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Abstract

In this paper we use the steerable special relativistic (space-time)
Fourier transform (SFT), and relate the classical convolution of the al-
gebra for space-time Cl(3, 1)-valued signals over the space-time vector
space R3,1, with the (equally steerable) Mustard convolution. A Mus-
tard convolution can be expressed in the spectral domain as the point
wise product of the SFTs of the factor functions. In full generality do we
express the classical convolution of space-time signals in terms of finite
linear combinations of Mustard convolutions, and vice versa the Mustard
convolution of space-time signals in terms of finite linear combinations of
classical convolutions.
Keywords: Convolution, Mustard convolution, space-time Fourier trans-
form, space-time signals, space-time domain, frequency domain
Mathematics Subject Classification: 15A66, 42B10

1 Introduction

Albert Einstein published in his annus mirabilis 1905 the first paper on spe-
cial relativity entitled On the Electrodynamics of Moving Bodies [6]. Since that
time special relativity has become the common framework for all physical phe-
nomena in space and time, refining Newton’s classical notion of inertial system.
For speeds small compared to the speed of light, Newton’s inertial systems
continue to be used in practice, but any phenomenon relating to the propaga-
tion of electromagnetic waves, or high energy particles, the special relativistic
space-time theory of Einstein is indispensable. Electromagnetic wave based
communication (radio waves, infrared waves, light waves, etc.) networks form
the backbone of modern ICT infrastructure, for light switch sensors at home up
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ject to the Creative Peace License [19].
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to space based satellite data communication. Even for the microscopic descrip-
tion of atoms, only special relativistic quantum mechanics allows to precisely
understand atomic spectra.

Therefore it is fundamental to be able to process electromagnetic signals of
all kinds with mathematical tools fully adapted to Einstein’s special relativity.
The most natural mathematical framework for this is the Clifford algebra of
space-time, which unifies vector and spinor formalisms [27], with elementary
algebraic expressions for the four-dimensional vector space of space-time and
all its subspaces. This framework is furthermore ideal for unifying classical and
quantum physics [11, 27, 9]. The prevalent tool in optics for all kinds of signal
and image processing, and for position to momentum representation changes in
quantum mechanics, is the Fourier transform. In this paper we explain how to
formulate and apply the Fourier transform in the context of special relativity,
described by the Clifford algebra of space-time.

Hamilton’s eighteenth century four-dimensional quaternions frequently ap-
pear as subalgebras of higher order Clifford geometric algebras [2, 27], invented
in the 1870ies. This is also the case for the sixteen dimensional Clifford alge-
bra over the space-time vector space [11, 13, 9], which is of prime importance
in physics, and in all applications where time matters as well (motion in time,
video sequences, flow fields, ...). P.A.M. Dirac’s relativistic equation for the elec-
tron has been reformulated in the real framework of space-time algebra [11, 12],
and this has been extended to a relativistic multiparticle equation formalism,
including a new framework for entanglement [10, 5]. Technically, the quater-
nion subalgebra structure gives a first hint on how to introduce generalizations
of the quaternion Fourier transform (QFT) to functions in these higher order
Clifford geometric algebras. For example it allows to non-trivially generalize the
QFT from four dimensions to a space-time Fourier transform [14, 17] in sixteen
dimensions.

Recently it has been shown how the left-sided QFT [4], and the two-sided
QFT [24] allow to define convolutions1 for which in the spectral domain the
QFT of the convolution becomes a simple point wise product of the QFTs of
the quaternion signal functions. This property is a key for filter based sig-
nal and image processing. This paper endeavors to generalize the approach
of [24] from four-dimensional quaternions to the sixteen-dimensional Clifford
algebra Cl(3, 1). Because generalizing results from a lower dimensional non-
commutative division algebra to a higher-dimensional non-commutative algebra
is non-trivial, i.e. from four to sixteen dimensions, we aspire to work with
sufficient algebraic detail2 to allow all results to be verified directly.

Note, that in Section 2, beginning with Table 1, we also introduce new re-
sults for the space-time Fourier transform, which have so far not appeared in
the scientific literature. The fundamental results obtained in this work will
be of relevance in relativistic physics, relativistic quantum mechanics, propaga-

1Sometimes named after [28] Mustard convolution.
2We also think that for practical applications, it would be of very little help, if we sim-

ply appeal to principles of generalizability of Fourier transformations in Clifford algebras, or
present results which are valid in all dimensions and all non-Euclidean vector spaces. The
necessary ground work for researchers and engineers not specializing in geometric algebra
computation, is to present the results as concretely as possible for the specific case of space-
time, which we envision to be of great importance in a wide range of applications. An even
further abstract generalization of the approach taken in the present work to Clifford algebras
of general quadratic spaces Cl(p, q) can now be found in [25].
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tion of electromagnetic signals (including satellite communication), communi-
cation networks, geographic information systems, navigation, climate observa-
tions, global data processing, seismology, geothermal resource engineering, video
sequencing and video feature detection, flow field processing, three- and four-
dimensional video registration, electromagnetic cavity engineering, synchrotron
and gyrotron physics, medical video imaging and many more fields of research
and application.

