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Abstract

The Effective Sample Size (ESS) is an important measure of efficiency of Monte Carlo
methods such as Markov Chain Monte Carlo (MCMC) and Importance Sampling (IS)
techniques. In the IS context, an approximation ÊSS of the theoretical ESS definition is
widely applied, involving the inverse of the sum of the squares of the normalized importance
weights. This formula, ÊSS, has become an essential piece within Sequential Monte Carlo
(SMC) methods, to assess the convenience of a resampling step. From another perspective,
the expression ÊSS is related to the Euclidean distance between the probability mass
described by the normalized weights and the discrete uniform probability mass function
(pmf). In this work, we derive other possible ESS functions based on different discrepancy
measures between these two pmfs. Several examples are provided involving, for instance, the
geometric and harmonic means of the weights, the discrete entropy (including the perplexity
measure, already proposed in literature) and the Gini coefficient among others. We list five
requirements which a generic ESS function should satisfy, allowing us to classify different ESS
measures. We also compare the most promising ones by means of numerical simulations.

Keywords: Effective Sample Size; Perplexity; Importance Sampling; Sequential Monte
Carlo; Particle Filtering; Bayesian Inference.

1 Introduction

Sequential Monte Carlo (SMC) methods (a.k.a., particle filtering algorithms) are important tools
for Bayesian inference [8], extensively applied in signal processing [7, 15, 23] and statistics
[9, 26, 27]. A key point for the success of a SMC method is the use of resampling procedures,
applied for avoiding the degeneracy of the importance weights [7, 9]. However, the application
of resampling increases the variance of the Monte Carlo estimators so that one desire to employ
resampling steps parsimoniously, only when it is strictly required. This adaptive implementation
of the resampling procedure needs the use of the concept of Effective Sample Size (ESS) [7, 20, 27].

The ESS is a measure of the efficiency of different Monte Carlo methods, such as Markov Chain
Monte Carlo (MCMC) and Importance Sampling (IS) techniques [4, 13, 20, 27, 22, 24]. ESS is



theoretically defined as the equivalent number of independent samples generated directly form
the target distribution, which yields the same efficiency in the estimation obtained by the MCMC
or IS algorithms. Thus, a possible mathematical definition [13, 18] considers the ESS function
proportional to the ratio between the variance of the ideal Monte Carlo estimator (drawing samples
directly from the target) over the variance of the estimator obtained by MCMC or IS techniques,
used with the same number of samples in both estimators.

The most common choice in literature to approximate this theoretical ESS definition is

the formula ÊSS ≈ 1PM
n=1 w̄

2
n
, which involves (only) the normalized importance weights w̄n,

n = 1, . . . , N [7, 9, 19, 27]. This expression, obtained after several approximations of the definition,
presents different weaknesses discussed in this work. Another measure called perplexity, involving
the discrete entropy [5] of the weights has been also proposed in [1]; see also [27, Chapter 4], [10,
Section 3.5].

However, the ESS approximation ÊSS is widely used in practice, since it is easily to be

applied and it generally provides good performance. It is possible to show that ÊSS is related to
discrepancy between the multinomial probability mass function (pmf) defined by the normalized
weights w̄n, n = 1, . . . , N , and the discrete uniform pmf. When the pmf defined by w̄n is close

to the discrete uniform pmf, ÊSS provides high values otherwise, when the pmf defined by w̄n is

concentrated mainly in one weight, ÊSS provides small values. More specifically, we show that

ÊSS is related to the Euclidean distance between these two pmfs.
It is possible to obtain other ESS functions based on different discrepancy measures, as we

show in this work. We describe and discuss five requirements, three strictly needed and two
welcome conditions, that a generalized ESS (G-ESS) function should satisfy. Several examples,
involving for instance geometric and harmonic means, discrete entropy [5] and the Gini coefficient
[14, 21], are presented. Additionally, four families of proper G-ESS functions are designed. We
classify the novel G-ESS functions (including also the perplexity measure [1, 27]) according to the
conditions fulfilled. We focus on the G-ESS functions which satisfy all the desirable conditions
and compare them by means of numerical simulations. This analysis shows that at least one novel
G-ESS expression, defined as the inverse of the maximum of the normalized weights, 1

max[w̄1,...,w̄N ]
,

presents interesting features from a theoretical and practical point of view and it can be considered
a valid alternative to the standard formula 1PM

n=1 w̄
2
n
.

2 Effective Sample Size for Importance Sampling

Let us denote the target probability density function (pdf) as π̄(x) ∝ π(x) (known up to a
normalizing constant) with x ∈ X . Moreover, we consider the following integral involving π̄(x)
and a square-integrable function h(x),

I =

∫

X
h(x)π̄(x)dx, (1)
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that we desire to approximate using a Monte Carlo approach. If we are able to draw N independent
samples x1, . . . ,xN from π̄(x), then the Monte Carlo estimator of I is

Î =
1

N

N∑

n=1

h(xn) ≈ I, (2)

where xn ∼ π̄(x), with n = 1, . . . , N . However, in general, generating samples directly from the
target, π̄(x), is impossible. Alternatively, we can draw N samples x1, . . . ,xN from a (simpler)

proposal pdf q(x),1 and then assign a weight to each sample, wn = π(xn)
q(xn)

, with n = 1, . . . , N ,

according to the importance sampling (IS) approach. Defining the normalized weights,

w̄n =
wn∑N
i=1wi

, n = 1, . . . , N, (3)

then the IS estimator is

Ĩ =
N∑

n=1

w̄nh(xn) ≈ I, (4)

with xn ∼ q(x), n = 1, . . . , N . In general, the estimator Ĩ is less efficient than Î, since the samples
are not directly generate by π̄(x). In several applications [7, 9, 15, 23], it is necessary to measure

in some way the efficiency that we lose using Ĩ instead of Î. The idea is to define the Effective
Sample Size (ESS) as ratio of the variances of the estimators [18],

ESS = N
varπ[Î]

varq[Ĩ]
. (5)

Finding a useful expression of ESS derived analytically from the theoretical definition above is
not straightforward. Then, different derivations [18, 19], [9, Chapter 11], [27, Chapter 4] proceed
using several approximations and assumptions for yielding an expression useful from a practical
point of view. A well-known formula, widely used in literature [9, 20, 27], is

ÊSS = P
(2)
N (w̄), (6)

=
1∑N

i=1 w̄
2
n

=

(∑N
i=1wn

)2

∑N
i=1w

2
n

, (7)

where we have used the the normalized weights w̄ = [w̄1, . . . , w̄N ] in the first equality, and the

unnormalized ones in the second equality. The reason of using the notation P
(2)
N (w̄) will appear

clear later (the subindex N denotes the number of weights involved, and the reason of the super-
index will be clarified in Section 5.3). An interesting property of the expression (7) is that

1 ≤ P
(2)
N (w̄) ≤ N. (8)

Below, we discuss some limitations of the formula P
(2)
N (w̄).

1We assume that q(x) > 0 for all x where π̄(x) 6= 0, and q(x) has heavier tails than π̄(x).
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3 Discussion about ÊSS = P
(2)
N

Although, the formula P
(2)
N (w̄) = 1PN

i=1 w̄
2
n

is widely used and performs reasonable well in different

scenarios, it presents several weaknesses. First of all, the starting definition of effective sample

size, ESS = N varπ [bI]
varq [eI] , does not take in account the bias due to the use of self-normalized weights.

Thus, a more complete definition could be

ESS = N
MSE

[
Î
]

MSE
[
Ĩ
] = N

varπ

[
Î
]

MSE
[
Ĩ
] , (9)

where we have considered the Mean Square Error (MSE) and we have taken into account that Î
is unbiased. Furthermore, several approximations have been applied to obtain the final expression
(for instance, the author in [18] applies twice the delta method [3]). Due to all the employed

approximations, the final formula P
(2)
N does not depend on the particles xn, n = 1, . . . , N , which is

obviously a drawback since we are trying to measure the effective sample size of the set of weighted
particles. Figure 1 shows the progressive loss of information that we have first normalizing the
weights and then removing the information related to the position of the particles. Conversely to
the previous observation, the fact the P

(2)
N is independent from the function h(x) is positive and

desirable (starting from the definition ESS = N varπ [bI]
varq [eI] , this is not a trivial conclusion). Another

important issue is that P
(2)
N has been derived under the assumption of a single proposal context,

i.e.,
xn ∼ q(x), n = 1, . . . , N,

but in general the formula P
(2)
N is applied in a multiple proposal setting, e.g.,

x1 ∼ q1(x),x2 ∼ q2(x), . . . ,xN ∼ qN(x),

which is the case of Population Monte Carlo (PMC) [2] and sequential Monte Carlo [9, 7] methods,

more generally. Finally, note that 1 ≤ P
(2)
N ≤ N which can appear an interesting feature after

a first examination, but actually it does not encompass completely the theoretical consequences

included in the general definition ESS = N varπ [bI]
varq [eI] . Indeed, by this general definition of ESS, we

have
0 ≤ ESS ≤ B, B ≥ N,

i.e., namely ESS can be less than 1, when varq[Ĩ] >> varπ[Î], and even greater than N , when

varq[Ĩ] < varπ[Î]: this case occurs when negative correlation is induced among the generated
samples [11].

