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Abstract: We give some Korovkin-type theorems on convergence and estimates
of rates of approximations for nets of functions, satisfying suitable axioms, whose
particular cases are filter/ideal convergence, almost convergence and triangular A-
statistical convergence, where A is a non-negative summability method. Further-
more, we give some comparison result between different types of convergence and
applications to integral type and discrete operators.

Let (W,�) be a directed set, and let us consider an axiomatic abstract conver-
gence on W , as follows.

Let T be the set of all real-valued nets (xw)w∈W . A convergence is a pair (S, `),
where S is a linear subspace of T and ` : S → R is a function, satisfying the following
axioms:

(a) `((a1 xw + a2 yw)w) = a1 `((xw)w) + a2 `((yw)w) for every pair of nets (xw)w,
(yw)w ∈ S and for each a1, a2 ∈ R (linearity).

(b) If (xw)w, (yw)w ∈ S and there is w∗ ∈ W with xw ≤ yw for every w � w∗, then
`((xw)w) ≤ `((yw)w) (monotonicity).

(c) If (xw)w is such that there is w∗ ∈ W with xw = l whenever w � w∗, then
(xw)w ∈ S and `((xw)w) = l.

(d) If (xw)w ∈ S, then (|xw|)w ∈ S and `((|xw|)w) = |`((xw)w)|.

(e) Let (xw)w, (yw)w, (zw)w, satisfying (xw)w, (zw)w ∈ S, `((xw)w) = `((zw)w) and
suppose that there is w ∈ W with xw ≤ yw ≤ zw for every w ≥ w. Then
(yw)w ∈ S.

Note that S is the space of all convergent nets, ` will be the “limit” according to
this approach, and we will denote by the symbol lim

w
xw the quantity `((xw)w).

We now give the axiomatic definition of the operators “limit superior” and “limit
inferior” related with a convergence (S, `), which we denote by the symbols lim sup
and lim inf

Let T , S be as above. We define two functions `, ` : T → R̃, satisfying the
following axioms:
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(f) If (xw)w, (yw)w ∈ T , then `((xw)w) ≤ `((xw)w) and `((xw)w) = −`((−xw)w).

(g) If (xw)w ∈ T , then

(i) `((xw + yw)w) ≤ `((xw)w) + `((yw)w) (subadditivity);

(ii) `((xw + yw)w) ≥ `((xw)w) + `((yw)w) (superadditivity).

(h) If (xw)w, (yw)w ∈ T and xw ≤ yw definitely, then `((xw)w) ≤ `((yw)w) and
`((xw)w) ≤ `((yw)w) (monotonicity).

(j) A net (xw)w ∈ T belongs to S if and only if `((xw)w) = `((xw)w).

We will denote by the symbols lim sup
w

xw and lim inf
w

xw the quantities `((xw)w) and

`((xw)w), respectively.
Let (xw)w, (yw)w ∈ S with lim

w
xw = lim

w
yw = 0 and yw 6= 0 for every w ∈ W .

We say that xw = o(yw) iff lim
w

|xw|
|yw|

= 0, and that xw = O(yw) iff lim sup
w

|xw|
|yw|

∈ R.

Let G = (G, d) be a metric space, B be the σ-algebra of all Borel subsets of G,
and µ be a positive finite regular measure defined on B. Let L0(G) be the space of
all real-valued µ-measurable functions on G with identification up to sets of measure
µ zero, Cb(G) be the space of all real-valued continuous and bounded functions on
G, Cc(G) be the subspace of Cb(G) of all functions with compact support on G and
Lip(G) be the space of all real-valued Lipschitz functions on G.

A functional ρ : L0(G) → R̃+
0 is called a modular on L0(G) iff it satisfies the

following conditions:
i) ρ[f ] = 0⇐⇒ f = 0 µ-almost everywhere on G;
ii) ρ[−f ] = ρ[f ] for every f ∈ L0(G);
iii) ρ[af + bg] ≤ ρ[f ] + ρ[g] whenever f , g ∈ L0(G) and a ≥ 0, b ≥ 0 with

a+ b = 1.
A modular ρ is said to be convex iff it satisfies conditions i), ii) and
iii’) ρ[af + bg] ≤ aρ[f ] + bρ[g] for all f , g ∈ L0(G) and for every a, b ≥ 0 with

a+ b = 1.
Let Q ≥ 1 be a real constant. We say that a modular ρ is Q-quasi semiconvex

if ρ[a f ] ≤ Qaρ[Qf ] for all f ∈ L0(G), f ≥ 0 and 0 < a ≤ 1.
A modular ρ is monotone if ρ[f ] ≤ ρ[g] for all f , g ∈ L0(G) with |f | ≤ |g|.
A modular ρ is said to be finite if χA (the characteristic function associated with