Regarding implementations, standard computer algebra programs like MAPLE
have continuously updated well developed free packages like CLIFFORD [1], for
Clifford algebra computations. Alternatively numerical packages like MATLAB
have free packages like the Clifford Multivector Toolbox [29]. There are also
packages for all major modern programing languages [26].

This paper is organized as follows. Section 2 reviews the sixteen dimensio-
nal Clifford geometric algebra Cl(3, 1) of the four-dimensional space-time vector
space R3,1. As an introductory first step, the particular role of a subalgebra iso-
morphic to quaternions is studied, which is generated by the time-vector and the
three-dimensional space volume pseudoscalar. Section 3 then progresses to the
full sixteen dimensional algebra Cl(3, 1) and reviews the (steerable) space-time
Fourier transform (SFT) of [14, 17], and newly introduces related exponential-
sine Fourier transforms for sixteen-dimensional Space-time Clifford algebra val-
ued signals over space-time. Section 4 sets out with defining the convolution,
and two types of (equally steerable) Mustard convolutions for space-time sig-
nals in Cl(3, 1) over R3,1. This is followed by the main results of Theorem 4.3
describing the convolution of sixteen dimensional space-time Clifford algebra
signals in terms of the two types of Mustard convolutions, Theorem 4.5 express-
ing the convolution in terms of only four standard Mustard convolutions, and
finally vice versa Theorem 4.6 describing the standard Mustard convolution of
space-time signals in terms of eight classical convolutions. The paper concludes
with Section 5.

2 Algebra for space-time

The algebra for space-time Cl(3, 1) = Cl3,1 = G3,1 = R3,1 is Clifford’s geometric
algebra of R3,1. In R3,1 we can introduce the following orthonormal vector basis,

{et, e1, e2, e3}, −e2t = e21 = e22 = e23 = 1. (2.1)

In the full blade basis of Cl(3, 1) we thus get three anti-commuting blades that
all square to minus one, they are some of the roots of −1 (compare [21]),

e2t = −1, i3 = e1e2e3, i23 = −1, ist = ete1e2e3, i2st = −1, (2.2)

and the commutator
[et, i3] = 2eti3 = 2ist. (2.3)

The volume-time subalgebra of Cl(3, 1) generated by these blades is indeed
isomorphic to the quaternion algebra [9].

{1, et, i3, ist} ←→ {1, i, j,k} (2.4)
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This isomorphism allows us now to transfer the quaternionic ± split (or orthog-
onal two-dimensional planes split (OPS)3) of [14, 17, 23, 18, 20] to space-time
algebra, which turns out to be a very real (physical) space-time split

h± =
1

2
(h± ethe

∗
t ), h = h+ + h−, (2.5)

where e∗t = i3, is the space-time dual of the unit time direction et, i.e.,

e∗t = eti
−1
st = −etist = −eteti3 = i3. (2.6)

The time direction et determines therefore the complementary three-dimensio
nal physical Euclidean space with pseudoscalar i3 as well! Their product ist =
eti3 is the four-dimensional space-time hypervolume pseudoscalar. Note that

ethi3 = h+ − h−, (2.7)

i.e. under the involution map et()i3 the h+ part is invariant, but the h− part
changes sign, which is related to the Coxeter half-turn [3]. See also Table 1.

We further note, that with respect to f ∈ {et, i3, ist} ⊂ R3,1, every multi-
vector A ∈ Cl(3, 1) can be split into commuting and anticommuting parts [21].

Lemma 2.1 (Commuting and anticommuting with f ∈ {et, i3, ist} ⊂ R3,1 [21]).
Every multivector A ∈ Cl(3, 1) has, with respect to every f ∈ {et, i3, ist} ⊂ R3,1,
where we note that f−1 = −f, the unique decomposition denoted by

A+f =
1

2
(A+ f−1Af), A−f =

1

2
(A− f−1Af)

A = A+f +A−f , A+f f = fA+f , A−f f = −fA−f . (2.8)

Notation 2.2 (Argument reflection). For a function h : R3,1 → Cl(3, 1) and a
multi-index φ = (φ1, φ2) with φ1, φ2 ∈ {0, 1} we set

hφ = h(φ1,φ2)(x) := h((−1)φ1t, (−1)φ2~x). (2.9)

In (2.5) the involution et()e
∗
t = et()i3, plays an important role. For the

quaternion algebra H this has been studied in [14, 17, 23, 18, 20]. The iso-
morphism (2.4) provides the algebraic means to transfer these results4 to the
space-time subalgebra {1, et, i3, ist}. Involutions like et()i3, and decompositions
like (2.5) and Lemma 2.1, provided the key to the geometric interpretation of
the two-sided QFT [23, 18, 20], and are significant and efficient in establishing
several types of quaternion signal convolutions both in the spatial, as well as in
the spectral domain [24].