Extreme cases. Ideally, if all the samples are drawn directly from the target distribution all the
weights wn are equal, so that w̄n = 1

N
, n = 1, . . . , N . the vector with equal components w̄n = 1

N
,

n = 1, . . . , N , is denoted

w̄∗ =

[
1

N
, . . . ,

1

N

]
, (10)
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Figure 1: Graphical representation of the loss of statistical information normalizing the weights and
ignoring the values of the particles (N = 3).

It important to note that the converse is not always true: namely the scenario w̄n = 1
N

,
n = 1, . . . , N , could occur even if the proposal density is different from the target. Hence, in
this case, we can assert ESS ≤ N (considering independent, non-negative correlated, samples).
The other extreme case is

w̄(j) = [w̄1 = 0, . . . , w̄j = 1, . . . , w̄N = 0], (11)

i.e., w̄j = 1 and w̄n = 0 ( it can occurs only if π(xn) = 0), for n 6= j with j ∈ {1, . . . , N}. The best
possible scenario, in this case, is that the j-th sample (associate to the weight w̄j = 1) has been
generated exactly from π̄(x) (hence, with effective sample size equal to 1). Thus, in this case, one
can consider ESS ≤ 1.

Optimistic approach. The function P
(2)
N (w̄) employ an optimistic approach for the two extreme

cases previously described above:

P
(2)
N (w̄∗) = N, (12)

P
(2)
N (w̄(j)) = 1, ∀j ∈ {1, . . . , N}. (13)

Moreover, considering a vector of type

w̄ =

[
0,

1

C
,

1

C
, 0, . . . , 0, 0,

1

C
, . . . , 0

]
,

where only C entries are non-null with the same weight 1
C

, note that

P
(2)
N (w̄) = C. (14)

Figure 2 summarizes graphically these cases. This approach can appear as a limitations given the
previous observations but, using only the information of w̄, appears reasonable.

Despite of the previous considerations, the ESS approximation P
(2)
N has become an essential piece

within Monte Carlo methods using adaptive resampling steps [7, 15, 23]. It has been widely
accepted as a valid measure of effective sample size. Below, we describe a simple justification for
the diffusion of P

(2)
N as a suitable ESS approximation in an adaptive resampling context.
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Figure 2: Graphical summary of the optimistic approach employed by ÊSS = P
(2)
N (w̄).

4 Discrepancy measures for adaptive resampling

Many population Monte Carlo (PMC) [2, 12] or sequential Monte Carlo (SMC) methods [9, 15],
employ resampling steps for updating the parameters of the used proposal functions. On the
one hand, PMC and SMC suffer the so-called path degeneracy, i.e., after some iterations only
one sample is statistically relevant in terms of the importance weights. This problem could be
solved applying resampling procedures. However, on the other hand, the application of resampling
yields loss of diversity in the set of samples, incorporating additional variance in the Monte Carlo
estimators. Therefore, it is convenient to apply resampling steps only in certain specific iterations,
when it is considered strictly required.

Discrepancy between pmfs. The underlying idea behind the use of P
(2)
N is that if the pmf w̄n,

n = 1, . . . , N , is reasonably close to the discrete uniform pmf U{1, 2, . . . , N} then the resampling is

not needed. Otherwise, the resampling is applied. Below, we show that the formula P
(2)
N is related

to the Euclidean distance between these two pmfs. It is natural to think to employ other kind
of distance or discrepancy measures between the pmf represented by weights w̄n and the discrete
uniform pmf. We derive some alternative ESS functions below. It is important to observe that
several ESS functions can be obtained from the same discrepancy measure. Here, in this section,
we derive some ESS functions that satisfy some important properties, described exhaustively in
the next section.

6



Euclidean distance L2. Let us consider the Euclidean distance L2 between the discrete uniform
pmf U{1, 2, . . . , N} and the pmf given by the normalized weights w̄n, i.e,

||w̄ − w̄∗||2 =

√√√√
N∑

n=1

(
w̄n −

1

N

)2

=

√√√√
(

N∑

n=1

w̄2
n

)
+N

(
1

N2

)
− 2

N

N∑

n=1

w̄n

=

√√√√
(

N∑

n=1

w̄2
n

)
− 1

N

=

√
1

P
(2)
N (w̄)

− 1

N
. (15)

We can observe the relationship with P
(2)
N (w̄). Maximizing P

(2)
N is equivalent to minimizing the

Euclidean distance between the pmf w̄n and the discrete uniform pmf. Thus, the use of P
(2)
N within

a PMC or SMC schemes corresponds to check if the current pmf (defined by the weights w̄n) is
close enough to the uniform pmf, in terms of Euclidean distance.

Distance L1. In Appendix B we show that the L1 distance can expressed as function of a
suitable ESS function QN(w̄), i.e.,

||w̄ − w̄∗||1 =
N∑

n=1

∣∣∣∣w̄n −
1

N

∣∣∣∣ = 2

[
N −QN(w̄)

N

]
+ 2, (16)

where

QN(w̄) = −N
N+∑

i=1

w̄+
i +N+ +N, (17)

with
{w̄+

1 , . . . , w̄
+
N+} =

{
all w̄n: w̄n ≥ 1/N, ∀n = 1, . . . , N

}
,

and N+ = #{w̄+
1 , . . . , w̄

+
N+}. Note that 1 ≤ QN(w̄) ≤ N , with QN(w̄∗) = N and QN(w̄(i)) = 1 for

all i ∈ {1, . . . , N}. Maximizing QN is equivalent to minimizing the L1 distance between the pmf
w̄n and the discrete uniform pmf. We remark again this is only one of the possible ESS functions
induced by the L1 distance. We choose this one since it satisfy some properties described in the
next section.

7



Norm L0. Interesting ESS formulas can be also obtained considering also the distance of the
vector w̄ with respect to the null vector containing all zeros as entries (i.e., the norm of w̄). For
instance, based on the Hamming distance among the two vectors [5], i.e.,

V
(0)
N (w̄) = N −NZ , (18)

where Nz is the number of zeros in w̄, i.e.,

NZ = #{w̄n = 0, ∀n = 1, . . . , N}. (19)

Observe that 1 ≤ V
(0)
N (w̄) ≤ N and V

(0)
N (w̄∗) = N and V

(0)
N (w̄(i)) = 1 for all i ∈ {1, . . . , N}.

Norm L∞. Other kind of norms can suggest other suitable ESS formulas. For instance,

||w̄||∞ = max [|w̄1| , . . . , |w̄N |] =
1

DN(w̄)
, (20)

where

D
(∞)
N (w̄) =

1

max [w̄1, . . . , w̄N ]
, (21)

is another valid ESS measure. We have also 1 ≤ D
(∞)
N (w̄) ≤ N , with DN(w̄∗) = N and

D
(∞)
N (w̄(i)) = 1 for all i ∈ {1, . . . , N}.

All the expression P
(2)
N , QN , D

(∞)
N and V

(0)
N share interesting properties detailed in the next

section, which allow us to define a generic ESS measure. Moreover, other formulas related to Lp
distances are obtained in Section 5.3.

5 Generalized ESS functions

In this section, we introduce some properties that a generalized ESS measure (G-ESS) should
satisfy, based only on the information of the normalized weights. Here, first of all, note that any
possible G-ESS is a function of the vector of normalized weights w̄ = [w̄1, . . . , w̄N ],

EN(w̄) = EN(w̄1, . . . , w̄N) : SN → [1, N ], (22)

where SN ⊂ RN represents the unit simplex in RN . Namely, the variables w̄1, . . . , w̄N are subjected
to the constrain

w̄1 + w̄2 + . . .+ w̄N = 1. (23)
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5.1 Conditions for G-ESS functions

Below we list five conditions that EN(w̄) should fulfill to be consider a suitable G-ESS function.
The first three properties are strictly necessary, whereas the last two are welcome conditions, i.e.,
no strictly required but desirable (see also classification below):

C1. Symmetry: EN must be invariant under any permutation of the weights, i.e.,

EN(w̄1, w̄2, . . . , w̄N) = EN(w̄j1 , w̄j2 , . . . , w̄jN ), (24)

for any possible set of indices {j1, . . . , jN} = {1, . . . , N}.

