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Abstract. In this paper we use the steerable space-time Fourier trans-
form (SFT), and relate the classical convolution of the algebra for space-
time Cl(3, 1)-valued signals over the space-time vector space R3,1, with
the (equally steerable) Mustard convolution. A Mustard convolution can
be expressed in the spectral domain as the point wise product of the
SFTs of the factor functions. In full generality do we express the clas-
sical convolution of space-time signals in terms of finite linear combina-
tions of Mustard convolutions, and vice versa the Mustard convolution
of space-time signals in terms of finite linear combinations of classical
convolutions.
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1. Introduction

The quaternions frequently appear as subalgebras of higher order Clifford
geometric algebras [2, 21]. This is for example the case for the Clifford algebra
over the space-time vector space [8, 9, 7], which is of prime importance in
physics, and in applications where time matters as well (motion in time,
video sequences, flow fields, ...). The quaternion subalgebra structure allows
to introduce generalizations of the quaternion Fourier transform (QFT) to
functions in these higher order Clifford geometric algebras. For example it
allows to generalize the QFT to a space-time Fourier transform [10, 13].

Recently it has been shown how the left-sided QFT [4], and the two-
sided QFT [20] allow to define Mustard convolutions for which in the spectral
domain the QFT of the convolution becomes a simple point wise product of
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the QFTs of the quaternion signal functions. This paper generalizes the ap-
proach of [20] from four-dimensional quaternions to the 16-dimensional Clif-
ford algebra Cl(3, 1), which contains a subalgebra isomorphic to quaternions.
Because transfering results from a lower dimensional non-commutative alge-
bra to a higher-dimensional non-commutative algebra is non-trivial, we try to
work with sufficient algebraic detail to allow all results to be verified directly.

This paper is organized as follows. Section 2 reviews the Clifford geo-
metric algebra Cl(3, 1) of the space-time vector space R3,1. In particular a
subalgebra isomorphic to quaternions is studied, which is generated by the
time-vector and the three-dimensional space volume pseudoscalar. Section 3
reviews the (steerable) space-time Fourier transform (SFT) of [10, 13], and
newly introduces related exponential-sine Fourier transforms. Section 4 first
defines the convolution, and two types of (equally steerable) Mustard con-
volution for space-time signals in Cl(3, 1) over R3,1. The main results are
Theorem 4.3 describing the convolution of space-time signals in terms of the
two types of Mustard convolutions, Theorem 4.5 expressing the convolution
in terms of only four standard Mustard convolutions, and finally vice versa
Theorem 4.6 describing the standard Mustard convolution of space-time sig-
nals in terms of eight classical convolutions.

2. Algebra for space-time

The algebra for space-time Cl(3, 1) = Cl3,1 = G3,1 = R3,1 is Clifford’s geo-
metric algebra of R3,1. In R3,1 we can introduce the following orthonormal
vector basis,

{et, e1, e2, e3}, −e2t = e21 = e22 = e23 = 1. (2.1)

In the full blade basis of Cl(3, 1) we thus get three anti-commuting blades
that all square to minus one, they are some of the roots of −1 (compare [17]),

e2t = −1, i3 = e1e2e3, i23 = −1, ist = ete1e2e3, i2st = −1, (2.2)

and the commutator

[et, i3] = 2eti3 = 2ist. (2.3)

The volume-time subalgebra of Cl(3, 1) generated by these blades is indeed
isomorphic to the quaternion algebra [7].