We therefore begin our investigation of the convolutions of space-time sig-
nals, h : R3,1 → Cl(3, 1), also with the study of involutions of Cl(3, 1), using
the three square roots of −1: {et, i3, ist}.

3As explained in further detail in [18, 20], the geometry encoded in the OPS is not a simple
result of a rotation in the three-dimensional space spanned by the imaginary units i, j,k. The
intricate geometry of this split is fully investigated in [23].

4The full development of the sixteen dimensional Clifford Fourier transform for Cl(3, 1)
valued signals over space time is left to Section 3.
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space-time algebra basis elements

inv. 1 e23 e31 e12 e1 e2 e3 i3 et et23 et31 et12 et1 et2 et3 ist
et()et − − − − + + + + − − − − + + + +
i3()i3 − − − − − − − − + + + + + + + +
ist()ist − − − − + + + + + + + + − − − −
et()i3 ist −et1 −et2 −et3 et23 et31 et12 −et −i3 e1 e2 e3 −e23−e31−e12 1
et()ist −i3 e1 e2 e3 e23 e31 e12 −1 −ist et1 et2 et3 et23 et31 et12 −et
i3()ist et et23 e313 et12 −et1 −et2 −et3 −ist 1 e23 e31 e12 −e1 −e2 −e3 −i3

Table 1: Involutions of space-time algebra Cl(3, 1). If the involution only
changes the sign of the element, only the sign is given. Abbreviations: i3 = e123,
ist = et123, et1 = ete1, e12 = e1e2, etc.

Following Table 1, and giving the 16 element basis set of the algebra for
space-time Cl(3, 1) in the first line the name B, we find the following important
basis subsets, spanning eight-dimensional subspaces

B+ = {et − i3, (et − i3)e1, (et − i3)e2, (et − i3)e3,

1 + ist, (1 + ist)e1, (1 + ist)e2, (1 + ist)e3},
B− = {et + i3, (et + i3)e1, (et + i3)e2, (et + i3)e3,

1− ist, (1− ist)e1, (1− ist)e2, (1− ist)e3},
B+et = {1, e23, e31, e12, et, et23, et31, et12},
B−et = { e1, e2, e3, i3, et1, et2, et3, ist},
B+i3 = {1, e23, e31, e12, e1, e2, e3, i3},
B−i3 = {et, et23, et31, et12, et1, et2, et3, ist}, (2.10)

where B± is defined by (2.5), and B±et , B±i3 according to Lemma 2.1. The
eight-dimensional plus and minus parts of the algebra Cl(3, 1) arising from the
split with (2.5) can also be specified as

Cl(3, 1)+ = span[et − i3, (et − i3)~x, 1 + ist, (1 + ist)~y; ∀~x, ~y ∈ R3],

Cl(3, 1)− = span[et + i3, (et + i3)~x, 1− ist, (1− ist)~y; ∀~x, ~y ∈ R3]. (2.11)

The following identities hold for m± ∈ Cl(3, 1)±,

eαetm±e
βi3 = m±e

(β∓α)i3 = e(α∓β)etm±. (2.12)

Particularly useful cases of (2.12) are (α, β) = (π/2, 0) and (0, π/2):

etm± = ∓m±i3, m±i3 = ∓etm±. (2.13)

Because of (2.3), we have for the product of exponentials

eαeteβi3 = eβi3eαet + [et, i3] sin(α) sin(β)

= eβi3eαet + 2ist sin(α) sin(β), (2.14)

which (in the same form for general multivector square roots of −1) has been
used in [22] in order to derive a general convolution theorem for Clifford Fourier
transformations. Moreover, note that

et[et, i3] = 2(et)
2i3 = −2i3. (2.15)
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We furthermore note the useful anticommutation relationships

et[et, i3] = −[et, i3]et, i3[et, i3] = −[et, i3]i3, (2.16)

and therefore

eαet [et, i3] = [et, i3]e−αet , eβi3 [et, i3] = [et, i3]e−βi3 . (2.17)

And because of the fundamental anticommutation

eti3 = −i3et ⇒ eαeti3 = i3e
−αet . (2.18)

3 The steerable space-time Fourier transform
(SFT)

The steerable space-time Fourier transform maps 16-dimensional space-time al-
gebra functions h : R3,1 → Cl3,1 to 16-dimensional space-time spectrum func-
tions F{h} : R3,1 → Cl3,1. It is defined for h ∈ L1(R3,1;Cl3,1) in the following
way5

h→ Fet,i3{h}(ω) = F{h}(ω) =

∫
R3,1

e−et tωth(x) e−i3~x·~ωd4x , (3.1)

with

• space-time vectors x = tet + ~x ∈ R3,1, ~x = xe1 + ye2 + ze3 ∈ R3

• space-time volume d4x = dtdxdydz

• space-time frequency vectors ω = ωtet + ~ω ∈ R3,1, ~ω = ω1e1 + ω2e2 +
ω3e3 ∈ R3

Note, that we usually omit the upper indexes showing the special square roots
of −1 selected for the transform, as in Fet,i3{h} = F{h} .

