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Abstract. In this paper we use the general steerable two-sided Clifford
Fourier transform (CFT), and relate the classical convolution of Clifford
algebra-valued signals over Rp,q with the (equally steerable) Mustard
convolution. A Mustard convolution can be expressed in the spectral
domain as the point wise product of the CFTs of the factor functions. In
full generality do we express the classical convolution of Clifford algebra
signals in terms of finite linear combinations of Mustard convolutions,
and vice versa the Mustard convolution of Clifford algebra signals in
terms of finite linear combinations of classical convolutions.
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1. Introduction

The steerable two-sided Clifford Fourier transformation (CFT) was intro-
duced in [23]. It generalizes related transforms, like the two-sided quaternion
Fourier transform [12], and the space-time Fourier transform [25] to higher
dimensions. The classical complex Fourier transform needs only one kernel
factor, due to the commutativity of complex numbers. To have different ker-
nel factors under the transform integral on both sides of the signal function
is meaningful due to the inherent non-commutativity in Clifford algebras.

A key strength of the classical complex Fourier transform is its easy
and fast application to filtering problems. The convolution of a signal with
its filter function becomes in the spectral domain a point wise product of the
respective Fourier transformations. This is not the case for the convolution
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of two Clifford algebra-valued signals (Clifford signals) over Rp,q, due to Clif-
ford algebra non-commutativity. Yet it is possible to define from the point
wise product of the CFTs of two Clifford signals a new type of steerable con-
volution, called Mustard convolution [29]. This Mustard convolution can be
expressed in terms of sums of classical convolutions and vice versa. For the
left-sided QFT this has recently been carried out in [7], for two-sided QFT
in [24] and for the space-time Fourier transform in [25]. Here we extend this
approach in full generality to the steerable two-sided CFT for signal functions
which map non-degenerate quadratic form vector spaces to Clifford algebras
in all dimensions.

This paper is organized as follows. Section 2 introduces Clifford alge-
bra, multivector signal functions, and the continuous manifolds of multivector
square roots of −1. Next, Section 3 briefly reviews an important decomposi-
tion (split) of multivectors with respect to a pair of multivector square roots of
−1. Then, Section 4 gives some background on the steerable two-sided CFT
and newly defines two related (steerable) exponential-sine Clifford Fourier
transforms. Finally, Section 5 defines the classical convolution of two Clifford
signal functions, as well as two types of steerable Mustard convolutions. The
rest of the section is devoted to representing the classical convolution in terms
of finite sums of Mustard convolutions. First is the general case in terms of
the two types of Mustard convolutions in Theorem 5.4. Second, Corollary 5.6
expresses for a commuting pair of square roots of −1 in the CFT, the con-
volution in terms of the standard Mustard convolution. Third, Theorem 5.7
generally expresses the classical convolution in terms of the standard Mustard
convolution. Fourth, for a pair of anticommuting square roots of −1 in the
CFT, Theorem 5.8 gives the classical convolution in terms of standard Mus-
tard convolutions. At the end, Theorem 5.9 states the Mustard convolution
in terms of classical convolutions.

2. Clifford’s geometric algebra

Definition 2.1 (Clifford’s geometric algebra [9, 27, 11, 18]). Let {e1, e2, . . .,
ep, ep+1, . . ., en}, with n = p+ q, e2

k = Q(ek)1 = εk, εk = +1 for k = 1, . . . , p,
εk = −1 for k = p+ 1, . . . , n, be an orthonormal base of the non-degenerate
inner product vector space (Rp,q, Q), Q the non-degenerate quadratic form,
with a geometric product according to the multiplication rules

ekel + elek = 2εkδk,l, k, l = 1, . . . n, (2.1)

where δk,l is the Kronecker symbol with δk,l = 1 for k = l, and δk,l = 0 for k 6=
l. This non-commutative product and the additional axiom of associativity
generate the 2n-dimensional Clifford geometric algebra Cl(p, q) = Cl(Rp,q) =
Clp,q = Gp,q = Rp,q over R. For Euclidean vector spaces (n = p) we use
Rn = Rn,0 and Cl(n) = Cl(n, 0). The set {eA : A ⊆ {1, . . . , n}} with eA =
eh1

eh2
. . . ehk , 1 ≤ h1 < . . . < hk ≤ n, e∅ = 1, the unity in the Clifford

algebra, forms a graded (blade) basis of Cl(p, q). The grades k range from 0 for
scalars, 1 for vectors, 2 for bivectors, s for s-vectors, up to n for pseudoscalars.
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The quadratic space (Rp,q, Q) is embedded into C`p,q as a subspace, which
is identified with the subspace of 1-vectors. All linear combinations of basis
elements of grade k, 0 ≤ k ≤ n, form the subspace C`kp,q ⊂ C`p,q of k-vectors.
The general elements of Cl(p, q) are real linear combinations of basis blades
eA, called Clifford numbers, multivectors or hypercomplex numbers.

In general 〈A〉k denotes the grade k part of A ∈ Cl(p, q). Following [11],
the parts of grade 0 and k + s, respectively, of the geometric product of a
k-vector Ak ∈ Cl(p, q) with an s-vector Bs ∈ Cl(p, q)

Ak ∗Bs := 〈AkBs〉0, Ak ∧Bs := 〈AkBs〉k+s, (2.2)

are called scalar product and outer product, respectively. They are bilinear
products mapping a pair of multivectors to a resulting product multivector
in the same algebra. The outer product is also associative, the scalar product
not.

Every k-vector B that can be written as the outer product B = b1 ∧
b2 ∧ . . . ∧ bk of k vectors b1, b2, . . . , bk ∈ Rp,q is called a simple k-vector or
blade.