{1, et, i3, ist} ←→ {1, i, j,k} (2.4)

This isomorphism allows us now to transfer the quaternionic ± split (or
orthogonal two-dimensional planes split) of [10, 13, 19, 14, 16] to space-time
algebra, which turns out to be a very real (physical) space-time split

h± =
1

2
(h± ethe

∗
t ), h = h+ + h−, (2.5)

where e∗t = i3, is the space-time dual of the unit time direction et, i.e.,

e∗t = eti
−1
st = −etist = −eteti3 = i3. (2.6)
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space-time algebra basis elements
inv. 1 e23 e31 e12 e1 e2 e3 i3 et et23 et31 et12 et1 et2 et3 ist
et()et − − − − + + + + − − − − + + + +
i3()i3 − − − − − − − − + + + + + + + +
ist()ist − − − − + + + + + + + + − − − −
et()i3 ist −et1 −et2 −et3 et23 et31 et12 −et −i3 e1 e2 e3 −e23 −e31 −e12 −1
et()ist −i3 e1 e2 e3 e23 e31 e12 −1 −ist et1 et2 et3 et23 et31 et12 −et
i3()ist et et23 e313 et12 −et1 −et2 −et3 −ist 1 e23 e31 e12 −e1 −e2 −e3 −i3

Table 1. Involutions of space-time algebra Cl(3, 1). If the
involution only changes the sign of the element, only the sign
is given. Abbreviations: i3 = e123, ist = et123, et1 = ete1,
e12 = e1e2, etc.

The time direction et determines therefore the complementary three-dimensio-
nal physical Euclidean space with pseudoscalar i3 as well! Their product
ist = eti3 is the four-dimensional space-time hypervolume pseudoscalar. Note
that

ethi3 = h+ − h−, (2.7)

i.e. under the involution map et()i3 the h+ part is invariant, but the h− part
changes sign, which is related to the Coxeter half-turn [3]. See also Table 1.

We further note, that with respect to f ∈ {et, i3, ist} ⊂ R3,1, every
multivector A ∈ Cl(3, 1) can be split into commuting and anticommuting
parts [17].

Lemma 2.1 (Commuting and anticommuting with f ∈ {et, i3, ist} ⊂ R3,1

[17]). Every multivector A ∈ Cl(3, 1) has, with respect to every f ∈ {et, i3, ist}
⊂ R3,1, where we note that f−1 = −f, the unique decomposition denoted by

A+f =
1

2
(A+ f−1Af), A−f =

1

2
(A− f−1Af)

A = A+f +A−f , A+f f = fA+f , A−f f = −fA−f . (2.8)

Notation 2.2 (Argument reflection). For a function h : R3,1 → Cl(3, 1) and
a multi-index φ = (φ1, φ2) with φ1, φ2 ∈ {0, 1} we set

hφ = h(φ1,φ2)(x) := h((−1)φ1t, (−1)φ2~x). (2.9)

In (2.5) the involution et()e
∗
t = et()i3, plays an important role. For

the quaternion algebra H this has been studied in [10, 13, 19, 14, 16]. The
isomorphism (2.4) immediately allows to transfer these results to the space-
time subalgebra {1, et, i3, ist}. Involutions like et()i3, and decompositions like
(2.5) and Lemma 2.1, provided the key to the geometric interpretation of the
two-sided QFT [19, 14, 16], and are significant and efficient in establishing
several types of quaternion signal convolutions both in the spatial, as well as
in the spectral domain [20].

We therefore begin our investigation of the convolutions of space-time
signals, h : R3,1 → Cl(3, 1), also with the study of involutions of Cl(3, 1),
using the three square roots of −1: {et, i3, ist}. Following Table 1, and giving
the 16 element basis set of the algebra for space-time Cl(3, 1) in the first line
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the name B, we find the following important basis subsets, spanning eight-
dimensional subspaces

B+ = {et − i3, (et − i3)e1, (et − i3)e2, (et − i3)e3,

1 + ist, (1 + ist)e1, (1 + ist)e2, (1 + ist)e3},
B− = {et + i3, (et + i3)e1, (et + i3)e2, (et + i3)e3,