C2. Maximum condition: A maximum value is N and it is reached at w̄∗ (see Eq. (10)), i.e.,

EN (w̄∗) = N ≥ EN(w̄). (25)

C3. Minimum condition: the minimum value is 1 and it is reached (at least) at the vertices
w̄(j) of the unit simplex in Eq. (11),

EN(w̄(j)) = 1 ≤ EN(w̄). (26)

for all j ∈ {1, . . . , N}.

C4. Unicity of extreme values: (welcome condition) The maximum at w̄∗ is unique and the
the minimum value 1 is reached only at the vertices w̄(j), for all j ∈ {1, . . . , N}.

C5. Stability - Invariance of the rate EN (w̄)
N

: (welcome condition) Consider the vector of
weights w̄ = [w̄1, . . . , w̄N ] ∈ RN and the vector

v̄ = [v̄1, . . . , v̄MN ] ∈ RMN , M ≥ 1, (27)

obtained repeating and scaling by 1
M

the entries of w̄, i.e.,

v̄ =
1

M
[w̄, w̄, . . . , w̄︸ ︷︷ ︸

M−times

]. (28)

Note that, clearly,
∑mN

i=1 v̄i = 1
M

[
M
∑N

n=1 w̄n

]
= 1. The invariance condition is expressed

as

EN(w̄)

N
=

EMN(v̄)

MN

EN(w̄) =
1

M
EMN(v̄), (29)

for all M ∈ N+.
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The condition C5 is related to the optimistic approach described in in Section 4. For clarifying
this point, as an example, let us consider the vectors

w̄ = [0, 1, 0],

v̄′ =

[
0,

1

2
, 0, 0,

1

2
, 0

]
=

1

2
[w̄, w̄],

v̄′′ =

[
0,

1

3
, 0, 0,

1

3
, 0, 0,

1

3
, 0

]
=

1

3
[w̄, w̄, w̄],

with N = 3. Following the optimistic approach, we should have EN(w̄) = 1, E2N(v̄′) = 2 and
E3N(v̄′′) = 3, i.e., the rate EN/N is invariant

EN(w̄)

N
=
E2N(v̄′)

2N
=
E3N(v̄′′)

3N
=

1

3
.

5.2 Classification and examples of G-ESS functions

We divide the possible G-ESS functions in different categories depending on the conditions fulfilled
by the corresponding function (see Table 1). Recall that the first three conditions are strictly
required. All the G-ESS functions which satisfy at least the first four conditions, i.e., from C1 to
C4, are proper functions. All the G-ESS functions which satisfy the first three conditions, C1, C2
and C3 but no C4, are considered degenerate functions. When a G-ESS function fulfills the last
condition is called stable. Thus, the G-ESS functions which satisfy all the conditions, i.e., from
C1 to C5, are then proper and stable whereas, if C4 is not satisfied, they are degenerate and stable.
We can also distinguish two type of degeneracy: type-1 when EN(w̄) reaches the maximum value
N also in some other point w̄ 6= w̄∗, or type-2 if EN(w̄) reaches the minimum value 1 also in some
point that is not a vertex.

Table 1: Classification of G-ESS depending of the satisfied conditions.

Class of G-ESS C1 C2 C3 C4 C5

Degenerate (D) Yes Yes Yes No No
Proper (P) Yes Yes Yes Yes No

Degenerate and Stable (DS) Yes Yes Yes No Yes
Proper and Stable (PS) Yes Yes Yes Yes Yes

Example 1. The functions P
(2)
N in Eq.(6), QN in Eq. (17) and D

(∞)
N in (21) described in Sections

4 are all G-ESS functions of class PS, proper and stable.

Example 2. The G-ESS function in Eq.(18), V
(0)
N (w̄) = N −NZ, where NZ is the number of zero

within w̄, is degenerate (type-1) and stable.
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5.3 Design of G-ESS families and further examples

We can easily design G-ESS functions fulfilling at least the first three conditions, C1, C2, and C3.
As examples, considering a parameter r ≥ 0, we introduce four families of G-ESS functions which
have the following analytic forms

P
(r)
N (w̄) =

1

ar
∑N

n=1 (w̄n)r + br
, r ∈ R D

(r)
N (w̄) =

1

ar

[∑N
n=1 (w̄n)r

] 1
r

+ br

, r ≥ 0

V
(r)
N (w̄) = ar

N∑

n=1

(w̄n)r + br, r ∈ R S
(r)
N (w̄) = ar

[
N∑

n=1

(w̄n)r
] 1
r

+ br, r ≥ 0

where ar, br are constant values depending on the parameter r (and the corresponding family).
The values of the coefficients ar, br can be found easily as solutions of linear systems (see Appendix
A), with equations obtained in order to fulfill the conditions C2 and C3. The resulting G-ESS
functions are in general proper, i.e., satisfying from C1 to C4 (with some degenerate and stable
exceptions). The solutions of the corresponding linear systems are given in Table 2. Replacing
these solutions within the expressions of the different families, we obtain

P
(r)
N (w̄) =

N (2−r) −N
(1−N)

∑N
n=1 (w̄n)r +N (2−r) − 1

, (30)

D
(r)
N (w̄) =

N
1
r −N

(1−N)
[∑N

n=1 (w̄n)r
] 1
r

+N
1
r − 1

, (31)

V
(r)
N (w̄) =

N r−1(N − 1)

1−N r−1

[
N∑

n=1

w̄rn

]
+

N r − 1

N r−1 − 1
, (32)

S
(r)
N (w̄) =

N − 1

N
1−r
r − 1



(

N∑

n=1

w̄rn

) 1
r


+ 1− N − 1

N
1−r
r − 1

, (33)

These families contain different G-ESS functions previously introduced, and also other interesting
special cases. Table 3 summarizes these particular cases (jointly with the corresponding

classification) corresponding to specific values the parameter r. Some of them (D
(0)
N and S

(0)
N )

involve the geometric mean of the normalized weights,

GeoM(w̄) =

[
N∏

n=1

w̄n

]1/N

, (34)

other ones (D
(1)
N = P

(1)
N and S

(1)
N = V

(1)
N ) involve the discrete entropy [5] of the normalized weights,

H(w̄) = −
N∑

n=1

w̄n log2(w̄n), (35)
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and others use the number of zeros contained in w̄, NZ = #{w̄n = 0, ∀n = 1, . . . , N}. The
derivations of these special cases are provided in Appendices A.1 and A.2. Note that Table 3
contains a proper and stable G-ESS function

S
(1/2)
N (w̄) =

(
N∑

n=1

√
w̄n

)2

, (36)

not introduced so far. Figure 8 shows the rate 1
N
≤ ESS

N
≤ 1 as function of r for the different

families P
(r)
N , D

(r)
N (both in solid lines), V

(r)
N and S

(r)
N (both in dashed lines), considering the vector

w̄ = [0.1 0.1 0.2 0.6] in (a) w̄ = [0 0 0.5 0.5] in (c) and its repeating versions in (b)-(d) (i.e.,
consider the vector v̄ obtained repeating M = 100 times the entries of w̄ and scaling by 1/M).

Note that V
(0)
N /N , P

(2)
N /N , S

( 1
2

)

N /N and D
(∞)
N /N remain invariant, in both cases. In (c)-(d), since

the vector w̄ = [0 0 0.5 0.5] contains two zeros, the rates V
(0)
N /N , P

(2)
N /N , S

( 1
2

)

N /N , D
(∞)
N /N remain

invariant equal to the same value 0.5, in this case. This means that the corresponding ESS values
are 2 and 200, as expected.

Table 2: G-ESS families and their coefficients ar and br.

P
(r)
N (w̄) D

(r)
N (w̄) V

(r)
N (w̄) S

(r)
N (w̄)

1

ar
PN
n=1(w̄n)r+br

1

ar[
PN
n=1(w̄n)r]

1
r +br

ar
∑N

n=1 (w̄n)r + br ar

[∑N
n=1 (w̄n)r

] 1
r

+ br

ar = 1−N
N(2−r)−N

ar = N−1

N−N
1
r

ar = Nr−1(N−1)
1−Nr−1

ar = N−1

N
1−r
r −1

br = N(2−r)−1
N(2−r)−N br = 1−N

1
r

N−N
1
r

br = Nr−1
Nr−1−1 br = N

1−r
r −N

N
1−r
r −1

Other examples of G-ESS functions, which do not belong to these families, are described below.