Remark 3.1. The above SFT is a steerable operator6 depending on the choice
of unit time direction et in the forward light cone of R3,1. In the case of a
local inertial frame of reference, the vector et in R3,1 specifies the velocity of the
observer.

Remark 3.2. The three-dimensional integration part∫
h(x) e−i3~x·~ωd3~x

in (3.1) fully corresponds to the Clifford algebra Fourier transform (CFT) in
Cl(3, 0), compare [15, 16]. For this CFT in Cl(3, 0) fast Clifford Fourier trans-
form algorithms exist, based on the split of the eight-dimensional algebra Cl(3, 0)
(see e.g. Section 3.2 of [15]) into a quadruple of conventional fast Fourier trans-
forms.

5Alternatively one can assume the signal functions h to be Schwartz functions. For square
integrable functions the integral in (3.1) may not converge absolutely, then a definition in
terms of a L2 norm density argument may become necessary.

6Note that the steerability of the closely related general two-sided QFT has been discussed
at length in [18, 20].
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For h ∈ L1(R3,1;Cl3,1), and assuming that in any finite interval h and the
partial coordinate derivatives of h are piecewise continuous, and have at most
a finite number of extrema and discontinuities, h being continuous at x ∈ R3,1,
and assuming that F{h} ∈ L1(R3,1;Cl3,1), then the inverse F−1 of the SFT
(3.1) is given by

h(x) =
1

(2π)4

∫
R3,1

eet tωt F{h}(ω) ei3~x·~ωd 4ω . (3.2)

The ± split of the QFT can now, via the isomorphism (2.4) of quaternions to
the volume-time subalgebra of the space-time algebra, be extended to splitting
general space-time algebra multivector functions over R3,1. This leads to the
following interesting result [14],

F{h} = F{h}+ + F{h}−

=

∫
R3,1

h+ e
−i3( ~x·~ω− tωt )d4x +

∫
R3,1

h− e
−i3( ~x·~ω+ tωt )d4x

=

∫
R3,1

e−et( tωt−~x·~ω )h+ d
4x +

∫
R3,1

e−et( tωt+~x·~ω )h− d
4x . (3.3)

This result shows us that the SFT is identical to a sum of right and left propa-
gating multivector wave packets. We therefore see that these physically impor-
tant wave packets arise absolutely naturally from elementary purely algebraic
considerations.

Remark 3.3. Equation (3.3) shows best how to compute a SFT. It is simply the
consecutive computation of a three-dimensional CFT of Remark 3.2, followed by
a standard one-dimensional time-frequency Fourier transform on the resulting
components. For the h+ part in (3.3) this can, e.g., be written as

F{h}+ =

∫
R3,1

h+ e
−i3( ~x·~ω− tωt )d4x

=

∫ ∞
−∞

{∫
R3

h+(t, ~x)e−i3 ~x·~ωd3~x

}
ei3 tωtdt, (3.4)

and similarly for the h− part.

We further define for later use the following two mixed exponential-sine
Fourier transforms

Fet,±s{h}(ω) =

∫
R3,1

e−ettωth(x)(±1) sin(−~x · ~ω )d4x, (3.5)

F±s,i3{h}(ω) =

∫
R3,1

(±1) sin(−tωt)h(x)e−i3~x·~ω d4x. (3.6)

With the help of

sin(−tωt) =
et
2

(e−ettωt − eettωt),

sin(−~x · ~ω) =
i3
2

(e−i3~x·~ω − ei3~x·~ω), (3.7)
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we can rewrite the above mixed exponential-sine Fourier transforms in terms of
the SFT of (3.1) as

Fet,±s{h} = ± 1
2 (Fet,i3{hi3} − Fet,−i3{hi3}), (3.8)

F±s,i3{h} = ± 1
2 (Fet,i3{eth} − F−et,i3{eth}). (3.9)

We further note the following useful relationships using the argument reflection
of Notation 2.2

F−et,i3{h} = Fet,i3{h(1,0)} = F{h(1,0)}, Fet,−i3{h} = F{h(0,1)}, (3.10)

and similarly

Fet,−s{h} = Fet,s{h(0,1)}, F−s,i3{h} = Fs,i3{h(1,0)}. (3.11)

4 Convolution and Mustard convolution

We define the convolution of two space-time signals a, b ∈ L1(R3,1;Cl3,1) as

(a ? b)(x) =

∫
R3,1

a(y)b(x− y)d4y, (4.1)

provided that the integral exists7.
The Mustard convolution [28] of two space-time signals a, b ∈ L1(R3,1; Cl3,1)

is defined as
(a ?M b)(x) = F−1(F{a}F{b}). (4.2)

provided that the integral exists.