Multivectors M ∈ Cl(p, q) have k-vector parts (0 ≤ k ≤ n): scalar part
Sc(M) = 〈M〉 = 〈M〉0 = M0 ∈ R, vector part 〈M〉1 ∈ Rp,q, bi-vector part

〈M〉2 ∈
∧2 Rp,q, . . . , and pseudoscalar part 〈M〉n ∈

∧n Rp,q
M =

∑
A

MAeA = 〈M〉+ 〈M〉1 + 〈M〉2 + . . .+ 〈M〉n . (2.3)

The principal reverse of M ∈ Cl(p, q) defined as

M̃ =

n∑
k=0

(−1)
k(k−1)

2 〈M〉k, (2.4)

often replaces complex conjugation and quaternion conjugation. Taking the
reverse is equivalent to reversing the order of products of basis vectors in the
basis blades eA. The operation M means to change in the basis decomposition
of M the sign of every vector of negative square eA = εh1eh1εh2eh2 . . . εhkehk ,
1 ≤ h1 < . . . < hk ≤ n. Reversion, M , and principal reversion are all
involutions. In Cl(n) the principal reverse and the reverse are identical.

For M,N ∈ Cl(p, q) we get M ∗ Ñ =
∑
AMANA. Two multivectors

M,N ∈ Cl(p, q) are orthogonal if and only if M ∗ Ñ = 0. The modulus |M |
of a multivector M ∈ Cl(p, q) is defined as

|M |2 = M ∗ M̃ =
∑
A

M2
A. (2.5)

2.1. Multivector signal functions

A multivector valued function h : Rp,q → Cl(p′, q′), has 2n
′

blade compo-
nents, n′ = p′ + q′ (hA : Rp,q → R)

h(x) =
∑
A

hA(x)eA. (2.6)
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We define the inner product of two functions h,m : Rp,q → Cl(p′, q′) by

(h,m) =

∫
Rp,q

h(x)m̃(x) dnx =
∑
A,B

eAẽB

∫
Rp,q

hA(x)mB(x) dnx, (2.7)

with the symmetric scalar part

〈h,m〉 =

∫
Rp,q

h(x) ∗ m̃(x) dnx =
∑
A

∫
Rp,q

hA(x)mA(x) dnx, (2.8)

and the L2(Rp,q;Cl(p′, q′))-norm

‖h‖2 = 〈(h, h)〉 =

∫
Rp,q
|h(x)|2dnx =

∑
A

∫
Rp,q

h2
A(x) dnx, (2.9)

L2(Rp,q;Cl(p′, q′)) = {h : Rp,q → Cl(p′, q′) | ‖h‖ <∞}. (2.10)

Notation 2.2 (Argument reflection). For a function h : Rp,q → Cl(p′, q′) and
a multi-index φ = (φ1, φ2) with φ1, φ2 ∈ {0, 1} we set

hφ = h(φ1,φ2)(x) := h((−1)φ1xk, (−1)φ2x(n−k)), (2.11)

where xk = x1e1 + . . .+ xkek, x(n−k) = x−xk, 1 ≤ k ≤ n, for arbitrary but
fixed k.

2.2. Square roots of −1 in Clifford algebras

Every Clifford algebra Cl(p, q), s8 = (p − q) mod 8, is isomorphic to one
of the following (square) matrix algebras1 M(2d,R), M(d,H), M(2d,R2),
M(d,H2) orM(2d,C). The first argument ofM is the dimension, the second
the associated ring2 R for s8 = 0, 2, R2 for s8 = 1, C for s8 = 3, 7, H for
s8 = 4, 6, and H2 for s8 = 5. For even n: d = 2(n−2)/2, for odd n: d = 2(n−3)/2.

It has been shown [17, 22] that Sc(f) = 0 for every square root of −1 in
every matrix algebra A isomorphic to Cl(p, q). One can distinguish ordinary
square roots of −1, and exceptional ones. All square roots of −1 in Cl(p, q)
can be computed using the package CLIFFORD for Maple [2, 3, 19, 28].

In all cases the ordinary square roots f of −1 constitute a unique conju-
gacy class of dimension dim(A)/2, which has as many connected components
as the group G(A) of invertible elements in A. Furthermore, for ordinary
square roots of −1 we always have Spec(f) = 0 (zero pseudoscalar part) if
the associated ring is R2, H2, or C. The exceptional square roots of −1 only
exist if A ∼=M(2d,C).

For A =M(2d,R), the centralizer (set of all elements in Cl(p, q) com-
muting with f) and the conjugacy class of a square root f of −1 both have
R-dimension 2d2 with two connected components. For the simplest case d = 1
we have the algebra Cl(2, 0) isomorphic to M(2,R), see the left side of Fig.
1.

1Compare chapter 16 on matrix representations and periodicity of 8, as well as Table 1 on

p. 217 of [27].
2Associated ring means, that the matrix elements are from the respective ring R, R2, C,
H or H2.



Convolution and Mustard convolution for two-sided CFT 5

Figure 1. Manifolds of square roots f of −1 in Cl(2, 0)
(left), Cl(1, 1) (center), and Cl(0, 2) ∼= H (right). The square
roots are f = α + b1e1 + b2e2 + βe12, with α, b1, b2, β ∈ R,
α = 0, and β2 = b21e

2
2 + b22e

2
1 + e2

1e
2
2.

ForA =M(2d,R2) =M(2d,R)×M(2d,R), the square roots of (−1,−1)
are pairs of two square roots of −1 in M(2d,R). They constitute a unique
conjugacy class with four connected components, each of dimension 4d2. Re-
garding the four connected components, the group of inner automorphisms
Inn(A) induces the permutations of the Klein group, whereas the quotient
group Aut(A)/Inn(A) is isomorphic to the group of isometries of a Euclidean
square in 2D. The simplest example with d = 1 is Cl(2, 1) isomorphic to
M(2,R2) =M(2,R)×M(2,R).