Example 3. Let us denote the harmonic mean of the normalized weights as

HarM(w̄) =

(
1∑N

n=1
1
w̄n

)−1

,

Note that lim
w̄n→0

HarM(w̄) = 0 for any possible entry in w̄, i.e., ∀n ∈ {1, . . . , N}. The following

functions involving the harmonic mean,

A1,N(w̄) =
1

(1−N)HarM(w̄) + 1
, (37)

A2,N(w̄) = (N2 −N)HarM(w̄) + 1, (38)

are both degenerate (type-2) G-ESS functions. They satisfy C1, C2 and C3, whereas C4 and C5
are not fulfilled.
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Table 3: Special cases of the families P
(r)
N (w̄), S

(r)
N (w̄), D

(r)
N (w̄) and V

(r)
N (w̄).

Parameter: r→ 0 r→ 1 r = 2 r→∞

P
(r)
N (w̄)

N
NZ+1

−N log2(N)
−N log2(N)+(N−1)H(w̄)

1PN
n=1(w̄n)2

{ N, if w̄ 6= w̄(i),
1, if w̄ = w̄(i).

Degenerate (type-1) Proper Proper-Stable Degenerate (type-1)
Parameter: r→ 0 r = 1

2 r→ 1 r→∞

S
(r)
N (w̄)

(N2 −N)GeoM(w̄) + 1
(∑N

n=1

√
w̄n

)2 N−1
log2(N)H(w̄) + 1 N + 1−N max[w̄1, . . . , w̄N ]

Degenerate (type-2) Proper-Stable Proper Proper
Parameter: r→ 0 r→ 1 r→∞

D
(r)
N (w̄)

1

(1−N)GeoM(w̄)+1
−N log2(N)

−N log2(N)+(N−1)H(w̄)
1

max[w̄1,...,w̄N ]

Degenerate (type-2) Proper Proper-Stable
Parameter: r→ 0 r→ 1 r→∞

V
(r)
N (w̄)

N −NZ
N−1

log2(N)H(w̄) + 1
{
N if w̄ 6= w̄(i),
1, if w̄ = w̄(i).

Degenerate (type-1)-Stable Proper Degenerate (type-1)

Example 4. The following functions involving the minimum of the normalized weights,

T1,N(w̄) =
1

(1−N) min[w̄1, . . . , w̄N ] + 1
, (39)

T2,N(w̄) = (N2 −N) min[w̄1, . . . , w̄N ] + 1, (40)

are degenerate (type-2) G-ESS measures.

Example 5. The perplexity function introduced in [1], is defined as2

PerN(w̄) = 2H(w̄), (41)

where

H(w̄) = −
N∑

n=1

w̄n log2(w̄n), (42)

is the discrete entropy [5] of the pmf w̄n, n = 1, . . . , N . The perplexity is a proper and stable
G-ESS function.

Example 6. Let us consider the Gini coefficient G(w̄) [14, 21], defined as follows. First of all,
we define the non-decreasing sequence of normalized weights

w̄(1) ≤ w̄(2) ≤ . . . ≤ w̄(N), (43)

obtained sorting in ascending order the entries of the vector w̄. The Gini coefficient is defined as

G(w̄) = 2
s(w̄)

N
− N + 1

N
, (44)

2We have slightly modified the definition of the perplexity for fitting better in our framework.
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where

s(w̄) =
N∑

n=1

nw̄(n). (45)

Then, the G-ESS function defined as

GiniN(w̄) = −NG(w̄) +N, (46)

is proper and stable.

Example 7. The following G-ESS function (inspired by the L1 distance),

N-plusN(w̄) = N+ = #
{
w̄n ≥ 1/N, ∀n = 1, . . . , N

}
. (47)

is also degenerate (type 2) and stable.

5.4 Distribution of the ESS values

An additional feature of the G-ESS measures is related to the distribution of the effective sample
size values obtained with a specific G-ESS function, when the vector w̄ is considered as a realization
of a random variable uniformly distributed in the unit simplex SN . Namely, let us consider the
random variables W̄ ∼ U(SN) and E = EN

(
W̄
)

with probability density function (pdf) pN(e),
i.e.,

E ∼ pN(e). (48)

Clearly, the support of pN(e) is [1, N ]. Studying pN(e), we can define additional properties for
discriminating different G-ESS functions. For instance, in general pN(e) is not a uniform pdf.
Some functions EN concentrate more probability mass closer to the maximum N , other functions
closer to the minimum 1. This feature varies with N , in general. For N = 2, it is straightforward
to obtain the expression of the pdf p2(e) for certain G-ESS functions. Indeed, denoting as I1(e)
and I2(e) the inverse functions corresponding to the monotonic pieces of the generic function
E2 (w̄1, 1− w̄1) = E2(w̄1), then we obtain

p2(e) =

∣∣∣∣
dI1

de

∣∣∣∣+

∣∣∣∣
dI2

de

∣∣∣∣ , e ∈ [1, N ], (49)

using the expression of transformation of a uniform random variable, defined in [0, 1]. Thus, we

find that p2(e) = 2
e2

for D
(∞)
2 and p2(e) = 2

e2
√

2
e
−1

for P
(2)
2 , for instance. Figure 7 depicts the pdfs

p2(e) for D
(∞)
2 , T2,2 in Eq. (40) and P

(2)
2 in Eq. (6). We can observe that P

(2)
2 is more optimistic

than D
(∞)
2 judging a set of weighted samples and assigning a value of the effective size, since p2(e)

in this case is unbalanced to the right side close to 2. From a practical point of view, the pdf
pN(e) could be used for choosing the threshold values for the adaptive resampling. The limiting
distribution obtained for N →∞,

p∞(e) = lim
N→∞

pN(e), (50)

is also theoretically interesting, since it can characterize the function EN . However, it is not
straightforward to obtain p∞(e) analytically. In Section 6, we approximate different limiting pdfs
p∞(e) of different G-ESS functions via numerical simulation.
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5.5 Summary

In the previous sections, we have found different stable G-ESS functions, satisfying at least the
conditions C1, C2, C3, and C5. They are recalled in Table 4. The following ordering inequalities

D
(∞)
N (w̄) ≤ P

(2)
N (w̄) ≤ S

( 1
2

)

N (w̄) ≤ V
(0)
N (w̄), ∀w̄ ∈ SN ,

can be also easily proved. For the case N = 2, i.e., when we have w̄ = [w̄1, w̄2] with w̄2 = 1− w̄1,
several interesting relationships can be found as shown in Appendix C. For instance, the standard
formula P

(2)
2 for N = 2 is identical to the G-ESS function in Eq. (37) involving the harmonic

mean.

Table 4: Stable G-ESS functions.

D
(∞)
N (w̄) P

(2)
N (w̄) S

( 1
2

)

N (w̄) V
(0)
N (w̄)

1
max[w̄1,...,w̄N ]

1PN
n=1 w̄

2
n

(∑N
n=1

√
w̄n

)2
N −NZ

proper proper proper degenerate (type-1)

QN(w̄) N-plusN(w̄) GiniN(w̄) PerN(w̄)

−N∑N+

i=1 w̄
+
i +N+ +N N+ −NG(w̄) +N 2H(w̄)

proper degenerate (type-2) proper proper

6 Simulations

6.1 Analysis of the distribution of ESS values

In this section, we study the distribution pN(e) of the values of the different G-ESS families.
With this purpose, we draw different vectors w̄′ uniformly distributed in the unit simplex SN , and
then we compute the corresponding ESS values. For drawing uniformly in the standard simplex
SN ⊂ RN , we use the following procedure involving uniform spacings random variables [6]:

1. Draw N uniform random samples un ∼ U([0, 1]), n = 1, . . . , N and sort them in ascending
order obtaining u(1) < u(2) < . . . < u(N).