Remark 4.1. The Mustard convolution has the conceptual and computational
advantage to simply yield as spectrum in the SFT Fourier domain the point wise
product of the SFTs of the two signals, just as for the classical complex Fourier
transform. On the other hand, by its very definition, the Mustard convolution de-
pends on the choice of the pair et, i3, of square roots of −1 used in the definition
(3.1) of the SFT. The Mustard convolution (4.2) is therefore a steerable opera-
tor, depending on the choice of unit time direction et in the space-time forward
light cone of R3,1. This may be of advantage in applications to special relativistic
physics, electromagnetic signal processing, optics, and aero-space navigation.

We additionally define a further type of (steerable) exponential-sine Mustard
convolution as

(a ?Ms b)(x) = F−1(Fet,s{a}Fs,i3{b}). (4.3)

In the following two Subsections we will first express the convolution (4.1)
in terms of the Mustard convolution (4.2) and vice versa.

7The integrals in (4.1), (4.2) and (4.3) exist, e.g. for compactly supported functions, or for
functions a, b ∈ L1(R3,1, Cl3,1), etc.

8



4.1 Expressing the convolution in terms of the Mustard
convolution

In [4] Theorem 4.1 on page 584 expresses the classical convolution of two quater-
nion functions with the help of the general left-sided QFT as a sum of 40 Mustard
convolutions. Similar results have been established for the general two-sided
QFT in [24]. Based on the isomorphism (2.4) and on the splits of (2.5) and of
Lemma 2.1, we generalize these results now to the SFT. Moreover, we use The-
orem 5.12 on page 327 of [22], which expresses the convolution of two Clifford
signal functions (higher dimensional generalizations of quaternion or space-time
functions) in the Clifford Fourier domain with the help of the general two-sided
Clifford Fourier transform (CFT), the latter is in turn a generalization of the
QFT and SFT to general Clifford algebras with non-degenerate quadratic forms.
We restate this theorem here again, specialized for space-time functions and the
SFT of (3.1).

Theorem 4.2 (SFT of convolution). The SFT of the convolution (4.1) of two
functions a, b ∈ L1(R3,1;Cl3,1) can be expressed as

F{a ? b} =

F{a+et}F{b+i3}+ Fet,−i3{a+et}Fet,i3{b−i3}
+ Fet,i3{a−et}F−et,i3{b+i3}+ Fet,−i3{a−et}F−et,i3{b−i3} (4.4)

+ 2Fet,s{a+et}istFs,i3{b+i3}+ 2Fet,−s{a+et}istFs,i3{b−i3}
+ 2Fet,s{a−et}istF−s,i3{b+i3}+ 2Fet,−s{a−et}istF−s,i3{b−i3}.

Note that due to the commutation properties of (3.5) and (3.6) we can place
the pseudosalar ist also inside the exponential-sine transform terms as e.g. in

Fet,s{a+et}istFs,i3{b+i3} = Fet,s{a+etist}Fs,i3{b+i3}
= Fet,s{a+et}Fs,i3{istb+i3}. (4.5)

By applying the inverse SFT to (4.4), we can now easily express the convo-
lution of two space-time signals a?b in terms of only eight Mustard convolutions
(4.2) and (4.3).

Theorem 4.3 (Convolution in terms of two types of Mustard convolution).
The convolution (4.1) of two space-time functions a, b ∈ L1(R3,1;Cl3,1) can be
expressed in terms of four Mustard convolutions (4.2) and four exponential-sine
Mustard convolutions (4.3) as

a ? b = a+et ?M b+i3 + a
(0,1)
+et ?M b−i3 + a−et ?M b

(1,0)
+i3

+ a
(0,1)
−et ?M b

(1,0)
−i3

+ 2a+et ?Ms istb+i3 + 2a
(0,1)
+et ?Ms istb−i3

+ 2a−et ?Ms istb
(1,0)
+i3

+ 2a
(0,1)
−et ?Ms istb

(1,0)
−i3 . (4.6)

Remark 4.4. We use the convention, that terms such as a+et ?Ms istb+i3 ,
should be understood with brackets a+et ?Ms (istb+i3), which are omitted to avoid
clutter.

Furthermore, applying (3.8) and (3.9), we can expand the terms in (4.4)
with exponential-sine transforms into sums of products of SFTs. For example,
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the first term gives, using etist = −i3,

Fet,s{a+et}istFs,i3{b+i3}
= 1

4

(
Fet,i3{a+eti3}−Fet,−i3{a+eti3}

)(
Fet,i3{etistb+i3}−F−et,i3{etistb+i3}

)
= 1

4

(
Fet,i3{a+eti3}−Fet,−i3{a+eti3}

)(
Fet,i3{−i3b+i3}−F−et,i3{−i3b+i3}

)
= 1

4

(
F{a+eti3}F{−i3b+i3} − F{a+eti3}F{−i3b

(1,0)
+i3
}

−F{a(0,1)+et i3}F{−i3b+i3}+ F{a(0,1)+et i3}F{−i3b
(1,0)
+i3
}
)