For A =M(d,H), the submanifold of the square roots f of −1 is a single
connected conjugacy class of R-dimension 2d2 equal to the R-dimension of
the centralizer of every f . The easiest example for d = 1 is H, isomorphic to
Cl(0, 2), see the right side of Fig. 1.

For A =M(d,H2) =M(d,H)×M(d,H), the square roots of (−1,−1)
are pairs of two square roots (f, f ′) of −1 in M(d,H) and constitute a
unique connected conjugacy class of R-dimension 4d2. The group Aut(A)
has two connected components: the neutral component Inn(A) connected to
the identity and the second component containing the swap automorphism
(f, f ′) 7→ (f ′, f). The simplest case for d = 1 is H2 isomorphic to Cl(0, 3).

For A =M(2d,C), the square roots of −1 are in bijection to the idem-
potents [1]. First, the ordinary square roots of −1 (with k = 0) constitute a
conjugacy class of R-dimension 4d2 of a single connected component which
is invariant under Aut(A). Second, there are 2d conjugacy classes of excep-
tional square roots of −1, each composed of a single connected component,
characterized by the equality Spec(f) = k/d (the pseudoscalar coefficient)
with ±k ∈ {1, 2, . . . , d}, and their R-dimensions are 4(d2 − k2). The group
Aut(A) includes conjugation of the pseudoscalar ω 7→ −ω which maps the
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conjugacy class associated with k to the class associated with −k. The sim-
plest case for d = 1 is the Pauli matrix algebra isomorphic to the geometric
algebra Cl(3, 0) of 3D Euclidean space R3, and to complex biquaternions [30].

3. The ± split with respect to two square roots of −1
With respect to any square root f ∈ Cl(p, q) of −1, f2 = −1, every multivec-
tor A ∈ Cl(p, q) can be split into commuting and anticommuting parts [22].

Lemma 3.1. Every multivector A ∈ Cl(p, q) has, with respect to a square root
f ∈ Cl(p, q) of −1, i.e., f−1 = −f, the unique decomposition

A+f =
1

2
(A+ f−1Af), A−f =

1

2
(A− f−1Af)

A = A+f +A−f , A+f f = fA+f , A−f f = −fA−f , (3.1)

A+f ∈ centralizer(f, Clp,q).

Furthermore, for f, g ∈ Cl(p, q) an arbitrary pair of square roots of −1,
f2 = g2 = −1, the map f( )g is an involution, because f2xg2 = (−1)2x =
x, ∀x ∈ Cl(p, q). In [12] a split of quaternions by means of the pure unit
quaternion basis elements i, j ∈ H was introduced, and generalized to a
general pair of pure unit quaternions in [15, 21]. This can be generalized to a
split of Cl(p, q), see [23].

Definition 3.2 (± split with respect to two square roots of −1 [23]). Let f, g
∈ Cl(p, q) be an arbitrary pair of square roots of −1, f2 = g2 = −1, including
the cases f = ±g. The general ± split is then defined with respect to the two
square roots f, g of −1 as

x± =
1

2
(x± fxg), ∀x ∈ Cl(p, q). (3.2)

Note that the split of Lemma 3.1 is a special case of Definition 3.2 with
g = −f .

We observe from (3.2), that fxg = x+ − x−, i.e. under the map f( )g
the x+ part is invariant, but the x− part changes sign

fx±g =
1

2
(fxg ± f2xg2) =

1

2
(fxg ± x) = ±1

2
(x± fxg) = ±x±. (3.3)

The two parts x± can be represented with Lemma 3.1 as linear combi-
nations of x+f and x−f , or of x+g and x−g, see [23],

x± = x+f
1± fg

2
+ x−f

1∓ fg
2

=
1± fg

2
x+g +

1∓ fg
2

x−g. (3.4)

There is the following important general identity [23],

eαfx±e
βg = x±e

(β∓α)g = e(α∓β)fx±. (3.5)

For Cl(p, q) ∼=M(2d,C) orM(d,H) orM(d,H2), or for both f, g being

blades in Cl(p, q) ∼= M(2d,R) or M(2d,R2), we have f̃ = −f , g̃ = −g. We
therefore obtain the following lemma.
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Lemma 3.3 (Orthogonality of two ± split parts [23]). Assume in Cl(p, q) two

square roots f, g of −1 with f̃ = −f , g̃ = −g. Given any two multivectors
x, y ∈ Cl(p, q) and applying the ± split (3.2) with respect to f, g we get zero
for the scalar part of the mixed products

Sc(x+ỹ−) = 0, Sc(x−ỹ+) = 0. (3.6)

4. General steerable two-sided Clifford Fourier transforms

The general steerable two-sided Clifford Fourier transform (CFT) [23], can
both be understood as a generalization of known one-sided CFTs [13, 20], or
of the two-sided quaternion Fourier transformation (QFT) [12, 15], or two-
sided space-time Fourier transform [12, 15, 25] to a general Clifford algebra
setting. Most known CFTs (prior to [23]) used in their kernels specific square
roots of −1, like bivectors, pseudoscalars, unit pure quaternions, or sets of
coorthogonal blades (commuting or anticommuting blades) [5]. All those re-
strictions on the square roots of −1 used in a CFT do not apply in our
definition below. Note that if the left or right phase angle is identical to zero,
we get one-sided right or left sided CFTs, respectively.

