
agent into the movements along an axis to the right or to the left, respectively, the sequence of the agent’s 
measurement can be interpreted as a symmetric unrestricted random walk.  Hence, by performing these 
measurements, the agent A selected (randomly) one trajectory out of N2 equally probable trajectories of the 
corresponding random walk.  Due to entanglement, the agent B instantaneously receives this trajectory 
(after performing simultaneously the same type of measurements).  This paradigm is easily generalizable to 
n entangled agents if each of them has a set of N particles entangled pairwise with the similar particles of 
all the other agents.  The usefulness of such entanglement– based communications has been discussed in 
[1,2].  It has been demonstrated there how a randomly chosen message can deliver non-intentional, but 
useful, information under special conditions that include a preliminary agreement between the sender and 
the receiver. The conditional-message paradigm has been extended by applying the entanglement-based 
correlations to an active system represented by a collection of intelligent agents.  The problem of behavior 
of intelligent agents correlated by identical random messages in a decentralized way has its own 
significance:  it simulates evolutionary behavior of biological and social systems correlated only via 
simultaneous sequences of unexpected events.  As shown in [1], under the condition that the agents have 
certain preliminary knowledge about each other, the whole system can exhibit emergent phenomena such 
as topological self-organization, inverse diffusion; it also can perform transmission of conditional 
information, decentralized coordination, cooperative computing, competitive games. 
     However, the main obstacle to further progress in the quantum-based instantaneous transmission of 
conditional information is the same as those that is to progress of quantum computing: the hardware 
implementations. 

The basic idea of this paper is to implement instantaneous transmission of conditional information   on 
remote distances via quantum-classical hybrid that preserves superposition of random solutions, while 
allowing one to measure its state variables using classical methods. In other words, such a hybrid system 
reinforces the advantages and minimizes limitations of both quantum and classical characteristics. The 
formal mathematical difference between quantum and classical mechanics is better pronounced in the 
Madelung (rather than the Schrödinger) equation. Two factors contribute to this difference: the scale of the 



system introduced through the Planck constant and the topology of the Madelung equations that include the 
feedback (in the form of the quantum potential) from the Liouville equation to the Hamilton-Jacobi 
equation. Ignoring the scale factor as well as the concrete form of the feedback, we concentrated upon 
preserving the topology while varying the types of the feedbacks. A general approach to the choice of the 
feedback was introduced and discussed in [3]. More specific feedbacks linked to the behavioral models of 
Livings were presented in [4-8]. In this paper we are concerned only with information capabilities of the 
proposed model disregarding possible physical interpretations.  

2. Destabilizing effect of Liouville feedback. 
     We will start with derivation of an auxiliary result that illuminates departure from Newtonian dynamics. 
For mathematical clarity, we will consider here a one-dimensional motion of a unit mass under action of a 
force f depending upon the dimensionless velocity v and time t  
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If initial conditions are not deterministic, and their probability density is given in the form 
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 while ρ  is a single- valued function, then the evolution of this density is expressed by the corresponding 
Liouville equation 
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The solution of this equation subject to initial conditions and normalization constraints (2) determines 
probability density as a function of V and t : ),( tVρρ = . 
        In order to deal with the constraint (2), let us integrate Eq. (3) over the whole space assuming that 
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Hence, the constraint (3) is satisfied for 0>t  if it is satisfied for .0=t  
      Let us now specify the force f  as a feedback from the Liouville equation  
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 and analyze the motion after substituting the force (5) into Eq.(1)  

)],,([ tvv ρϕ=                                                                                                                            (6)   
This is a fundamental step in our approach. Although the theory of ODE does not impose any restrictions 
upon the force as a function of space coordinates, the Newtonian physics does: equations of motion are 
never coupled with the corresponding Liouville equation. Moreover, it can be shown that such a coupling 
leads to non-Newtonian properties of the underlying model. Indeed, substituting the force f from Eq. (5) 
into Eq. (4), one arrives at the nonlinear equation for evolution of the probability density  
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Let us now demonstrate the destabilizing effect of the feedback (5). For that purpose, it should be noted 
that the derivative v∂∂ /ρ must change its sign, at least once, within the interval ∞<<−∞ v , in order to 
satisfy the normalization constraint (2). 
 But since 
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there will be regions of v where the motion is unstable, and this instability generates randomness with the 
probability distribution guided by the Liouville equation (8). It should be noticed that the condition (9) may 
lead to exponential or polynomial growth of v (in the last case the motion is called neutrally stable, 
however, as will be shown below, it causes the emergence of randomness as well if prior to the polynomial 
growth, the Lipchitz condition is violated).. 
3. Non-classical effects.  