A) belongs to Lρ(G) whenever A ∈ B with µ(A) < +∞.
A modular ρ is strongly finite if χA belongs to Eρ(G) for all A ∈ B with µ(A) <

+∞.
A modular ρ is said to be absolutely continuous if there is a positive constant a

with the property: for all f ∈ L0(G) with ρ[f ] < +∞,
i) for each ε > 0 there exists a set A ∈ B with µ(A) < +∞ and ρ[afχG\A] ≤ ε,
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ii) for every ε > 0 there is a δ > 0 with ρ[af χB] ≤ ε for every B ∈ B with
µ(B) < δ.

The modular space Lρ(G) generated by ρ is

Lρ(G) = {f ∈ L0(G) : lim
λ→0+

ρ[λf ] = 0},

and the space of the finite elements of Lρ(G) is

Eρ(G) = {f ∈ Lρ(G) : ρ[λf ] < +∞ for all λ > 0}.

A net (fw)w of functions in Lρ(G) is (`)-modularly convergent to f ∈ Lρ(G) if
there is a λ > 0 with

lim
w
ρ[λ(fw − f)] = 0.

A net (fw)w in Lρ(G) is (`)-strongly convergent to f ∈ Lρ(G) if

lim
w
ρ[λ(fw − f)] = 0 for every λ > 0.

We consider some kinds of rates of approximation associated with the Korovkin
theorem in the context of modular convergence. For technical reasons, we sometimes
suppose that (G, d) satisfies the following property:

H*) For every n ∈ N and s, t ∈ G, with s 6= t, there are n + 1 points xi, i =

0, . . . , n + 1, such that s = x0, t = xn+1 and d(xi, xi+1) ≤ 1

n
d(s, t) for each

i = 0, . . . , n.

Some examples of spaces satisfying condition H*) are the Euclidean multidimen-
sional space RN endowed with the usual metric and the space RΛ equipped with the
sup-norm, where Λ is any abstract nonempty set.

For every f ∈ Cb(G) and δ > 0, let

ω(f ; δ) := sup{|f(s)− f(t)| : s, t ∈ G, d(s, t) ≤ δ}

be the usual modulus of continuity of f . Note that ω(f ; δ) is an increasing function
of δ, |f(s)− f(t)| ≤ ω(f ; d(s, t)) for each s, t ∈ G, ω(f ; δ) ≤ 2M for every δ, where
M = sup

t∈G
|f(t)|, and

ω(f ; γ δ) ≤ (1 + γ)ω(f ; δ) (1)

for every γ, δ > 0.
Let T be a net of linear operators Tw : D → L0(G), w ∈ W , with Cb(G) ⊂ D ⊂

L0(G). Here the set D is the domain of the operators Tw.
We say that the net T , together with the modular ρ, satisfies property (ρ)-(∗)

iff there exist a subset XT ⊂ D ∩ Lρ(G) with Cb(G) ⊂ XT and an E > 0 with
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Twf ∈ Lρ(G) for any f ∈ XT and w ∈ W , and lim sup
w

ρ[τ(Twf)] ≤ E ρ[τf ] for every

f ∈ XT and τ > 0.
Let er and ar, r = 0, . . . ,m, be functions in Cb(G), and put e0(t) := 1 for every

t ∈ G. Let us define

Ps(t) :=
m∑
r=0

ar(s)er(t), s, t ∈ G, (2)

and assume that

(P1) Ps(s) = 0 for all s ∈ G;

(P2) there is a C1 > 0 with Ps(t) ≥ C1 d(s, t) whenever s, t ∈ G.

From now on, we suppose that er ∈ Lρ(G), r = 0, 1, . . . ,m. Note that this
assumption is fulfilled, for example, when G is an open bounded subset of Rn or,
more generally, a space of finite measure µ.

Theorem 0.1 Let ρ be a strongly finite, monotone and Q-quasi semiconvex modu-
lar. Assume that er and ar, r = 0, . . . ,m, satisfy (P1) and (P2). Let Tw, w ∈ W , be
a net of positive linear operators having property (ρ)-(∗). If (Twer)w is (`)-modularly
convergent to er in Lρ(G) for each r = 0, . . . ,m, then (Twf)w is (`)-modularly con-
vergent to f in Lρ(G) for every f ∈ Cc(G).