= 1
4

(
F{a+et}F{b

(1,0)
+i3
} − F{a+et}F{b+i3}

−F{a(0,1)+et }F{b
(1,0)
+i3
}+ F{a(0,1)+et }F{b+i3}

)
, (4.7)

because

F{a+eti3}F{−i3b+i3} = F{a+et}i3(−i3)F{b(1,0)+i3
} = F{a+et}F{b

(1,0)
+i3
},

etc. (4.8)

where we applied (2.18) for the first equality.
By taking the inverse SFT of (4.7) we obtain an identity for expressing

a mixed exponential-sine Mustard convolution (4.3) in terms of four standard
Mustard convolutions (4.2),

a+et ?Ms istb+i3 (4.9)

= a+et ?M b
(1,0)
+i3
− a+et ?M b+i3 − a

(0,1)
+et ?M b

(1,0)
+i3

+ a
(0,1)
+et ?M b+i3 .

This now allows us in turn to express the space-time signal convolution purely
in terms of standard Mustard convolutions,

a ? b = (4.10)

1
2 (a+et ?M b

(1,0)
+i3

+ a+et ?M b+i3− a
(0,1)
+et ?M b

(1,0)
+i3

+ a
(0,1)
+et ?M b+i3

+ a
(0,1)
+et ?M b

(1,0)
−i3 + a

(0,1)
+et ?M b−i3 − a+et ?M b

(1,0)
−i3 + a+et ?M b−i3

+ a−et ?M b+i3 + a−et ?M b
(1,0)
+i3
− a(0,1)−et ?M b+i3 + a

(0,1)
−et ?M b

(1,0)
+i3

+ a
(0,1)
−et ?M b−i3 + a

(0,1)
−et ?M b

(1,0)
−i3 − a−et ?M b−i3 + a−et ?M b

(1,0)
−i3 ) .

Furthermore, we can combine four pairs of space-time split terms, e.g.,

a+et ?M b+i3 + a+et ?M b−i3 = a+et ?M b, etc. (4.11)

This leaves only twelve terms for expressing a classical convolution in terms of
a Mustard convolution,

a ? b =

1
2 (a+et ?M b

(1,0)
+i3

+ a+et ?M b− a(0,1)+et ?M b
(1,0)
+i3

+ a
(0,1)
+et ?M b

+ a
(0,1)
+et ?M b

(1,0)
−i3 − a+et ?M b

(1,0)
−i3

+ a−et ?M b+i3 + a−et ?M b(1,0) − a(0,1)−et ?M b+i3 + a
(0,1)
−et ?M b(1,0)

+ a
(0,1)
−et ?M b−i3− a−et ?M b−i3 ) . (4.12)
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Moreover, we can combine with the help of the involution et()i3 of (2.7) four
pairs of terms like

a+et ?M b
(1,0)
+i3
− a+et ?M b

(1,0)
−i3 = a+et ?M [b

(1,0)
+i3
− b(1,0)−i3 ]

= a+et ?M (et[b
(1,0)
+i3

+ b
(1,0)
−i3 ]i3) = a+et ?M etb

(1,0)i3, (4.13)

where in the final result we omit the round brackets, i.e. we understand
a+et ?M etb

(1,0)g = a+et ?M (etb
(1,0)i3). This in turn leaves only eight terms for

expressing a classical convolution in terms of Mustard convolutions,

a ? b = 1
2 (a+et ?M etb

(1,0)i3+ a+et ?M b− a(0,1)+et ?M etb
(1,0)i3+ a

(0,1)
+et ?M b

+ a−et ?M etbi3 + a−et ?M b(1,0) − a(0,1)−et ?M etbi3 + a
(0,1)
−et ?M b(1,0) ) . (4.14)

Finally, we note, that (4.14) contains pairs of functions a±et with unreflected
and reflected second three-dimensional space vector argument. Adding these
pairs leads to even ⊕ or odd 	 symmetry in the second three-dimensional space
vector argument. That is, we combine

a⊕+et = 1
2 (a+et + a

(0,1)
+et ), a	+et = 1

2 (a+et − a
(0,1)
+et ). (4.15)

Remembering the Notation 2.2, the space-time function a⊕+et , mapping R3,1 →
Cl(3, 1), is therefore symmetrized in its three-dimensional space vector argu-
ment ~x, whereas a	+et is antisymmetrized in its three-dimensional space vector
argument ~x.

This finally allows us to write the classical convolution in terms of just four
Mustard convolutions.

Theorem 4.5 (Convolution in terms of Mustard convolution). The convolution
(4.1) of two space-time functions a, b ∈ L1(R3,1;Cl(3, 1)) can be expressed in
terms of four standard Mustard convolutions (4.2) as

a ? b = 1
2 (a	+et ?M etb

(1,0)i3 +a⊕+et ?M b+a	−et ?M etbi3 +a⊕−et ?M b(1,0) ) . (4.16)

4.2 Expressing the Mustard convolution in terms of the
convolution

Now we will simply write out the Mustard convolution (4.2) and simplify it
until only standard convolutions (4.1) remain. In this Subsection we will use
the general space-time split of equation (2.5).