Prior to introduction of the superposition phenomenon, we will demonstrate additional non-classical effects 
displayed by the solutions to Eqs. (6) and (7) when 
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The solution of Eq. (10) subject to the initial conditions )(0 Vρ  and the normalization constraint (2) is 
given in the following implicit form [9] 
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This solution subject to the initial conditions and the normalization constraint, describes propagation of 
initial distribution of the density )(0 Vρ  with the speed V that is proportional to the values of this density, 
i.e. the higher values of ρ propagates faster than lower ones. As a result, any compressive part of the wave, 
where the propagation velocity is a decreasing function of V, ultimately “breaks” to give a triple-valued 
(but still continuous) solution for ),( tVρ . Eventually, this process leads to the formation of strong 
discontinuities that are related to propagating jumps of the probability density. In the theory of nonlinear 
waves, this phenomenon is known as the formation of a shock wave. Thus, as follows from the solution 
(11), a single-valued continuous probability density spontaneously transforms into a triple-valued, and then, 
into discontinuous distribution. In aerodynamical application of Eq. (10), when ρ stands for the gas 
density, these phenomena are eliminated through the model correction: at the small neighborhood of 
shocks, the gas viscosity ν  cannot be ignored, and the model must include the term describing dissipation 
of mechanical energy. The corrected model is represented by the Burgers’ equation    
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As shown in [9], this equation has continuous single-valued solution (no matter how small is the 
viscosityν ), and that provides a perfect explanation of abnormal behavior of the solution to Eq. (10). 
Similar correction can be applied to the case when ρ stands for the probability density if one includes 
Langevin forces )(tΓ  into Eq. (9) 
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Then the corresponding Fokker-Planck equation takes the form (28). It is reasonable to assume that small 
random forces of strength 1<<ν are always present, and that protects the mathematical model (9), (10) 
from singularities and multi-valuedness in the same way as it does in the case of aerodynamics. 
          It worth noticing that Eq. (12) can be obtained from Eq. (9) in which random force is replaced by 
additional Liouville feedback 
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An interesting non-classical property of a solution of this equation is decrease of entropy.  
Indeed,  
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Obviously, presence of small diffusion, when 1<<ν , does not change the inequality (15) during certain 
period of time. (However, eventually, for large times, diffusion takes over, and the inequality (15) is 
reversed). It is easily verifiable that the solution to Eq. (12) satisfies the constraint (2) if the corresponding 
initial condition does, [9]. 



 4. Emergence of superposition.     
         Let us concentrate now on the solution of the system (14) and (12) remembering that it is a particular 
case of the system (6), (7) 
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subject to a single-hump initial condition 
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where A is the initial area of the hump, and  
0)0( vtv ==                                                                                                                                                  (19) 

The variable v in Eq. (32) is a dimensionless velocity 0/ vvv→ , and the “Reynolds” number  
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We will be interested in the solution of the system (16), (17) for the case of large Reynolds number 
νζ >>∞→ andR ,                                                                                                                          (21) 

In this case, Eq. ( 16) can be simplified by omitting the “viscose” term  
0, >= ζζρv                                                                                                                                              (22)  

However, omitting the last term in Eq. (17) would lead to qualitative changes outlined above, and in 
particular, it would prevent us to start with the sharp initial conditions (18). 
     We will start with the solution to Eq. (17). It is different from the standard Burger’s equation only by a 
physical interpretation of the variable ρ that is now a probability density (instead of density of a gas), but as 
shown in [8], the constraint (2) is satisfied automatically if it is satisfied for the initial condition (18). 
Thus, the solution to Eq.(17) subject to the conditions (2), (18) and (21) reads 
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The solution has a shock of probability density 
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Substituting the solution (23) into equation (22) one obtains 
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and 
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whence 
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We will be interested here only in the region of Eqs. (25) and (27). Here C is an arbitrary constant. Since 
v=0 at t=0 for any value of C, the solution (27) is consistent with the sharp initial condition (18). For a 
fixed C, the solution (27) is unstable since  
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and therefore, an initial error  always grows generating randomness whose probability is controlled by  
Eq.(17) . Initially, at t=0, this growth is of infinite rate since the Lipschitz condition at this point is violated  
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Figure 1. The triangular shock wave of probability density and samples of associated stochastic 
process. 
 