2. Set s1 = u(1), s2 = u(2) − u(1), . . ., sN−1 = u(N) − u(N−1), and sN = 1 − u(N). Note that∑N
n=1 sn = 1.

3. Given the N vertices w̄(j) = [0, . . . 0, 1, 0, . . . , 0] of the unit simplex, j = 1, . . . , N , then a
random vector uniform distributed in the simplex is defined as

w̄′ =
N∑

n=1

snw̄
(n). (51)
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We repeat the procedure above 2000 times (for each value of N), namely, we generate 2000
independent random vectors w̄′ uniformly distributed in the unit simplex SN ⊂ RN . After that
we evaluate the different proper and stable G-ESS functions (summarized in Table 4) at each
drawn vector w̄′. The resulting histograms of the rate ESS/N obtained by the different functions
are depicted in Figure 3. Figures 3(a)-(c) correspond to N = 50, whereas (b)-(d) correspond

to N = 1000. Figures 3(a)-(c) show the histograms of the rate corresponding D
(∞)
N , P

(2)
N , S

( 1
2

)

N ,
whereas Figures (b)-(d) show the histograms of the rate corresponding QN , GiniN and PerN . The
empirical means and standard deviations for different N are provided in Table 5.

Table 5: Statistics of p̂N(e), empirical approximation of pN(e), corresponding to different G-ESS
functions. The greatest standard deviations for a given N are highlighted with boldface.

Description N D
(∞)
N /N P

(2)
N /N S

(1
2

)

N /N QN/N GiniN/N PerN/N

mean

50 0.2356 0.5194 0.7902 0.6371 0.5117 0.6655
200 0.1776 0.5057 0.7868 0.6326 0.5020 0.6568
103 0.1366 0.5013 0.7858 0.6324 0.5007 0.6558

5 103 0.1121 0.5005 0.7856 0.6322 0.5002 0.6554

std

50 0.0517 0.0622 0.0324 0.0345 0.0410 0.0492
200 0.0336 0.0341 0.0168 0.0171 0.0204 0.0248
103 0.0213 0.0158 0.0077 0.0077 0.0091 0.0111

5 103 0.0145 0.0071 0.0034 0.0034 0.0040 0.0050

We can observe that all the G-ESS functions concentrate the probability mass of the ESS values
around one mode, located in different positions. The variances of these distributions decrease as
N grows. The statistical information provided by these histograms can be used for choosing the
threshold value in an adaptive resampling scheme. Typically, the condition for applying resampling
is

EN(w̄) ≤ εN,

where 0 ≤ ε ≤ 1. Namely, the information provided by Table 5 can be useful for choosing ε,
depending on the used G-ESS function. For instance, Doucet et al. [10, Section 3.5] suggest to

use ε = 1
2

for P
(2)
N . This suggestion can be explained considering the mean of the ESS values of

P
(2)
N , which is ≈ 0.5. Moreover, the standard deviation can help us to understand the capability

of each formula in differentiating different vectors w̄. The greatest standard deviation for each N
is highlighted with boldface. In this sense, D

(∞)
N seems the most “discriminative” for large values

of N , whereas P
(2)
N seems the more convenient for small values of N (however, other studies can

suggest the opposite; see below).
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Figure 3: The histograms of the rates ESS
N corresponding to the proper and stable G-ESS functions in

Table 4, with N ∈ {50, 1000}.

6.2 Approximation of the theoretical ESS definition

Let us recall the theoretical definition of ESS in Eq. (5),

ESSvar = N
varπ[Î]

varq[Ĩ]
. (52)

We have already discussed in Section 3, a more convenient definition is

ESSMSE = N
MSEπ[Î]

MSEq[Ĩ]
= N

varπ[Î]

MSEq[Ĩ]
. (53)

considering the Mean Square Error (MSE) of the estimators, instead of only the variance. For large

values of N the difference between the two definitions is negligible since the bias of Ĩ is virtually
zero. In this section, we compute approximately via Monte Carlo the theoretical definitions
ESSvar, ESSMSE, and compare with the values obtained with different G-ESS functions. More
specifically, we consider a univariate standard Gaussian density as target pdf,

π̄(x) = N (x; 0, 1), (54)
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and also a Gaussian proposal pdf,
q(x) = N (x;µp, σ

2
p), (55)

with mean µp and variance σ2
p. Furthermore, we consider two experiment settings:

S1 In this scenario, we set σp = 1 and vary µp ∈ [0, 2]. Clearly, for µp = 0 we have the ideal
Monte Carlo case, q(x) ≡ π̄(x). As µp increases, the proposal becomes more different from
π̄.

S2 In this case, we set µp = 1 and consider σp ∈ [0.1, 4].

In both cases, we test N ∈ {5, 1000}. Figure 4 shows the (approximated) theoretical ESS
curves and the curves corresponding to the proper and stable G-ESS formulas (averaged over
105 independent runs). For N = 1000, the difference between ESSvar and ESSMSE is negligible,
so that we only show ESSvar. For N = 5 and S1 we show both curves of ESSvar and ESSMSE,
whereas for N = 5 and S2 we only provide ESSMSE since the bias is big for small value of σp so
that it is difficult to obtain reasonable and meaningful values of ESSvar.

In the setting S1 with N = 5 shown Fig. 4(a), first of all we can observe that ESSvar and
ESSMSE are very close when µp ≈ 0 (i.e., q(x) ≈ π̄(x)) but they differ substantially when the
bias increases. In this case, the G-ESS function GiniN provides the closest values to ESSvar,
in general. Moreover, P

(2)
N and D

(∞)
N also provide good approximations of ESSvar. Note that

ESSvar is always contained between D
(∞)
N and P

(2)
N . In the case S1 with N = 1000 shown Fig.

4(b), the formula P
(2)
N provides the closest curve to ESSvar. The G-ESS function D

(∞)
N gives a

good approximation when µp increases, i.e., the scenario becomes worse from a Monte Carlo point
of view. The G-ESS function GiniN provides the best approximation when µp ∈ [0, 0.5]. Again,

ESSvar is always contained between D
(∞)
N and P

(2)
N .

In the second scenario S2 with N = 5 shown Fig. 4(c), all G-ESS functions are not able to

reproduce conveniently the shape of ESSMSE. Around to the optimal value of σp, GiniN and P
(2)
N

provide the best approximation of ESSMSE. For the rest of value of σp, D
(∞)
N provides the closest

results. In the second setting S2 with N = 1000 shown Fig. 4(d), P
(2)
N seems to emulate better

the evolution of ESSvar. However, D
(∞)
N provides the closest results for small values of σp.

We can conclude that in general when the proposal differs substantially from the target, D
(∞)
N

provides the best results, whereas in better scenarios and large N , P
(2)
N seems to be the best

approximations. When the proposal is quite close to the target, the function GiniN provides also
good results. The G-ESS function GiniN seems to perform better than P

(2)
N when the number of

particles N is small.

6.3 Adaptive Resampling in Particle Filtering

In this example, we apply P
(2)
N and D

(∞)
N within a particle filter in order to decide adaptively when

performing a resampling step. Specifically, we consider a stochastic volatility model where the
hidden state xt follows an AR(1) process and represents the log-volatility [16] of a financial time
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Figure 4: Rates corresponding to ESSvar (solid line), ESSMSE (dashed line; shown only in (a)-(c)), P (2)
N

(circles), D(∞)
N (squares), GiniN (stars), S(1/2)

N (triangles up), QN (x-marks), PerN (triangles down).

series at time t ∈ N. The equations of the model are given by
{
xt = αxt−1 + ut,

yt = exp
(
xt
2

)
vt,

t = 1, . . . , T. (56)

where α = 0.99 is the AR parameter, and ut and vt denote independent zero-mean Gaussian
random variables with variances σ2

u = 1 and σ2
v = 0.5, respectively. Note that vt is a multiplicative

noise. For the sake of simplicity, we implement a standard particle filter (PF) [7, 8, 15] using
as propagation equation of the particles exactly the AR(1) process, i.e., the particles xi,t’s are
propagated as xi,t ∼ p(xt|xi,t−1), where i = 1, . . . , N is the particle index. We set T = 3000 and
N = 1000 number of particles. The resampling is performed adaptively, only a certain iterations,

T = {t∗1, . . . , t∗r}, (57)
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where r = #T (clearly, r varies in each run). More specifically, denoting as w̄t = [w̄1,t, . . . , w̄N,t]
at a specific PF iteration t, the conditions for applying the resampling are

P
(2)
N (w̄t) ≤ ε1N, D

(∞)
N (w̄t) ≤ ε2N,

respectively, where εi ∈ [0, 1], i = 1, 2, are a constant threshold values (with εi = 0, no resampling
is performed; with εi = 1, the resampling is applied at each iteration).
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Figure 5: (a) Resampling Rate R as function of ε1 = ε2 = ε for P (2)
N (solid line) and D(∞)

N (dashed line).
b Mean Square Error (MSE) as function of the resampling Rate R for P (2)

N (solid line) and D(∞)
N (dashed

line), in log-log-scale (N = 1000 and T = 3000).