Definition 4.1 (Steerable CFT with respect to two square roots of −1 [23]).
Let f, g ∈ Cl(p′, q′), f2 = g2 = −1, be any two square roots of −1. The
general steerable two-sided Clifford Fourier transform3 (CFT) of h ∈ L1(Rp,q;
Cl(p′, q′)), with respect to f, g is

F{h}(ω) = Ff,g{h}(ω) =

∫
Rp,q

e−fu(x,ω)h(x) e−gv(x,ω)dnx, (4.1)

where dnx = dx1 . . . dxn, x,ω ∈ Rp,q, and u, v : Rp,q × Rp,q → R.

Remark 4.2. In order to avoid clutter we often drop the upper indexes f, g as
in F{h} = Ff,g{h}, but in principle the two-sided CFT always depends on
the particular choice f, g of the two square roots of −1. Since square roots of
−1 in Cl(p′, q′) populate continuous submanifolds in Cl(p′, q′), the CFT of
Definition 4.1 is generically steerable within these submanifolds. In Definition
4.1, the two square roots f, g ∈ Cl(p′, q′) of −1, may be from the same (or
different) conjugacy class and component, respectively.

Linearity of the CFT integral (4.1) allows us to use the ± split h =
h− + h+ of Definition 3.2 to obtain, see [23],

Ff,g{h}(ω) = Ff,g{h−}(ω) + Ff,g{h+}(ω)

= Ff,g− {h}(ω) + Ff,g+ {h}(ω), (4.2)

since by their construction the operators of the Clifford Fourier transforma-
tion Ff,g, and of the ± split with respect to f, g commute. From (3.5) follows
the next theorem.

3The image Clifford algebra Cl(p′, q′) can be identical to Cl(p, q) over the domain vector
space Rp,q , but this is not necessary, and completely depends on the application context.
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Theorem 4.3 (CFT of h±, [23]). The CFT of the ± split parts h± , with
respect to two square roots f, g ∈ Cl(p′, q′) of −1 , of a Clifford function h ∈
L1 (Rp,q; Cl(p′, q′)) have the quasi-complex forms

Ff,g± {h} = Ff,g{h±} (4.3)

=

∫
Rp,q
h± e

−g(v(x,ω)∓u(x,ω))dnx =

∫
Rp,q
e−f(u(x,ω)∓v(x,ω))h± d

nx .

Remark 4.4. Theorem 4.3 establishes in combination with (4.2) a general
method for how to compute a two-sided CFT in terms of two one-sided CFTs4.
For special relations of two-sided and one-sided quaternionic Fourier trans-
forms see [12, 14, 15, 21].

Remark 4.5. The quasi-complex forms in Theorem 4.3 allow to establish dis-
cretized and fast versions of the general two-sided CFT of Definition 4.1 as
sums of complex discretized and fast Fourier transformations (FFT), respec-
tively.

For establishing an inversion formula, and other important CFT prop-
erties, certain assumptions about the phase functions u(x,ω), v(x,ω) need
to be made. One possibility is, e.g. to arbitrarily partition the scalar product
x ∗ ω̃ =

∑n
l=1 xlωl = u(x,ω) + v(x,ω), with

u(x,ω) =

k∑
l=1

xlωl, v(x,ω) =

n∑
l=k+1

xlωl, (4.4)

for any arbitrary but fixed 1 ≤ k ≤ n. We could also include any subset
Bu ⊆ {1, . . . , n} of coordinates in u(x,ω) and the complementary set Bv =
{1, . . . , n}\Bu of coordinates in v(x,ω), etc. (4.4) will be assumed whenever
the inverse CFT (4.5) is applied. We then get the following inversion theorem.

Theorem 4.6 (CFT inversion [23]). With the assumption (4.4) for u, v, we
get for h ∈ L1(Rp,q;Cl(p′, q′)), that

h(x) = F−1{F{h}}(x) = 1
(2π)n

∫
Rp,q
efu(x,ω)Ff,g{h}(ω) egv(x,ω)dnω, (4.5)

where dnω = dω1 . . . dωn, x,ω ∈ Rp,q. For the existence of (4.5) we further
need Ff,g{h} ∈ L1(Rp,q;Cl(p′, q′)).

We further define for later use the following two mixed (steerable)
exponential-sine Fourier transforms

Ff,±s{h}(ω) =

∫
Rp,q

e−fu(x,ω)h(x)(±1) sin(−v(x,ω) )dnx, (4.6)

F±s,g{h}(ω) =

∫
Rp,q

(±1) sin(−u(x,ω))h(x)e−gv(x,ω) dnx. (4.7)

4For a general study of one-sided CFTs see [20].
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With the help of

sin(−u(x,ω)) = f
2 (e−fu(x,ω) − eftu(x,ω)),

sin(−v(x,ω)) = g
2 (e−gv(x,ω) − egv(x,ω)), (4.8)

we can rewrite the above mixed exponential-sine Fourier transforms in terms
of the CFT of Definition 4.1 as

Ff,±s{h} = ± 1
2 (Ff,g{hg} − Ff,−g{hg}), (4.9)

F±s,g{h} = ± 1
2 (Ff,g{fh} − F−f,g{fh}). (4.10)

We further note the following useful relationships using the argument reflec-
tion of Notation 2.2

F−f,g{h} = Ff,g{h(1,0)} = F{h(1,0)}, Ff,−g{h} = F{h(0,1)}, (4.11)

and similarly

Ff,−s{h} = Ff,s{h(0,1)}, F−s,g{h} = Fs,g{h(1,0)}. (4.12)

The main properties of the CFT of Definition 4.1 have been studied in
detail in [23].