Considering first Eq. (25) at fixed C as a sample of the underlying stochastic process (23), and then varying 
C(ω=V) (where ω is a variable running over different samples of the stochastic process) , one arrives at the 
whole ensemble characterizing that process, (see Fig. 1). As follows from Fig. 1, the stochastic process 
converges to the attractor represented by the curve (24) on the V-t plane where the shock of the probability 
density occurs (see the red line in Fig. 1).  
    Thus we arrived at another non-classical effect that is similar to quantum superposition.  
Remark. For more mathematical details see Appendix 1. 
5. Emergence of entanglement via global constraint. 
    Let us consider n coupled systems  
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subject to the initial conditions similar to  
  .,0)()(0 constAtatVAV iii === δρ       (33) 
The system is subjected to the following (n-1) independent global constraints 
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It is important to emphasize that although iv and jv are random (as it was demonstrated for the one-
dimensional case), their ratio is deterministic: it is just a number. This is another non-classical effect. 
Indeed, in theory of stochastic processes, two random functions are considered equal if they have the same 
statistical invariants, but their point-to-point equalities are not required (although it can happen with a 
vanishingly small probability). As will be demonstrated below, the diversion of determinism into 
randomness via instability (due to a Liouville feedback), and then conversion of randomness to 
determinism via entanglement is the fundamental non-classical paradigm that may lead to instantaneous 
transmission of conditional information on remote distance that will be discussed below.  
Remark. For more mathematical details see Appendix 2. 
6. Instantaneous transmission of conditional information on remote distance. 
Let us consider n observers, and assume that each of them gets a copy of the system (31), (32) and runs it 
separately. Although they run identical systems, the outcomes of even synchronized runs may be different 



since the solutions of these systems are random. However, the global constraint (34) must be satisfied. 
Therefore, if the observer #1 (the sender) made a measurement of the acceleration 1v at t=T, then the 
receiver, by measuring the corresponding acceleration iv at the same instant t=T and using the constraint 
(34), can reconstruct the acceleration 1v that was measured by the sender. It should be emphasized that if a 
receiver decides to measure directly the acceleration 1v at t=T, he may get a wrong value since the 
accelerations are random, and only their ratios are deterministic. Obviously, the transmission of this 
knowledge is instantaneous as soon as the measurements have been performed. In addition to that, the 
distance between the observers is irrelevant since the x-coordinate does not enter the governing equations. 
However, the Shannon information transmitted is zero. Indeed, none of the senders can control the 
outcomes of their measurements since they are random; in other words, the senders cannot transmit 
intentional messages. Nevertheless, based upon the transmitted knowledge, they can coordinate their 
actions based upon conditional information: if the observer #1 knows his own measurements, he can fully 
determine the measurements of the others. 
      It should be noticed that the transmission procedure described above can be simplified since Eq. (32) 
does not depend upon Eqs. (31), and therefore, it can be solved prior to the transmission. Then the sender 
and each of the receivers have to run the system (31) into which the prepared solution 
 )35(),,...( 1 tvv nρρ =   
is to be substituted. 
      But even this procedure can be further simplified. Indeed, turning to the constraint (34), and setting the 
initial conditions  
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Now the sender (the observer #1) can express all the variables 1≠iv via 1v , then substitute them into Eq. (35) 
and run only one ODE 
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 to obtain the solution 
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This solution is random, (see Fig. 1), and therefore, the sender cannot generate an intentional message. 
 Meanwhile, the receiver (the observer #k) has to run the following ODE 
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to get the random solution  
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that is entangled with any sample of the solutions to Eq. (38). Based upon this entanglement expressed by 
Eq. (37), the receiver reconstructs the signal generated by the sender as following 
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The information capacity of the proposed channel can be evaluated if one turns to Eq. (35). Based upon this 
evaluation, each receiver can introduce the conditional entropy, mutual information, etc.  
It should be emphasized again that the origin of entanglement of all the observers is the joint probability 
density that couples their actions, and such a constraint does not exist in Newtonian mechanics. 
 Several properties of the proposed correlation should be emphasized. First, there is no centralized source, 
or a sender of the signal since each receiver can become a sender as well. Indeed, an observer receives a 
signal by performing certain measurements synchronized with the measurements of the others.  Thereby the 
signal uniformly and simultaneously distributed over the observers in a decentralized way. Second, the 
signals transmit no intentional information that would favor one agent over another. Third, all the sequence 
of signals received by different observers are not only statistically equivalent, but also point-by-point 