If (Twer)w is (`)-strongly convergent to er, r = 0, . . . ,m in Lρ(G), then (Twf)w
is (`)-strongly convergent to f in Lρ(G) for every f ∈ Cc(G).

Theorem 0.2 Let ρ be a monotone, strongly finite, absolutely continuous and Q-
quasi semiconvex modular on L0(G), and Tw, w ∈ W be a net of positive linear
operators satisfying (ρ)-(∗). If (Twer)w is (`)-strongly convergent to er, r = 0, . . . ,m
in Lρ(G), then (Twer)w is (`)-modularly convergent to f in Lρ(G) for every f ∈
Lρ(G) ∩ D with f − Cb(G) ⊂ XT , where D and XT are as above.

Now we present some estimates on rates of approximation for abstract Korovkin-
type theorems. Let Ξ be the family of all nets ξw, w ∈ W , with ξw 6= 0 for each
w ∈ W and lim

w
ξw = 0.

Theorem 0.3 Let Q ≥ 1, ρ be a monotone, strongly finite and Q-quasi semiconvex
modular, Tw, w ∈ W , be a net of positive linear operators and Ξ be as above. For
every w ∈ W , let ξrw ∈ Ξ, r = 0, . . . ,m, and set ξw := max{ξrw: r = 0, . . . ,m}. If
γ > 0 is such that ρ[γ(Twer − er)] = o(ξrw) for each r = 0, . . . ,m, then for every
f ∈ Cc(G)∩Lip(G) there exists a positive real number τ with ρ[τ(Twf −f)] = o(ξw).

A similar result holds also when o is replaced by O.
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Theorem 0.4 Let Q, (Tw)w, ρ, Ξ be as in Theorem 0.3, (G, d) satisfy condition
H*), ξ0

w, ξ∗w ∈ Ξ, set ξw := max{ξ0
w, ξ

∗
w}, w ∈ W , and ψ(s)(t) := d(s, t), s, t ∈ G.

For every f ∈ Cc(G) and w ∈ W put δfw = ‖Tw(ψ)‖, where ‖ · ‖ is the sup-norm
and the supremum is taken with respect to the support of f . If γ > 0 satisfies the
conditions

0.4.1) ρ[γ(Twe0 − e0)] = o(ξ0
w) and

0.4.2) ρ[γ ω(f ; δfw)] = o(ξ∗w),

then for each f ∈ Cc(G) there is a positive real number τ with ρ[τ (Twf−f)] = o(ξw).
Moreover, a similar result holds when the symbol o is replaced by O.

We consider filter convergence, noting that this kind of convergence satisfies the
given axioms.

Let W = (W,�) be a directed set, then for each w ∈ W , set Mw := {z ∈ W :
z � w}. A filter F of W is said to be free iff Mw ∈ F for every w ∈ W .

Some examples frequently used in the literature are (W,�) = (N,≥), W ⊂
[a, w0[⊂ R with the usual order, where w0 ∈ R ∪ {+∞} is a limit point of W ,
or (W,�) = (N2,≥) = (N × N,≥), where in N2 the symbol ≥ denotes the usual
componentwise order.

It is not difficult to check that, if F is any fixed free filter of W , in the F -
convergence setting, given (xw)w, (yw)w ∈ Ξ, we get xw = o(yw) if and only if
{w ∈ W : xw ≤ ε yw} ∈ F for every ε > 0 and xw = O(yw) if and only if there is a
positive real number C with {w ∈ W : xw ≤ C yw} ∈ F .

In the filter convergence setting, it is possible also to relax the positivity condition
on the involved linear operators. For instance, let I be a bounded interval of R,
C2(I) (resp. C2

b (I)) be the space of all functions defined on I, (resp. bounded and)
continuous together with their first and second derivatives, C+ := {f ∈ C2

b (I) : f ≥
0}, C2

+ := {f ∈ C2
b (I) : f ′′ ≥ 0}.

Let er, r = 1, . . . ,m and ar, r = 0, . . . ,m be functions in C2
b (I), Ps(t), s, t ∈ I,

be as in (2), and suppose that Ps(t) satisfies the above conditions (P1), (P2) and

(P3) there is a positive real number C0 with P ′′s (t) ≥ C0 whenever s, t ∈ I, where
the second derivative is taken with respect to t.