5. Convolution and steerable Mustard convolution

We define the convolution of two Clifford (algebra) signals a, b ∈ L1(Rp,q;
Cl(p′, q′)) as

(a ? b)(x) =

∫
R2

a(y)b(x− y)d2y, (5.1)

provided that the integral exists.
The Mustard convolution [29] of two Clifford signals a, b ∈ L1(Rp,q;

Cl(p′, q′)) is defined as

(a ?M b)(x) = (Ff,g)−1(Ff,g{a}Ff,g{b}), (5.2)

provided that the integral exists.

Remark 5.1. The Mustard convolution has the conceptual and computational
advantage to simply yield as spectrum in the CFT Fourier domain the point
wise product of the CFTs of the two signals, just as for the classical complex
Fourier transform. On the other hand, by its very definition, the Mustard
convolution depends on the choice of the pair f, g, of multivector square roots
of −1, used in the Definition 4.1 of the CFT. The Mustard convolution (5.2)
is therefore a steerable operator, depending on the choice5 of the pair f, g.

We additionally define a further type of (steerable) exponential-sine
Mustard convolution as

(a ?Ms b)(x) = (Ff,g)−1(Ff,s{a}Fs,g{b}), (5.3)

provided that the integral exists.

5For an example particularly relevant to relativistic physics see [25].
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In the following two Subsections we will express the convolution (5.1)
in terms of the Mustard convolution (5.2) and vice versa.

5.1. Expressing the convolution in terms of the Mustard convolution

In this Subsection we assume the use of the two-sided CFT with two general
multivector square roots of −1, f, g ∈ Cl(p′, q′). The definition of the classical
convolution (5.1) is independent of the application of a CFT. The Mustard
convolutions of (5.2) and (5.3) depend on the definition of the CFT and
in particular on the choice of the two multivector square roots of −1, f, g.
Therefore it is meaningful in the following to distinguish6 the expression of
the classical convolution in terms of Mustard convolutions for the three cases
of general pairs f, g, of commuting f, g (i.e. [f, g] = 0), and of anticommuting
f, g (i.e. fg = −gf), which we consequently state in different theorems and
corollaries.

In [7] Theorem 4.1 on page 584 expresses the classical convolution of two
quaternion functions with the help of the general left-sided QFT as a sum of
40 Mustard convolutions. Corresponding expressions have been established
for the general two-sided QFT in [23], and the space-time Fourier transform in
[25]. In our approach we use Theorem 5.12 on page 327 of [23], which expresses
the convolution of two Clifford signal functions in the Clifford Fourier domain
with the help of the CFT of Definition 4.1. Because of its importance, we
restate this theorem here again.

Theorem 5.2 (CFT of convolution [23]). Assuming a general pair of square
roots of −1, f, g, the general two-sided CFT of the convolution (5.1) of two
functions a, b ∈ L1(Rp,q;Cl(p′, q′) can then be expressed as

Ff,g{a ? b} = Ff,g{a+f}Ff,g{b+g}+ Ff,−g{a+f}Ff,g{b−g} (5.4)

+ Ff,g{a−f}F−f,g{b+g}+ Ff,−g{a−f}F−f,g{b−g}

+ Ff,s{a+f}[f, g]Fs,g{b+g}+ Ff,−s{a+f}[f, g]Fs,g{b−g}

+ Ff,s{a−f}[f, g]F−s,g{b+g}+ Ff,−s{a−f}[f, g]F−s,g{b−g}.

Note that due to the commutation properties of (4.6) and (4.7) we can
place the commutator [f, g] also inside the exponential-sine transform terms
as e.g. in

Ff,s{a+f}[f, g]Fs,g{b+g} = Ff,s{a+f [f, g]}Fs,g{b+g}

= Ff,s{a+f}Fs,g{[f, g]b+g}. (5.5)

For the special case of a commuting pair of square roots of −1, [f, g] = 0,
we obtain a much simpler equation.

Corollary 5.3 (CFT of convolution with commuting f, g: fg = gf). Assuming
a commuting pair of square roots of −1, [f, g] = 0, the general two-sided

6This distinction is a direct consequence of the steerability of the Mustard convolutions
(5.2) and (5.3) inherited from the two-sided CFT of Definition 4.1.



Convolution and Mustard convolution for two-sided CFT 11

CFT of the convolution (5.1) of two functions a, b ∈ L1(Rp,q;Cl(p′, q′)) can
be expressed as

Ff,g{a ? b} = Ff,g{a+f}Ff,g{b+g}+ Ff,−g{a+f}Ff,g{b−g}

+ Ff,g{a−f}F−f,g{b+g}+ Ff,−g{a−f}F−f,g{b−g}. (5.6)

We can now easily express the convolution of two quaternion signals
Ff,g{a ? b}(ω) in terms of only eight Mustard convolutions (5.2) and (5.3).

Theorem 5.4 (Convolution in terms of two types of Mustard convolution).
Assuming a general pair of square roots of −1, f, g, the convolution (5.1) of
two Clifford functions a, b ∈ L1(Rp,q;Cl(p′, q′)) can be expressed in terms of
four Mustard convolutions (5.2) and four exponential-sine Mustard convolu-
tions (5.3) as

a ? b = a+f ?M b+g + a
(0,1)
+f ?M b−g + a−f ?M b

(1,0)
+g + a

(0,1)
−f ?M b

(1,0)
−g

+ a+f ?Ms [f, g]b+g + a
(0,1)
+f ?Ms [f, g]b−g (5.7)

+ a−f ?Ms [f, g]b
(1,0)
+g + a

(0,1)
−f ?Ms [f, g]b

(1,0)
−g .

Remark 5.5. We use the convention, that terms such as a+f ?Ms [f, g]b+g,
should be understood with brackets a+f ?Ms ([f, g]b+g), which are omitted to
avoid clutter.