identical. Fourth, it is important to assume that each agent knows that the other agent simultaneously 
receives the identical signals. Finally, the sequences of the signals are true random so that no agent could 
predict the next step with the probability different from those described by the density (35). It turns out that 
under these quite general assumptions, the entangled observers-agents can perform non-trivial tasks that 
include transmission of conditional information from one agent to another, simple paradigm of cooperation, 
etc. The problem of behavior of intelligent agents correlated by identical random messages in a 
decentralized way has its own significance:  it simulates evolutionary behavior of biological and social 
systems correlated only via simultaneous sensoring sequences of unexpected events.   In order to justify the 
usefulness of the proposed correlation paradigm, consider an earthquake which is represented by some 
sequence of totally unpredictable jolts.  All the “agents” (humans, animals) receive these unexpected 
signals simultaneously, and from that moment their activity became correlated and organized: they run to 
shelter, turn off pipelines, etc. 
    Let us discuss possible application of the entanglement introduced above to security of communications. 
It is always a temptation to simulate any new quantum or quantum-inspired phenomenon by classical tools.  
In the case of entanglement such a possibility was excluded from the very beginning since this is a non-
local phenomenon that does not have any classical equivalents.  However, one can argue that actually the 
system under consideration becomes classical as soon as the message is received and interpreted by the 
agent; therefore, instead of entanglement-based correlations between the agents, one can generate a pool of 
samples of stochastic processes in advance, make copies and distribute them over the agents, so that any 
two agents to be correlated would have identical records of “random” messages.  However, there is a 
fundamental flaw in such an implementation, since in that case the whole scenario of the agent’s evolution 
is fully predetermined, and someone (for instance, those who generated, copied and distributed the 
messages) can know this scenario in advance.  In principle, each agent also can find out his future messages 
since the knowledge about this future has already existed.  The difference between the entangled and 
classical cases is similar to that between real-time and pre-recorded TV programs: in the first case, future is 
unpredictable, while in the second case “future” has already happened, although the viewer may not know 
about that.  In a more practical sense, the difference between the quantum and classical implementations 
becomes important when the communications between the agents are supposed to be confidential:  in the 
classical case, the confidential information, in principle, is available long before it is needed, and that 
makes such communications less secure. In order to illustrate a security aspect of the proposed algorithm, 
suppose that a sender possesses N different messages, which he can choose only at random with equal 
probability, and assume that any of these messages allows each receiver to achieve his goal as long as the 
secrecy of the message is preserved. (For instance, if a military attack can be conducted in many different 
ways, the most important is the secrecy of the selected strategy.) Then from the viewpoint of Shannon 
information, the transmission of such a message is useless. However, if one is asked what the chance is that 
the message can be decoded by a wild guess, the answer will be: 1/N. This means that the number of 
equally acceptable (but randomly chosen) messages is proportional to the degree of secrecy of the 
transmission, and that represents the value of this transmission. Actually, the sender coordinates and 
synchronizes the actions of the receivers (regardless of the origin of the message itself) and preserves the 
secrecy of the communications by making the choice of his message random. It should be emphasized 
again that the whole procedure makes sense only under the condition that a receiver can use any of these 
messages to achieve the same objective, but nobody else must know what kind of message has been 
received. 
      The most effective way of implementation of the proposed quantum-classical hybrid is by means of 
analog devices such as VLSI chips used for neural net’s analog simulations, [9]. 
7. Discussion and conclusion.  
Based upon quantum-inspired entanglement in quantum-classical hybrids, a simple algorithm for quantum-
inspired teleportation, i.e. for instantaneous transmissions of non-intentional messages (chosen at random) 
to remote distances is proposed. A special class of situations when such transmissions are useful is 
outlined. Application of instantaneous transmission of conditional information on remote distances for 
security of communications is discussed. Similarities and differences between quantum systems and 
quantum-classical hybrids are emphasized. It has been demonstrated that quantum-classical hybrid 
preserves the topology of the Schrödinger equation (in the Madelung form), but replaces the quantum 
potential with other, specially selected, function of probability density, (Fig. 2) 



 
Figure 2. Classical physics, Quantum physics, and Quantum-Classical Hybrid. 
 
It has been shown that two fundamental similarities with quantum mechanics are due to the Liouville 
feedback that introduces the probability density into the equations of motion. The role of the probability-
based feedback is twofold: first, it creates a transition from determinism to randomness, and that imitates 
quantum superposition; second, it entangles random samples of the stochastic process thereby allowing one 
to convert randomness back to determinism. Despite such a quantum-like characteristic, the hybrid can be 
of classical scale, and all the measurements can be performed classically. Indeed, measurement in the 
hybrid systems has more differences than similarities with quantum systems. The most important difference 
is that this system is of classical scale, and it does not interact (in a quantum way) with the measurement 
procedure. (Indeed, the proposed hybrid system can be implemented by means of analog devices such as 
VLSI chips used for neural net’s analog simulations).  As a result, the solution can be observed as a 
function of time describing the evolution of a measured state variable during the whole duration of 
measurement. Detailed analysis of similarities and differences between a quantum system and a quantum-
classical hybrid were performed in [8]. 
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Appendix 1. 
The solution (23)-(28) to the system (16), (17) subject to the initial conditions (18) is, strictly speaking, 
valid for t>0 excluding a vanishingly small period ζν At /20 <≤ . Indeed, within this period, the 
probability density ρ is still close to the delta-function, and the diffusion term in Eq. (17) dominates over 
the non-linearity. Therefore, for this period, the system (16), (17) has the form 
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The solution of Eq. (A2) subject to the sharp initial condition is  
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Substituting this solution into Eq. (A1) at V=v one arrives at the differential equation with respect to v(t)  
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whence 