Let us denote as T1 = {t∗1, . . . , t∗r1} and T2 = {τ ∗1 , . . . , τ ∗r2} the set of resampling instants

obtained by P
(2)
N and D

(∞)
N , respectively (r1 = #T1 and r2 = #T2). Since D

(∞)
N (w̄t) ≥ P

(2)
N (w̄t)

for all w̄t ∈ S, and if ε1 = ε2, using D
(∞)
N we apply more resampling steps than when P

(2)
N is used,

i.e., r2 ≥ r1 if ε1 = ε2. However, an equal resampling rate R, i.e., the ratio of the averaged number
of the performed resampling steps over T ,

R = E

[
# Resampling

T

]
=

1

T
E[r], (58)

can be obtained using different threshold values ε1 and ε2 for P
(2)
N and D

(∞)
N . In our case, for

obtaining the same resampling rate we need that ε1 ≥ ε2, as shown in Figure 5(a). Note that
0 ≤ R ≤ 1.
Goal. Given a resampling rate R, our purpose is to discriminate which G-ESS function, between
P

(2)
N and D

(∞)
N , selects the better iteration indices t∗’s for applying the resampling steps, i.e., when

it is more adequate to apply resampling in order to improve the performance.
Results. We test 100 different values of ε1 and ε2 (we have considered a thin grid of values from 0
to 1 with width 0.01, for both). For each value of εi, i = 1, 2, we run 500 independent simulations
of the PF for inferring the sequence x1:t, given a sequence of observations y1:T generated according
to the model in Eq. (56). Hence, we compute the Mean Square Error (MSE) in the estimation
of x1:t obtained by the PF, in each run. Moreover, for each value of εi, i = 1, 2, we calculate
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the resampling rate R (averaged over the 500 runs). Then, we can plot two curves of averaged

MSE versus the resampling rate R, corresponding to P
(2)
N and D

(∞)
N . In this way, we can compare

the performance of the PF using the same resampling rate R but obtained with different G-ESS
functions, P

(2)
N and D

(∞)
N . The results are shown in Figure 5(b) in log-log-scale. We can see that,

for a given resampling rate R, the G-ESS function D
(∞)
N always provides a smaller MSE w.r.t.

P
(2)
N . This confirms that, at least in certain scenarios, D

(∞)
N is a good measure of ESS and it is a

valid alternative for P
(2)
N . Furthermore, the range of useful values of ε in P

(2)
N is smaller than in

D
(∞)
N as shown in Figure 5(a).

7 Conclusions

In this work, we have derived several alternative ESS functions for importance sampling. The novel
ESS expressions (jointly with the formulas already presented in literature) have been classified
according to five theoretical requirements presented and discussed in this work. This classification
has allowed to select six different ESS functions which satisfy all these conditions. Then, we have
tested them by numerical simulations. At least one of them, D

(∞)
N (w̄) = 1

max[w̄1,...,w̄N ]
presents

interesting features and some benefit, compared to the standard ESS formula P
(2)
N (w̄), when the

proposal function differs substantially from the target distribution. Moreover, D
(∞)
N (w̄) seems to

behave as a “lower bound” for the theoretical ESS definition in our simulations. The simulation
study also provides some useful value for choosing the threshold in an adaptive resampling context.
For instance, the results in Table 5 suggest to use of ε ≥ 1

2
for P

(2)
N (as already noted in [10, Section

3.5]), and ε ≥ 0.11 for D
(∞)
N , in the resampling condition EN(w) ≤ εN . We have also tested D

(∞)
N

and P
(2)
N within a particle filter for tracking a stochastic volatility variable. The application of

G-ESS function D
(∞)
N has provided smaller MSE in estimation w.r.t. P

(2)
N , considering equal

resampling rates.
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[7] P. M. Djurić, J. H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M. F. Bugallo, and J. Mı́guez.
Particle filtering. IEEE Signal Processing Magazine, 20(5):19–38, September 2003.

[8] A. Doucet, N. de Freitas, and N. Gordon, editors. Sequential Monte Carlo Methods in Practice.
Springer, New York (USA), 2001.

[9] A. Doucet, N. de Freitas, and N. Gordon, editors. Sequential Monte Carlo Methods in Practice.
Springer, New York, 2001.

[10] A. Doucet and A. M. Johansen. A tutorial on particle filtering and smoothing: fifteen years
later. technical report, 2008.

[11] V. Elvira, L. Martino, D. Luengo, and M. F. Bugallo. Generalized multiple importance
sampling. arXiv:1511.03095, 2015.

[12] V. Elvira, L. Martino, D. Luengo, and M. F. Bugallo. Improving population Monte Carlo:
Alternative weighting and resampling schemes. viXra:1601.0174, 2015.

[13] D. Gamerman and H. F. Lopes. Markov Chain Monte Carlo: Stochastic Simulation for
Bayesian Inference,. Chapman & Hall/CRC Texts in Statistical Science, 2006.

[14] C. Gini. Measurement of inequality and incomes. The Economic Journal, 31:124–126, 1921.

[15] N. Gordon, D. Salmond, and A. F. M. Smith. Novel approach to nonlinear and non-Gaussian
Bayesian state estimation. IEE Proceedings-F Radar and Signal Processing, 140:107–113,
1993.

[16] E. Jacquier, N. G. Polson, and P. E. Rossi. Bayesian analysis of stochastic volatility models.
Journal of Business and Economic Statistics, 12(4):371–389, October 1994.

[17] A. N. Kolmogorov and S. V. Fomin. Introductory Real Analysis. Dover Publications, New
York, 1975.

[18] A. Kong. A note on importance sampling using standardized weights. Technical Report 348,
Department of Statistics, University of Chicago, 1992.

[19] A. Kong, J. S. Liu, and W. H. Wong. Sequential imputations and Bayesian missing data
problems. Journal of the American Statistical Association, 89(425):278–288, 1994.

22



[20] J. S. Liu. Monte Carlo Strategies in Scientific Computing. Springer, 2004.

[21] M. O. Lorenz. Methods of measuring the Concentration of Wealth. Publications of the
American Statistical Association, 9(70):209–219, 1905.

[22] L. Martino, V. Elvira, D. Luengo, and J. Corander. An adaptive population importance
sampler: Learning from the uncertanity. IEEE Transactions on Signal Processing,
63(16):4422–4437, 2015.

[23] L. Martino, J. Read, V. Elvira, and F. Louzada. Cooperative parallel particle filters for
on-line model selection and applications to urban mobility. viXra:1512.0420, 2015.

[24] L. Martino, J. Read, and D. Luengo. Independent doubly adaptive rejection Metropolis
sampling within Gibbs sampling. IEEE Transactions on Signal Processing, 63(12):3123–3138,
2015.

[25] R. E. Megginson. An Introduction to Banach Space Theory. Springer, 1998.

[26] P. Del Moral, A. Doucet, and A. Jasra. Sequential Monte Carlo samplers. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 68(3):411–436, 2006.

[27] C. P. Robert and G. Casella. Introducing Monte Carlo Methods with R. Springer, 2010.

A Derivation of alternative ESS functions

It is possible to design proper G-ESS fulfilling at least the conditions C1, C2, C3 and C4 (with
some degenerate exception), given in the previous section. Below, we show a possible simple
procedure but several could be used. Let us consider a function f(w̄) : RN → R, which satisfies
the following properties:

1. f(w̄) is a quasi-concave or a quasi-convex function, with a minimum or a maximum
(respectively) at w̄∗ =

[
1
N
, . . . , 1

N

]
.

2. f(w̄) is symmetric in the sense of Eq. (24).

3. Considering the vertices of the unit simplex w̄(i) = δ(i) in Eq. (11), then we also assume

f(w̄(i)) = c,

where c ∈ R is a constant value, the same for all i = 1, . . . , N .