We begin by writing the Mustard convolution (4.2) of two space-time func-
tions a, b ∈ L1(R3,1;Cl(3, 1)), with space-time vector arguments x = tet + ~x,
y = t′et + ~y, and z = t′′et + ~z, all in R3,1,

a ?M b(x) = 1
(2π)4

∫
R3,1

eett1ωtF{a}(ω)F{b}(ω)ei3~x·~ωd4ω

= 1
(2π)4

∫
R3,1

eett1ωt
∫
R3,1

e−ett
′
1ωta(y)e−i3~y·~ωd4y∫

R3,1

e−ett
′′
1ωtb(z)e−i3~z·~ωd4zei3~x·~ωd4ω

= 1
(2π)4

∫
R3,1

∫
R3,1

∫
R3,1

eet(t1−t
′
1)ωt(a+(y) + a−(y))e−i3~y·~ω

e−ett
′′
1ωt(b+(z) + b−(z))ei3(~x−~z)·~ωd4yd4zd4ω. (4.17)
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Next, we use the identities (2.12) in order to shift the inner factor e−i3~y·~ω to
the left and e−ett

′′
1ωt to the right, respectively. We abbreviate

∫
R3,1

∫
R3,1

∫
R3,1 to∫∫∫

.

a ?M b(x) = (4.18)

= 1
(2π)4

∫∫∫
eet(t1−t

′
1)ωteet~y·~ωa+(y)b+(z)ei3t

′′
1ωtei3(~x−~z)·~ωd4yd4zd4ω

+ 1
(2π)4

∫∫∫
eet(t1−t

′
1)ωteet~y·~ωa+(y)b−(z)e−i3t

′′
1ωtei3(~x−~z)·~ωd4yd4zd4ω

+ 1
(2π)4

∫∫∫
eet(t1−t

′
1)ωte−et~y·~ωa−(y)b+(z)ei3t

′′
1ωtei3(~x−~z)·~ωd4yd4zd4ω

+ 1
(2π)4

∫∫∫
eet(t1−t

′
1)ωte−et~y·~ωa−(y)b−(z)e−i3t

′′
1ωtei3(~x−~z)·~ωd4yd4zd4ω.

Furthermore, we abbreviate the inner function products as ab±±(y, z) := a±(y)b±(z),
and apply the space-time split of equation (2.5) once again to obtain ab±±(y, z) =
[ab±±(y, z)]++[ab±±(y, z)]− = ab±±(y, z)++ab±±(y, z)−. We omit the square
brackets and use the convention that the final space-time split indicated by the
final ± index should be performed last. This allows to further apply (2.12) again
in order to shift the factors e±i3t

′′
1ωt ei3(~x−~z)·~ω to the left. We end up with the

following eight terms

a ?M b(x) = (4.19)

= 1
(2π)4

∫∫∫
eet(t1−t

′
1−t

′′
1 )ωteet(~y−(~x−~z))·~ωab++(y, z)+d

4yd4zd4ω

+ 1
(2π)4

∫∫∫
eet(t1−t

′
1+t

′′
1 )ωteet(~y+(~x−~z))·~ωab++(y, z)−d

4yd4zd4ω

+ 1
(2π)4

∫∫∫
eet(t1−t

′
1+t

′′
1 )ωteet(~y−(~x−~z))·~ωab+−(y, z)+d

4yd4zd4ω

+ 1
(2π)4

∫∫∫
eet(t1−t

′
1−t

′′
1 )ωteet(~y+(~x−~z))·~ωab+−(y, z)−d

4yd4zd4ω

+ 1
(2π)4

∫∫∫
eet(t1−t

′
1−t

′′
1 )ωteet(−~y−(~x−~z))·~ωab−+(y, z)+d

4yd4zd4ω

+ 1
(2π)4

∫∫∫
eet(t1−t

′
1+t

′′
1 )ωteet(−~y+(~x−~z))·~ωab−+(y, z)−d

4yd4zd4ω

+ 1
(2π)4

∫∫∫
eet(t1−t

′
1+t

′′
1 )ωteet(−~y−(~x−~z))·~ωab−−(y, z)+d

4yd4zd4ω

+ 1
(2π)4

∫∫∫
eet(t1−t

′
1−t

′′
1 )ωteet(−~y+(~x−~z))·~ωab−−(y, z)−d

4yd4zd4ω.

We now only show explicitly how to simplify the second triple integral, the

12



others follow the same pattern.