Assuming commutation, [f, g] = 0, the standard Mustard convolution
is sufficient to express the classical convolution.

Corollary 5.6 (Convolution in terms of Mustard convolution with commut-
ing f, g). Assuming a commuting pair of square roots of −1, [f, g] = 0, the
convolution (5.1) of two Clifford functions a, b ∈ L1(Rp,q;Cl(p′, q′)) can be
expressed in terms of four Mustard convolutions (5.2) as

a ? b = a+f ?M b+f + a
(0,1)
+f ?M b−f + a−f ?M b

(1,0)
+f + a

(0,1)
−f ?M b

(1,0)
−f (5.8)

Furthermore, applying (4.9) and (4.10), we can expand the terms in
(5.4) with exponential-sine transforms into sums of products of CFTs. For
example, the first term gives

Ff,s{a+f}[f, g]Fs,g{b+g}

=
1

4

(
Ff,g{a+fg} − Ff,−g{a+fg}

) (
Ff,g{f [f, g]b+g} − F−f,g{f [f, g]b+g}

)
=

1

4

(
F{a+fg}F{f [f, g]b+g} − F{a+fg}F{f [f, g]b

(1,0)
+g }

−F{a(0,1)
+f g}F{f [f, g]b+g}+ F{a(0,1)

+f g}F{f [f, g]b
(1,0)
+g }

)
. (5.9)

For the important special case of anticommuting square roots of −1, fg =
−gf , e.g. in quaternion algebra f = i, g = k [8, 12, 14], or in the generaliza-
tion to space-time f = e4 = et, g = e1e2e3 = i3 in Cl(3, 1) [12, 14], equation
(5.9) can be further simplified. Assuming fg = −gf , we have

[f, g] = 2fg f [f, g] = 2ffg = −2g, (5.10)
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and we can simplify (5.9) to

Ff,s{a+f}[f, g]Fs,g{b+g} = 2Ff,s{a+f}fgFs,g{b+g}

=
2

4

(
F{a+fg}F{(−g)b+g} − F{a+fg}F{(−g)b

(1,0)
+g }

−F{a(0,1)
+f g}F{(−g)b+g}+ F{a(0,1)

+f g}F{(−g)b
(1,0)
+g }

)
=

1

2

(
F{a+f}F{b(1,0)

+g } − F{a+f}F{b+g}

−F{a(0,1)
+f }F{b

(1,0)
+g }+ F{a(0,1)

+f }F{b+g}
)
, (5.11)

because

F{a+fg}F{(−g)b+g} = F{a+f}g(−g)F{b(1,0)
+g } = F{a+f}F{b(1,0)

+g },
etc. (5.12)

where we applied for the first equality that for fg = −gf ,

eαfg = ge−αf . (5.13)

In general equation (5.9) allows us in turn to express the quaternion signal
convolution purely in terms of standard Mustard convolutions.

Theorem 5.7 (Convolution in terms of Mustard convolution). Assuming a
general pair of multivector square roots of −1, f, g, the convolution (5.1) of
two quaternion functions a, b ∈ L1(Rp,q;Cl(p′, q′)) can be expressed in terms
of twenty standard Mustard convolutions (5.2) as

a ? b = a+f ?M b+g + a
(0,1)
+f ?M b−g + a−f ?M b

(1,0)
+g + a

(0,1)
−f ?M b

(1,0)
−g (5.14)

+ 1
4 (a+fg ?M fcb+g−a+fg ?M fcb

(1,0)
+g −a

(0,1)
+f g ?M fcb+g+a

(0,1)
+f g ?M fcb

(1,0)
+g

+ a
(0,1)
+f g ?M fcb−g − a(0,1)

+f g ?M fcb
(1,0)
−g − a+fg ?M fcb−g + a+fg ?M fcb

(1,0)
−g

+ a−fg ?M fcb
(1,0)
+g − a−fg ?M fcb+g − a(0,1)

−f g ?M fcb
(1,0)
+g + a

(0,1)
−f g ?M fcb+g

+a
(0,1)
−f g ?M fcb

(1,0)
−g −a

(0,1)
−f g ?M fcb−g−a−fg ?M fcb

(1,0)
−g +a−fg ?M fcb−g ),

with the abbreviation c = [f, g].

Assuming anticommutation, fg = −gf , we can eliminate in Theorem 5.7
the commutators c = [f, g] with the help of (5.11), which after cancellations
leaves only sixteen terms.

a ? b = (5.15)

1
2 (a+f ?M b

(1,0)
+g + a+f ?M b+g− a(0,1)

+f ?M b
(1,0)
+g + a

(0,1)
+f ?M b+g

+ a
(0,1)
+f ?M b

(1,0)
−g + a

(0,1)
+f ?M b−g − a+f ?M b

(1,0)
−g + a+f ?M b−g

+ a−f ?M b+g + a−f ?M b
(1,0)
+g − a

(0,1)
−f ?M b+g + a

(0,1)
−f ?M b

(1,0)
+g

+ a
(0,1)
−f ?M b−g+ a

(0,1)
−f ?M b

(1,0)
−g − a−f ?M b−g+ a−f ?M b

(1,0)
−g ) .
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Furthermore, we can combine by Definition 3.2 four pairs of ± split terms,
e.g.,

a+f ?M b+g + a+f ?M b−g = a+f ?M b, etc. (5.16)

Assuming fg = −gf , this leaves only twelve terms for expressing a classical
convolution in terms of a Mustard convolution,

a ? b = 1
2 (a+f ?M b

(1,0)
+g + a+f ?M b− a(0,1)