Let also consider the function af(w̄)+b obtained as a linear transformation of f(w̄) where a, b ∈ R
are two constants. Note that, we can always set a > 0 if f(w̄) is quasi-concave, or a < 0 if f(w̄)
is quasi-convex, in order to obtain g(w̄) is always quasi-concave. Hence, we can define the G-ESS
function as

EN(w̄) =
1

af(w̄) + b
, or EN(w̄) = af(w̄) + b, (59)
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In order to fulfill the properties 2 and 3 in Section 5, recalling w̄∗ = [ 1
N
, . . . , 1

N
] and w̄(i) = δ(i),

we can properly choose the constant values a, b in order to satisfy the following system of N + 1
equations and two unknowns a and b,





af(w̄∗) + b =
1

N
,

af(w̄(i)) + b = 1, ∀i ∈ {1, . . . , N}.
(60)

or
{
af(w̄∗) + b = N,

af(w̄(i)) + b = 1, ∀i ∈ {1, . . . , N},
(61)

respectively. Note that they are both linear with respect to with unknowns a and b. Moreover,
since f(w̄(i)) = c for all i ∈ {1, . . . , N}, the system above is reduced to a 2× 2 linear system with
solution





a =
N − 1

N [f(w̄(i))− f(w̄∗)]
,

b =
f(w̄(i))−Nf(w̄∗)

N [f(w̄(i))− f(w̄∗)]
.

(62)

and




a =
N − 1

f(w̄∗)− f(w̄(i))
,

b =
f(w̄∗)−Nf(w̄(i))

(w̄(i))− f(w̄(i))
.

(63)

respectively. Below, we derive some special cases of the families P
(r)
N , D

(r)
N , V

(r)
N , and S

(r)
N defined in

Section 5.3 and obtained used the procedure above. In these families, we have fr(w̄) =
∑N

n=1(w̄n)r

for P
(r)
N , and V

(r)
N , and fr(w̄) =

[∑N
n=1(w̄n)r

]1/r

for D
(r)
N and S

(r)
N .

A.1 Special cases of P
(r)
N (w̄)

In the following, we analyze some special cases of the family P
(r)
N (w̄) in Eq. (30):

Case r→ 0. In this case, the constants in Table 2 reach the values ar → a0 = − 1
N

and
br → b0 = N+1

N
. Let us define 00 = 0, considering that limr→0+ 0r = 0 (i.e., r approaches 0

from the right). With this assumption, Thus, if no zeros are contained in w̄ then f0(w̄) = N and

P
(0)
N (w̄) = 1

Na0+b0
= N , whereas if w̄ contains NZ zeros, we have f0(w̄) = N −NZ and

P
(0)
N (w̄) =

N

NZ + 1
, (64)
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where we recall that NZ is the number of zero within w̄. Note that, clearly, P
(0)
N (w̄(i)) = 1 for all

i ∈ {1, . . . , N}, since NZ = N − 1.

Case r= 1. In this case, ar → ±∞, br → ∓∞, when r → 1. Since fr(w̄) → 1 if r → 1,
we have an indeterminate form for gr(w̄) = ar + br of type ∞−∞. Note that the limit

lim
r→1

P
(r)
N (w̄) = lim

r→1

N (2−r) −N
(1−N)

∑N
n=1 (w̄n)r +N (2−r) − 1

,

presents an indeterminate form of type 0
0
. Hence, using the L’Hôpital’s rule [17], i.e., deriving

both numerator and denominator w.r.t. r and computing the limit, we obtain

P
(1)
N (w̄) = lim

r→1

−N (2−r) log(N)

−N (2−r) log(N)− (N − 1)
∑N

n=1 w̄
r
n log(w̄n)

,

=
−N log(N)

−N log(N)− (N − 1)
∑N

n=1 w̄n log(w̄n)
,

=
−N log2(N)

log2 e

−N log2(N)
log2 e

− (N − 1)
∑N

n=1 w̄n
log2(w̄n)

log2 e

,

=
−N log2(N)

−N log2(N) + (N − 1)H(w̄)
, (65)

where we have denoted as H(w̄) = −∑N
n=1 w̄n log2(w̄n) the discrete entropy of the pmf w̄n,

n = 1, . . . , N . Observe that H(w̄∗) = log2N then P
(1)
N (w̄) = −N log2(N)

− log2N
= N , whereas H(w̄(i)) = 0

(considering 0 log2 0 = 0), P
(1)
N (w̄) = 1.

Case r= 2. In this case, a2 = 1 and b2 = 0, hence we obtain

P
(2)
N (w̄) =

1∑N
n=1 (w̄n)2

.

Case r→∞. We have ar → a∞ = N−1
N

and br → b∞ = 1
N

. If w̄ 6= w̄(i) for all
possible i ∈ {1, . . . , N}, then we have lim

r→∞
fr(w̄) = 0 (since 0 < w̄n < 1, in this case) and

P
(∞)
N (w̄) = 1

br
= N . Otherwise, if w̄ = w̄(i) for some i ∈ {1, . . . , N}, then lim

r→∞
fr(w̄) = 1 (where

we have considered lim
r→∞

0r = 0 and lim
r→∞

1r = 1) and P
(∞)
N (w̄) = 1

ar+br
= 1. We can summarize

both scenarios as

P
(∞)
N (w̄) =

{
N, if w̄ 6= w̄(i), ∀i ∈ {1, . . . , N},
1, if w̄ = w̄(i), ∀i ∈ {1, . . . , N}.

(66)
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A.2 Special cases of D
(r)
N (w̄)

Below, we analyze some special cases of the family D
(r)
N (w̄) in Eq. (31):

Case r→ 0. The coefficients of this family given in Table 2 reach the values ar → a0 = 0
and br → b0 = 1. In this case, If w̄ = w̄(i), we have lim

r→0
fr(w̄) = 1 (considering again 00 = 0 and

1∞ = 1). Whereas, when w̄ is not a vertex, i.e., w̄ 6= w̄(i), then

lim
r→0

fr(w̄) = lim
r→0

[
N∑

n=1

(w̄n)r
] 1
r

=∞.

so that lim
r→0

arfr(w̄) has the indeterminate form of type 0 × ∞ that can be converted to ∞
∞ as

shown below. We can write

lim
r→0

ar

[
N∑

n=1

(w̄n)r
] 1
r

= (1−N) lim
r→0

[∑N
n=1 (w̄n)r

]1/r

N1/r −N . (67)

Moreover, when r → 0 we have

[∑N
n=1 (w̄n)r

]1/r

N1/r −N ≈

[∑N
n=1 (w̄n)r

]1/r

N1/r
=

[
1

N

N∑

n=1

(w̄n)r
]1/r

, when r → 0. (68)

For r → 0, we can also write

(w̄n)r = exp(r log w̄n) ≈ 1 + r log w̄n, (69)

where we have used the Taylor expansion of first order of exp(r log w̄n). Replacing (w̄n)r ≈
1 + r log w̄n inside 1

N

∑N
n=1(w̄n)r we obtain

1

N

N∑

n=1

(w̄n)r ≈ 1

N
N + r

1

N

N∑

n=1

log w̄n = 1 + r
1

N
log

N∏

n=1

w̄n (70)

= 1 + r log

[
N∏

n=1

w̄n

] 1
N

. (71)

Thus, we can write
[

1

N

N∑

n=1

(w̄n)r

]1/r

≈


1 + r log

[
N∏

n=1

w̄n

] 1
N




1/r

. (72)

Moreover, given x ∈ R, for r → 0 we have also the relationship

(1 + rx)
1
r → exp(x),
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by definition of exponential function. Replacing above, for r → 0,


1 + r log

[
N∏

n=1

w̄n

] 1
N




1/r

−→ exp


log

[
N∏

n=1

w̄n

] 1
N


 =

[
N∏

n=1

w̄n

] 1
N

. (73)

Thus, finally we obtain

lim
r→0

ar

[
N∑

n=1

(w̄n)r
] 1
r

= (1−N)

[
N∏

n=1

w̄n

]1/N

, (74)

and

lim
r→0

D
(r)
N (w̄) =

1

(1−N)
[∏N

n=1 w̄n

]1/N

+ 1

, (75)

D
(0)
N (w̄) =

1

(1−N)GeoM(w̄) + 1
(76)

Case r= 1. With a similar procedure used for P
(1)
N , we obtain D

(1)
N (w̄) = P

(1)
N (w̄).

Case r→∞. In this case, ar → a∞ = 1 and br → b∞ = 0 and, since the distance[∑N
n=1 (w̄n)r

] 1
r

converges to the L∞ distance, max[w̄1, . . . , w̄N ], when r → ∞ [25], we obtain

D
(∞)
N (w̄) = 1

max[w̄1,...,w̄N ]
.

A.3 Special cases of V
(r)
N (w̄)

In the following, we study some special cases of the family V
(r)
N (w̄) in Eq. (32):

Case r→ 0. The coefficients of this family given in Table 2 are a0 = 1 and b0 = 0. If w̄
does not contain zeros then fr(w̄) =

∑N
n=1(w̄n)r = N . Otherwise, assuming 00 = 0, If w̄ contains

NZ zeros, we have fr(w̄) =
∑N

n=1(w̄n)r = N −NZ . Thus, in general, we have

V (0)(w̄) = N −NZ .