1− ist, (1− ist)e1, (1− ist)e2, (1− ist)e3},
B+et = {1, e23, e31, e12, et, et23, et31, et12},
B−et = { e1, e2, e3, i3, et1, et2, et3, ist},
B+i3 = {1, e23, e31, e12, e1, e2, e3, i3},
B−i3 = {et, et23, et31, et12, et1, et2, et3, ist}, (2.10)

where B± is defined by (2.5), and B±et , B±i3 according to Lemma 2.1. The
eight-dimensional plus and minus parts of the algebra Cl(3, 1) arising from
the split with (2.5) can also be specified as

Cl(3, 1)+ = span[et − i3, (et − i3)~x, 1 + ist, (1 + ist)~y; ∀~x, ~y ∈ R3],

Cl(3, 1)− = span[et + i3, (et + i3)~x, 1− ist, (1− ist)~y; ∀~x, ~y ∈ R3]. (2.11)

The following identities hold for m± ∈ Cl(3, 1)±,

eαetm±e
βi3 = m±e

(β∓α)i3 = e(α∓β)etm±. (2.12)

Particularly useful cases of (2.12) are (α, β) = (π/2, 0) and (0, π/2):

etm± = ∓m±i3, m±i3 = ∓etm±. (2.13)

Because of (2.3), we have for the product of exponentials

eαeteβi3 = eβi3eαet + [et, i3] sin(α) sin(β)

= eβi3eαet + 2ist sin(α) sin(β), (2.14)

which (in the same form for general multivector square roots of −1) has been
used in [18] in order to derive a general convolution theorem for Clifford
Fourier transformations. Moreover, note that

et[et, i3] = 2(et)
2i3 = −2i3. (2.15)

We furthermore note the useful anticommutation relationships

et[et, i3] = −[et, i3]et, i3[et, i3] = −[et, i3]i3, (2.16)

and therefore

eαet [et, i3] = [et, i3]e−αet , eβi3 [et, i3] = [et, i3]e−βi3 . (2.17)

And because of the fundamental anticommutation

eti3 = −i3et ⇒ eαeti3 = i3e
−αet . (2.18)
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3. The steerable space-time Fourier transform (SFT)

The steerable space-time Fourier transform maps 16-dimensional space-time
algebra functions h : R3,1 → Cl3,1 to 16-dimensional space-time spectrum
functions F{h} : R3,1 → Cl3,1. It is defined in the following way

h→ Fet,i3{h}(ω) = F{h}(ω) =

∫
R3,1

e−et tωth(x) e−i3~x·~ωd4x , (3.1)

with

• space-time vectors x = tet + ~x ∈ R3,1, ~x = xe1 + ye2 + ze3 ∈ R3

• space-time volume d4x = dtdxdydz
• space-time frequency vectors ω = ωtet + ~ω ∈ R3,1, ~ω = ω1e1 + ω2e2 +
ω3e3 ∈ R3

Note, that we usually omit the upper indexes showing the special square roots
of −1 selected for the transform, as in Fet,i3{h} = F{h} .

Remark 3.1. The above SFT is a steerable operator1 depending on the choice
of unit time direction et in the forward light cone of R3,1. In the case of a
local inertial frame of reference, the vector et in R3,1 specifies the velocity of
the observer.

Remark 3.2. The three-dimensional integration part∫
h(x) e−i3~x·~ωd3~x

in (3.1) fully corresponds to the Clifford algebra Fourier transform (CFT) in
Cl(3, 0), compare [11, 12].

The inverse F−1 of the SFT (3.1) is given by

h(x) =
1

(2π)4

∫
R3,1

ee0 tωt F{h}(ω) ei3~x·~ωd 4ω . (3.2)

The ± split of the QFT can now, via the isomorphism (2.4) of quater-
nions to the volume-time subalgebra of the space-time algebra, be extended
to splitting general space-time algebra multivector functions over R3,1. This
leads to the following interesting result [10],

F{h} = F{h}+ + F{h}−

=

∫
R3,1

h+ e
−i3( ~x·~ω− tωt )d4x +

∫
R3,1

h− e
−i3( ~x·~ω+ tωt )d4x

=

∫
R3,1

e−e0( tωt−~x·~ω )h+ d
4x +

∫
R3,1

e−e0( tωt+~x·~ω )h− d
4x . (3.3)

This result shows us that the SFT is identical to a sum of right and left
propagating multivector wave packets. We therefore see that these physically
important wave packets arise absolutely naturally from elementary purely
algebraic considerations.