,tCv =        (A5) 
where C is an arbitrary constant. Since v=0 at t=0 for any value of C, the solution (A4) is consistent with 
the sharp initial condition for the solution (A3) of the corresponding Liouvile equation (A2) (that takes the 
form of the Fokker-Planck equation). The solution (A3) describes the simplest irreversible motion: it is 
characterized by the “beginning of time” where all the trajectories intersect (that results from the violation 
of Lipschitz condition at t=0, Fig.A1), while the backward motion obtained by replacement of t with (-t) 
leads to imaginary values of velocities. One can notice that the probability density (A3) possesses the same 
properties. 

  
Figure A1. Origin of superposition. 

For a fixed C, the solution (A5) is unstable since 

,0
2
1
>=
tdv

vd  (A6) 



 and therefore, an initial error always grows generating randomness. Initially, at t=0, this growth is of 
infinite rate since the Lipschitz condition at this point is violated  
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This type of instability has been introduced and analyzed in [11]. Considering first Eq. (A5) at fixed C as 
a sample of the underlying stochastic process (A3), and then varying C, one arrives at the whole ensemble 
characterizing that process, (see Fig. A1). One can verify that, as follows from Eq. (A3), [12], the 
expectation and the variance of this process are, respectively 
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The same results follow from the ensemble (A5) at ∞≤≤−∞ C . Indeed, the first equality in Eq. (A8) 
results from symmetry of the ensemble with respect to v=0; the second one follows from the fact that 

tvDV ∝∝  . Thus, the solution to Eq. (17) starts with the form (A3), and only after νζ2/At >  it takes the 
form (23). Similarly, the solution to eq. (16) starts with the form (A5), and after νζ2/At >  it takes the 
form (27), (28). 
 
Appendix 2. 
As in a one-dimensional case discussed in Appendix 1, during a small initial period ζν At /20 <≤ , the 
system (31), (32) should be written in the form similar to (A1), (A2). However, in order to capture the 
effect of a multi-dimensionality, it will be sufficient to start with n=2 
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The solution to Eq. (A11) has a closed form 
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Here 
][ ijb = 1]ˆ[ −

ija  where 2112211222221111 ˆˆ,ˆ,ˆ aaaaaaaa +==== , jiijjiij bbaa == ,ˆˆ    (A13) 

Substituting the solution (A12) into Eqs. (A9) and (A10), one obtains 
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Eliminating t from these equations, one arrives at an ODE in the configuration space 
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This is a classical singular point treated in text books on ODE.  
Its solution depends upon the roots of the characteristic equation 

02 221112
2

12
2 =−+− bbbb λλ                      (A17) 

Since both the roots are real in our case, let us assume for concreteness that they are of the same sign, for 
instance, 1,1 21 == λλ . Then the solution to Eq. (A16) is represented by the family of straight lines 

.~,~
12 constCvCv ==                     (A18) 

Substituting this solution into Eq. (A14), yields 
tbCbCv )~( 12111 +=          (A19) 



Thus, the solution to Eq. (A9) is represented by a two-parametrical family of curves as expected. The 
solution to Eq. (A10) can be written in a similar form.  
The solution for n-dimensional case of Eq. (A11) can be written in the form similar to (A12)  
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The solutions (A14),(A19), and (A20)  valid for  a vanishingly small period ζν At /20 <≤ . After 
ζν At /2> , one should proceed with solutions to Eqs. (31) and (32). 

It should be noticed that the availability of the solution (A20) is important. Indeed, as discussed in Section 
6, the solution to Eq. (32) must be provided to the observers prior to their communication. But since (32) is 
an n-dimensional non-linear PDE, its solution, most probably, should be obtained only numerically, and the 
singularities at t=0 may be lost. Therefore, the solution (A20) has to be included in the numerical solution 
as the onset of the superposition.   