1
(2π)4

∫∫∫
eet(t1−t

′
1+t

′′
1 )ωteet(~y+(~x−~z))·~ω[a+(y)b+(z)]−d

4yd4zd4ω

= 1
(2π)4

∫∫ ∫
R
eet(t1−t

′
1+t

′′
1 )ωtdωt

∫
R3

eet(~y+(~x−~z))·~ωd~ω[a+(y)b+(z)]−d
4yd4z

=

∫∫
δ(t1 − t′1 + t′′1)δ(~y + (~x− ~z))[a+(y)b+(t′′1 , ~z)]−d

4yd4z

=

∫
R2

[a+(y)b+(−(t1 − t′1), ~x+ ~y)]−d
4y

=

∫
R2

[a+(y)b+(−(t1 − t′1),−(−~x− ~y))]−d
4y

=

∫
R2

[a+(y)b
(1,1)
+ (t1 − t′1,−~x− ~y)]−d

4y

= [a+ ? b
(1,1)
+ (t1,−~x)]−. (4.20)

Note that a+ ? b
(1,1)
+ (t1,−~x) means to first apply the convolution to the pair

of functions a+ and b
(1,1)
+ , and only then to evaluate them with the argument

(t1,−~x). So in general a+?b
(1,1)
+ (t1,−~x) 6= a+?b+(−t1, ~x). Simplifying the other

seven triple integrals similarly we finally obtain the desired decomposition of the
Mustard convolution (4.2) in terms of the classical convolution.

Theorem 4.6 (Mustard convolution in terms of standard convolution). The
Mustard convolution (4.2) of two space-time functions a, b ∈ L1(R3,1;Cl(3, 1))
can be expressed in terms of eight standard convolutions (4.1) as

a ?M b(x) =

= [a+ ? b+(x)]+ + [a+ ? b
(1,1)
+ (t1,−~x)]−

+ [a+ ? b
(1,0)
− (x)]+ + [a+ ? b

(0,1)
− (t1,−~x)]−

+ [a− ? b
(0,1)
+ (t1,−~x)]+ + [a− ? b

(1,0)
+ (x)]−

+ [a− ? b
(1,1)
− (t1,−~x)]+ + [a− ? b−(x)]−. (4.21)

Remark 4.7. If we would explicitly insert according to (2.12) a± = 1
2 (a±etai3)

and b± = 1
2 (b± etbi3), and similarly explicitly insert the second level space-time

split [. . .]±, we would obtain up to a maximum of 64 terms. It is therefore
obvious how significant and efficient the use of the space-time split (2.5) is in
this context.

Remark 4.8. The computation of a typical term in Theorem 4.6 can be illus-
trated by writing out, e.g., the third term in full detail

[a+ ? b
(1,0)
− (x)]+

=
1

2
[

∫
R3,1

1
2 (a(y) + eta(y)i3)

1
2 (b(−(tx − ty), ~x− ~y)− etb(−(tx − ty), ~x− ~y)i3)d4y

+ et

∫
R3,1

1
2 (a(y) + eta(y)i3)

1
2 (b(−(tx − ty), ~x− ~y)− etb(−(tx − ty), ~x− ~y)i3)d4y i3]. (4.22)
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Remark 4.9. The steerability (compare Remark 3.1) of the Mustard convolution
(4.2) is seen in Theorem 4.6 in the explicit occurrence of the algebra of space-
time split (2.5).

5 Conclusion

We have introduced the Clifford algebra Cl(3, 1) for space-time R3,1 together
with the space-time split, based on the time vector et and its dual three-
dimensional space volume pseudoscalar e∗t = i3. In this context we looked
in detail at a number of involutions in Cl(3, 1) connected with et, i3 and their
product, the space-time hypervolume pseudoscalar ist = eti3. Next, we briefly
reviewed for space-time Clifford algebra Cl(3, 1) valued signals over R3,1 the
steerable space-time Fourier transform, and defined a pair of related exponential-
sine type Fourier transforms. This was followed by definitions of the (classical)
convolution for space-time signals and two types of steerable Mustard convolu-
tions (with point wise products in the spectral domain). Finally we expressed
the convolution in terms of Mustard convolutions (Theorems 4.3 and 4.5), and
vice versa the Mustard convolution in terms of classical convolutions in Theorem
4.6.

We expect our results to be relevant for applied mathematics, physics, en-
gineering, navigation, geographic information systems (GIS), in particular for
special relativistic quantum mechanics, optics, electro-dynamics and aero-space
navigation. Furthermore, we expect applications in electromagnetic signal trans-
mission and processing. In the convolutions one signal function could be an
electromagnetic signal, the other a filter function, window function, continuous
mother wavelet, etc.
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very thin. Its credibility depends largely on the reflected glamour of natural selection which
biology proper is said to legitimise. Accordingly, if natural selection disappears from biology,
its offshoots in other fields seem likely to disappear as well. This is an outcome much to be
desired since, more often than not, these offshoots have proved to be not just post hoc but
ad hoc, crude, reductionist, scientistic rather than scientific, shamelessly self-congratulatory,
and so wanting in detail that they are bound to accommodate the data, however that data
may turn out. So it really does matter whether natural selection is true.[7]
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