+f ?M b
(1,0)
+g + a

(0,1)
+f ?M b

+ a
(0,1)
+f ?M b

(1,0)
−g − a+f ?M b

(1,0)
−g

+ a−f ?M b+g + a−f ?M b(1,0) − a(0,1)
−f ?M b+g + a

(0,1)
−f ?M b(1,0)

+ a
(0,1)
−f ?M b−g− a−f ?M b−g ) . (5.17)

Moreover, we can combine with the help of the involution f()g of (3.3) four
pairs of terms like

a+f ?M b
(1,0)
+g − a+f ?M b

(1,0)
−g = a+f ?M [b

(1,0)
+g − b

(1,0)
−g ]

= a+f ?M (f [b
(1,0)
+g + b

(1,0)
−g ]g) = a+f ?M fb(1,0)g, (5.18)

where in the final result we omit the round brackets, i.e. we understand
a+f ?M fb(1,0)g = a+f ?M (fb(1,0)g). This in turn leaves only eight terms
for expressing a classical convolution in terms of a Mustard convolution,
assuming fg = −gf .

a ? b = 1
2 (a+f ?M fb(1,0)g+ a+f ?M b− a(0,1)

+f ?M fb(1,0)g+ a
(0,1)
+f ?M b

+ a−f ?M fbg + a−f ?M b(1,0) − a(0,1)
−f ?M fbg + a

(0,1)
−f ?M b(1,0) ) . (5.19)

Finally, we note, that (5.19) contains pairs of functions a±f with unreflected
and reflected second argument. Adding these pairs leads to even ⊕ or odd 	
symmetry in the second argument. That is we combine

a⊕+f = 1
2 (a+f + a

(0,1)
+f ), a	+f = 1

2 (a+f − a(0,1)
+f ), etc. (5.20)

This allows us for fg = −gf , to write the classical convolution in terms of
just four Mustard convolutions.

Theorem 5.8 (Convolution in terms of Mustard convolution with anticom-
muting f, g). Assuming an anticommuting pair f, g, of multivector square
roots of −1, with fg = −gf , the convolution (5.1) of two Clifford functions
a, b ∈ L1(Rp,q;Cl(p′, q′)) can be expressed in terms of four standard Mustard
convolutions (5.2) as

a ? b = 1
2 (a	+f ?M fb(1,0)g + a⊕+f ?M b+ a	−f ?M fbg + a⊕−f ?M b(1,0) ) . (5.21)

5.2. Expressing the Mustard convolution in terms of the convolution

Now we will simply write out the Mustard convolution (5.2) and simplify
it until only standard convolutions (5.1) remain. In this Subsection we will
use the general ± split of Definition 3.2. Our result should be compared, e.g,
in the special case of the left-sided QFT with the Theorem 2.5 on page 584
of [7] with 32 classical convolutions for expressing the Mustard convolution
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of quaternion functions. Similar results to ours can be found in [23] for the
two-sided QFT, and in [25] for the space-time Fourier transform.

We begin by writing the Mustard convolution (5.2) of two quaternion
functions a, b ∈ L2(Rp,q;Cl(p′, q′))

a ?M b(x) = 1
(2π)n

∫
Rp,q

efu(x,ω)F{a}(ω)F{b}(ω)egv(x,ω)dnω

= 1
(2π)n

∫
Rp,q

e−fu(x,ω)

∫
R2

e−fu(y,ω)a(y)e−gv(y,ω)dny∫
Rp,q

e−fu(z,ω)b(z)e−gv(z,ω)d2zegv(x,ω)dnω

= 1
(2π)n

∫
Rp,q

∫
Rp,q

∫
Rp,q

efu(x−y,ω)(a+(y) + a−(y))e−gv(y,ω)

e−fu(z,ω)(b+(z) + b−(z))egv(x−z,ω)dnydnzdnω. (5.22)

Next, we use the identities (3.5) in order to shift the inner factor e−gv(y,ω) to
the left and e−fu(z,ω) to the right, respectively. We abbreviate

∫
Rp,q

∫
Rp,q

∫
Rp,q

to
∫∫∫

.

a ?M b(x) = (5.23)

= 1
(2π)n

∫∫∫
efu(x−y,ω)efv(y,ω)a+(y)b+(z)egu(z,ω)egv(x−z,ω)dnydnzdnω

+ 1
(2π)n

∫∫∫
efu(x−y,ω)efv(y,ω)a+(y)b−(z)e−gu(z,ω)egv(x−z,ω)dnydnzdnω

+ 1
(2π)n

∫∫∫
efu(x−y,ω)e−fv(y,ω)a−(y)b+(z)egu(z,ω)egv(x−z,ω)dnydnzdnω

+ 1
(2π)n

∫∫∫
efu(x−y,ω)e−fv(y,ω)a−(y)b−(z)e−gu(z,ω)egv(x−z,ω)dnydnzdnω

Furthermore, we abbreviate the inner function products as ab±±(y, z) :=
a±(y)b±(z), and apply the general ± split of Definition 3.2 once again to ob-
tain ab±±(y, z) = [ab±±(y, z)]++[ab±±(y, z)]− = ab±±(y, z)++ab±±(y, z)−.
We omit the square brackets and use the convention that the final ± split
indicated by the final ± index should be performed last. This allows to apply
(3.5) again in order to shift the factors e±gu(z,ω)egv(x−z,ω) to the left. We



Convolution and Mustard convolution for two-sided CFT 15

end up with the following eight terms

a ?M b(x) = (5.24)