Case r→ 1. In this, the coefficients ar and br diverge. We can consider the limit

lim
r→1

(
N r−1(N − 1)

1−N r−1

[
N∑

n=1

w̄rn

]
+

N r − 1

N r−1 − 1

)
=

= (N − 1) lim
r→1

[∑N
n=1 w̄

r
n

]
− 1

1−N r−1
,
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where we have a indetermination of type 0
0
. Using the L’Hôpital’s rule [17], i.e., deriving both

numerator and denominator w.r.t. r and computing the limit, we obtain (since log x = log2 x
log2 e

)

lim
r→1

[∑N
n=1 w̄

r
n

]
− 1

1−N r−1
= lim

r→1

[∑N
n=1(w̄rn log w̄n)

]

−N r−1 logN
,

=

[
−∑N

n=1(w̄n log w̄n)
]

logN
=

[
−∑N

n=1(w̄n log2 w̄n)
]

(log2 e)
log2N
log2 e

,

=
H(w̄)

log2N
,

hence, finally,

V
(1)
N (w̄) = (N − 1)

H(w̄)

log2N
+ 1. (77)

Case r→∞. The coefficients converge to the values ar → a∞ = 1 − N and br → b∞ = N . If
w̄ 6= w̄(i) then fr(w̄) =

∑N
n=1(w̄n)r = 0, so that V

(∞)
N (w̄) = b∞ = N . Otherwise, If w̄ = w̄(i), since

0∞ = 0 and considering 1∞ = 1, then fr(w̄) =
∑N

n=1(w̄n)r = 1, so that V
(∞)
N (w̄) = a∞ + b∞ = 1.

A.4 Special cases of S
(r)
N (w̄)

Let us consider the family S
(r)
N (w̄). Four interesting special cases are studied below:

Case r→ 0. The coefficients given in Table 2 in this case are ar → a0 = 0 and br → b0 = 1. If
w̄ 6= w̄(i) then fr(w̄) → ∞, Otherwise, If w̄ = w̄(i), since 0∞ = 0 and considering 1∞ = 1, then

fr(w̄)→ 1. With a procedure similar to D
(0)
N , it is possible to show that

S(0)(w̄) = (N2 −N)GeoM(w̄) + 1. (78)

Case r→ 1
2
. We have a1/2 = 1 and b1/2 = 0. Then, in this case, S

( 1
2

)

N (w̄) = f1/2(w̄) =(∑N
n=1

√
w̄n

)2

.

Case r→ 1. With a similar procedure used for V
(1)
N , it is possible to obtain

S
(1)
N (w̄) = (N − 1)

H(w̄)

log2N
+ 1. (79)

Case r→∞. In this case, ar → a∞ = −N , br → b∞ = N+1. Moreover, fr(w̄)→ max[w̄1, . . . , w̄n]
[25], so that

S
(∞)
N (w̄) = (N + 1)−N max[w̄1, . . . , w̄n]. (80)

Table 3 summarizes all the special cases.
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B Derivation of QN(w̄)

Here, we derive the G-ESS function QN(w̄) given in Eq. (17) and induced by the L1 distance.
Let us define two disjoint sets of weights

{w̄+
1 , . . . , w̄

+
N+} =

{
all w̄n: w̄n ≥ 1/N, ∀n = 1, . . . , N

}
, (81)

{w̄−1 , . . . , w̄−N−} =
{

all w̄n: w̄n < 1/N, ∀n = 1, . . . , N
}
, (82)

where N+ = #{w̄+
1 , . . . , w̄

+
N+} and N− = #{w̄−1 , . . . , w̄−N+}. Clearly, N− + N+ = N and∑N+

i=1 w̄
+
i +

∑N−

i=1 w̄
−
i = 1. Thus, we can write

||w̄ − w̄∗||1 =
N∑

n=1

∣∣∣∣w̄n −
1

N

∣∣∣∣

=
N+∑

i=1

(
w̄+
i −

1

N

)
+

N−∑

j=1

(
1

N
− w̄−j

)

=
N+∑

i=1

w̄+
i −

N−∑

i=1

w̄−i −
N+ −N−

N
(83)

and replacing the relationships
∑N+

i=1 w̄
+
i = 1−∑N−

i=1 w̄
−
i and N− = N −N+,

||w̄ − w̄∗||1 = 2

[
N+∑

i=1

w̄+
i −

N+

N

]
,

= 2
N
∑N+

i=1 w̄
+
i −N+

N
,

= 2

[
N −QN(w̄)

N

]
+ 2, (84)

where QN(w̄) = −N∑N+

i=1 w̄
+
i +N+ +N .

C Relationships for N = 2

Other interesting relationships can be found for N = 2, i.e., when we have w̄ = [w̄1, w̄2] with
w̄2 = 1− w̄1. In this case, we can easily write two proper G-ESS functions, a quadratic (parabolic)
function

Par(w̄) = Par(w̄1),

= 1 + 4w̄1 − 4w̄2
1, w̄ = [w̄1, w̄2] ∈ S1, (85)

and a piecewise linear (triangular) function

Tri(w̄) = Tri(w̄1) =





2w̄1 + 1, for w̄1 ≤
1

2
,

3− 2w̄1, for w̄1 >
1

2
,

w̄ = [w̄1, w̄2] ∈ S1. (86)
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These two special cases are interesting since, for N = 2, there are several equivalences among
different G-ESS functions, shown in Table 6. Some relationship in Table 6 can seem even surprising,
but all the equivalences can be easily proved taking in account that w̄2 = 1 − w̄1. For instance,
the standard formula P

(2)
2 for N = 2 is identical to the G-ESS function in Eq. (37) involving the

harmonic mean. The second expression in Eq. (38) involving the harmonic mean coincides with

the parabolic function Par(w̄) in Eq. (85). The G-ESS formula S
( 1
2

)

2 (w̄) for N = 2 is equivalent

to S
(0)
2 (w̄) involving the geometric mean.

Table 6: Equivalences among G-ESS functions for N = 2, w̄ = [w̄1, w̄2] ∈ S2, i.e., with w̄2 = 1−w̄1.

Equiv. P
(2)
2 (w̄) ≡ A1,2(w̄) A2,2(w̄) ≡ Par(w̄) S

( 1
2 )

2 (w̄) ≡ S(0)
2 (w̄)

S
(∞)
2 (w̄) ≡ T2,2(w̄)

D
(∞)
2 (w̄) ≡ T1,2(w̄)≡ Tri(w̄)

Ref. Eq. (6); Eq. (37) Eq. (38); Eq. (85) Table 3 Table 3; Eq. (40); Table 3; Eq. (39)Eq. (86)
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Figure 6: Different G-ESS functions as functions of w̄1, with N = 2 and different values of r.
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Figure 7: (a) G-ESS functions, D(∞)
2 (squares), P (2)

2 in Eq. (6) (circles), and T2,2 in Eq. (40) (dashed
lines), all of them with N = 2 (then, w̄2 = 1 − w̄1). We can see that D(∞)

2 has a sub-linear increase to
the value N = 2, whereas P (2)

2 a super-linear increase. (b)-(c)-(d) Pdfs pN (e) associated to D(∞)
2 , P (2)

2

and T2,2, respectively. For D
(∞)
2 (Fig. (b)) more probability mass is located close to 1, whereas for

P
(2)
2 (Fig. (d)), p2(e) is unbalanced to the right side close to 2.
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(c) ESS

N as function of r (N=4).
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N as function of r (N=400).

Figure 8: The rate 1
N ≤ ESS

N ≤ 1 as function of r for the different families P (r)
N , D(r)

N (both in solid lines),
V

(r)
N and S

(r)
N (both in dashed lines), considering the vectors w̄ = [0.1 0.1 0.2 0.6] in (a), its repeated

version (100 times) in (b), the w̄ = [0 0 0.5 0.5] in (c) and its repeated version (100 times) in (d). The

circle corresponds to P (2)
N , the rhombus represents S

( 1
2

)

N , D(∞)
N is shown with a dotted straight line. The

G-ESS functions involving the discrete entropy H(w̄) (i.e., r → 1) and geometric mean GeoM(w̄) are
depicted with squares and triangles down, respectively. The other two cases for r → 0 are shown with
triangles up (in this case, both coincide to 1).

32