Theorem 0.5 Let F be any free filter of W , ρ be as in Theorem 0.1, er, ar, r =
0, . . . ,m and Ps(t), s, t ∈ I, satisfy properties (P1), (P2) and (P3). Assume that
Tw, w ∈ W is a net of linear operators which fulfil property (ρ)-(∗), and that {w ∈
W : Tw(C+ ∩ C2

+) ⊂ C+} ∈ F . If (Twer)w is (`)-modularly F-convergent to er,
r = 0, . . . ,m in Lρ(I), then (Twf)w is (`)-modularly F-convergent to f in Lρ(I) for
each f ∈ C2

b (I).
If (Twer)w is (`)-strongly F-convergent to er, r = 0, . . . ,m in Lρ(I), then (Twf)w

is (`)-strongly F-convergent to f in Lρ(I) for every f ∈ C2
b (I).
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Furthermore, if ρ is absolutely continuous and (Twer)w is (`)-strongly F-convergent
to er, r = 0, . . . ,m in Lρ(I), then (Twf)w is (`)-modularly F-convergent to f in
Lρ(I) for every f ∈ Lρ(I) ∩ D with f − Cb(I) ⊂ XT .

Other examples of convergences, satisfying the given axioms, are the single con-
vergence and the almost convergence.

Let W = N. A sequence (xn)n is said to singly converge (resp. almost converge)
to x ∈ R iff

lim
n

xm+1 + xm+2 + . . .+ xm+n

n
= x

for every m ≥ 0 (resp. uniformly with respect to m), where the involved limit is
the usual one. It is not difficult to check that single and almost convergence satisfy
the given axioms. Note that, in general, almost and singly convergence are not
generated by any free filter.

We now consider a kind of “triangular statistical convergence”. Let A = (ai,j)i,j
be a non-negative two-dimensional infinite matrix and Ψ : N × N → R be a fixed
function. We say that A is a summability matrix iff it satisfies the following condi-
tions:

(A1)
∑

j∈N,Ψ(i,j)≥0

ai,j ≤ 1 for each i ∈ N,

(A2) lim
i

∑
j∈N,Ψ(i,j)≥0

ai,j > 0,

(A3) lim
i
ai,j = 0 for every j ∈ N.

For every K ⊂ N2, set Ki := {j ∈ N: (i, j) ∈ K, Ψ(i, j) ≥ 0}. The Ψ-A-density
of K is given by

δΨ
A(K) := lim

i

∑
j∈Ki

ai,j, (3)

provided that the limit on the right hand exists in R.
It is not difficult to see that the Ψ-A-density satisfies the following properties:

(D1) δΨ
A(N2) > 0.

(D2) If K ⊂ H, then δΨ
A(K) ≤ δΨ

A(H).
(D3) If δΨ

A(K) = δΨ
A(H) = 0, then δΨ

A(K ∪H) = 0.
Observe that from (D1)-(D3) it follows that the family

FΨ
A := {K ⊂ N2 : δΨ

A(N2 \K) = 0} (4)

is a filter of N2.

Let A = (ai,j)i,j be a summability matrix. The double sequence (xw)w is said
to Ψ-A-statistically converge to a real number x iff (FΨ

A ) lim
w
xw = x, that is iff for

every ε > 0 we get

lim
i

∑
j∈Ki(ε)

ai,j = 0,
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where Ki(ε) = {j ∈ N: Ψ(i, j) ≥ 0, |xw − x| ≥ ε}, and we write stΨA-lim
i
xw = x.

Let (ai,j)i,j be defined by

ai,j :=


1
i2

if j ≤ i2,

0 otherwise,

put Ψ(i, j) = i− j, i, j ∈ N, and pick any double sequence (xi,j)i,j in R. For every
ε > 0 we get Ki(ε) := {j ∈ N: j ≤ i, xi,j ≥ ε} ⊂ {j ∈ N: j ≤ i}. Thus we obtain

lim
i

∑
j∈Ki(ε)

ai,j ≤ lim
i

∑
j≤i

1

i2
= lim

i

1

i
= 0, (5)

and thus (xi,j)i,j Ψ-A-statistically converges to 0. We get lim
i

∑
j∈N,Ψ(i,j)≥0

ai,j = 0, and

so condition (A2) is not fulfilled. Note that, in this case, the class FΨ
A defined as in

(4) is not a filter, because it coincides with the family of all subsets of N2.
Note that, in general, filter convergence in N2 is not equal to Ψ-A-statistical

convergence, that is there exists some filter F of N2 such that, for every summability
matrix A, there is a set K ∈ F \ FΨ

A .
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