= 1
(2π)n

∫∫∫
efu(x−y−z,ω)efv(y−(x−z),ω)ab++(y, z)+d

nydnzdnω

+ 1
(2π)n

∫∫∫
efu(x−y+z,ω)efv(y+(x−z),ω)ab++(y, z)−d

nydnzdnω

+ 1
(2π)n

∫∫∫
efu(x−y+z,ω)efv(y−(x−z),ω)ab+−(y, z)+d

nydnzdnω

+ 1
(2π)n

∫∫∫
efu(x−y−z,ω)efv(y+(x−z),ω)ab+−(y, z)−d

nydnzdnω

+ 1
(2π)n

∫∫∫
efu(x−y−z,ω)efv(−y−(x−z),ω)ab−+(y, z)+d

nydnzdnω

+ 1
(2π)n

∫∫∫
efu(x−y+z,ω)efv(−y+(x−z),ω)ab−+(y, z)−d

nydnzdnω

+ 1
(2π)n

∫∫∫
efu(x−y+z,ω)efv(−y−(x−z),ω)ab−−(y, z)+d

nydnzdnω

+ 1
(2π)n

∫∫∫
efu(x−y−z,ω)efv(−y+(x−z),ω)ab−−(y, z)−d

nydnzdnω.

We now only show explicitly how to simplify the second triple integral, the
others follow the same pattern.

1
(2π)n

∫∫∫
efu(x−y+z,ω)efv(y+(x−z),ω)[a+(y)b+(z)]−d

nydnzdnω

=

∫∫
1

(2π)n

∫
Rp,q
e

k
Σ
l=1

(xl−yl+zl)ωl
e

n
Σ

m=k+1
(ym+(xm−zm))ωm

[a+(y)b+(z)]−d
nωdnydnz

=

∫∫
1

(2π)n

∫
Rp,q

k

Π
l=1
ef(xl−yl+zl)ωl

n

Π
m=k+1

ef(ym+(xm−zm))ωm [a+(y)b+(z)]−d
nωdnydnz

=

∫∫
k

Π
l=1
δ(xl − yl + zl)

n

Π
m=k+1

δ(ym + (xm − zm))[a+(y)b+(zk, z(n−k))]−d
nydnz

=

∫
Rp,q

[a+(y)b+(−(xk − yk),x(n−k) + y(n−k))]−d
ny

=

∫
Rp,q

[a+(y)b+(−(xk − yk),−(−x(n−k) − y(n−k)))]−d
ny

=

∫
Rp,q

[a+(y)b
(1,1)
+ (xk − yk,−x(n−k) − y(n−k))]−d

ny

= [a+ ? b
(1,1)
+ (xk,−x(n−k))]−. (5.25)

Note that a+ ? b
(1,1)
+ (xk,−x(n−k)) means to first apply the convolution to

the pair of functions a+ and b
(1,1)
+ , and only then to evaluate them with

the argument (−xk,x(n−k)). So in general a+ ? b
(1,1)
+ (xk,−x(n−k)) 6= a+ ?

b+(−xk,x(n−k)). Simplifying the other seven triple integrals similarly we
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finally obtain the desired decomposition of the Mustard convolution (5.2) in
terms of the classical convolution.

Theorem 5.9 (Mustard convolution in terms of standard convolution).
The Mustard convolution (5.2) of two quaternion functions a, b ∈ L1(Rp,q;
Cl(p′, q′)) can be expressed in terms of eight standard convolutions (5.1) as

a ?M b(x) =

= [a+ ? b+(x)]+ + [a+ ? b
(1,1)
+ (x1,−x2)]−

+ [a+ ? b
(1,0)
− (x)]+ + [a+ ? b

(0,1)
− (x1,−x2)]−

+ [a− ? b
(0,1)
+ (x1,−x2)]+ + [a− ? b

(1,0)
+ (x)]−

+ [a− ? b
(1,1)
− (x1,−x2)]+ + [a− ? b−(x)]−. (5.26)

Remark 5.10. If we would explicitly insert according Definition 3.2 a± =
1
2 (a ± fag) and b± = 1

2 (b ± fbg), and similarly explicitly insert the second
level ± split [. . .]±, we would obtain up to a maximum of 64 terms. It is
therefore obvious how significant and efficient the use of the general ± split
is in this context.

6. Conclusion

In this paper we have briefly reviewed non-degenerate Clifford algebras, their
manifolds of multivector square roots of −1, Clifford algebra decomposition
with respect to a pair of square roots of −1, the general steerable two-sided
Clifford Fourier transform, and introduced a pair of related steerable mixed
exponential-sine Clifford Fourier transforms. We defined the notions of (clas-
sical non-steerable) convolution of two Clifford algebra valued functions over
Rp,q, the steerable Mustard convolution (with its CFT as the point wise
product of the CFTs of the factor functions), and a special steerable Mus-
tard convolution involving the point wise products of mixed exponential-sine
CFTs.

The main results are: An efficient decomposition of the classical con-
volution of Clifford algebra signals in terms of eight Mustard type convolu-
tions. For the special cases of two commuting (or anticommuting) multivector
square roots of −1 axis in the CFT, only four terms of the standard Mustard
convolution prove to be sufficient. Even in the case of two general multi-
vector square roots of −1 axis in the CFT, the classical convolution of two
Clifford algebra signals can always be fully expanded in terms of standard
Mustard convolutions. Finally we showed how to fully generally expand the
Mustard convolution of two Clifford algebra signals in terms of eight classical
convolutions.

In view of the many potential applications of the CFT [4], including al-
ready its lower-dimensional realizations as QFT [24, introduction], and space-
time FT [25, introduction], we expect our new results to be of great interest
in physics, pure and applied mathematics, and engineering, e.g., for filter



Convolution and Mustard convolution for two-sided CFT 17

design and feature extraction in multi-dimensional signal and (color) image
processing. Finally, the CFT and all convolutions described above can be im-
plemented for simulations and real data applications in the recently released
Clifford Multivector Toolbox (for MATLAB) [31].
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