1Note that the steerability of the closely related general two-sided QFT has been discussed
at length in [14, 16].
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We further define for later use the following two mixed exponential-sine
Fourier transforms

Fet,±s{h}(ω) =

∫
R3,1

e−ettωth(x)(±1) sin(−~x · ~ω )d4x, (3.4)

F±s,i3{h}(ω) =

∫
R3,1

(±1) sin(−tωt)h(x)e−i3~x·~ω d4x. (3.5)

With the help of

sin(−tωt) =
et
2

(e−ettωt − eettωt),

sin(−~x · ~ω) =
i3
2

(e−i3~x·~ω − ei3~x·~ω), (3.6)

we can rewrite the above mixed exponential-sine Fourier transforms in terms
of the SFT of (3.1) as

Fet,±s{h} = ± 1
2 (Fet,i3{hi3} − Fet,−i3{hi3}), (3.7)

F±s,i3{h} = ± 1
2 (Fet,i3{eth} − F−et,i3{eth}). (3.8)

We further note the following useful relationships using the argument reflec-
tion of Notation 2.2

F−et,i3{h} = Fet,g{h(1,0)} = F{h(1,0)}, Fet,−g{h} = F{h(0,1)}, (3.9)

and similarly

Fet,−s{h} = Fet,s{h(0,1)}, F−s,i3{h} = Fs,i3{h(1,0)}. (3.10)

4. Convolution and Mustard convolution

We define the convolution of two quaternion signals a, b ∈ L1(R3,1;Cl3,1) as

(a ? b)(x) =

∫
R3,1

a(y)b(x− y)d2y, (4.1)

provided that the integral exists.
The Mustard convolution [22] of two quaternion signals a, b ∈ L1(R3,1;

Cl3,1) is defined as

(a ?M b)(x) = F−1(F{a}F{b}). (4.2)

provided that the integral exists.

Remark 4.1. The Mustard convolution has the conceptual and computational
advantage to simply yield as spectrum in the SFT Fourier domain the point
wise product of the SFTs of the two signals, just as for the classical complex
Fourier transform. On the other hand, by its very definition, the Mustard
convolution depends on the choice of the pair et, i3, of square roots of −1
used in the definition (3.1) of the SFT. The Mustard convolution (4.2) is
therefore a steerable operator, depending on the choice of unit time direction
et in the space-time forward light cone of R3,1. This may be of advantage in
applications to special relativistic physics, electromagnetic signal processing,
optics, and aero-space navigation.
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We additionally define a further type of (steerable) exponential-sine
Mustard convolution as

(a ?Ms b)(x) = F−1(Fet,s{a}Fs,i3{b}). (4.3)

In the following two Subsections we will first express the convolution
(4.1) in terms of the Mustard convolution (4.2) and vice versa.

4.1. Expressing the convolution in terms of the Mustard convolution

In [4] Theorem 4.1 on page 584 expresses the classical convolution of two
quaternion functions with the help of the general left-sided QFT as a sum
of 40 Mustard convolutions. Similar results have been established for the
general two-sided QFT in [20]. Based on the isomorphism (2.4) and on the
splits of (2.5) and of Lemma 2.1, we generalize these results now to the SFT.
Moreover, we use Theorem 5.12 on page 327 of [18], which expresses the con-
volution of two Clifford signal functions (higher dimensional generalizations
of quaternion or space-time functions) in the Clifford Fourier domain with
the help of the general two-sided Clifford Fourier transform (CFT), the latter
is in turn a generalization of the QFT and SFT to general Clifford algebras
with non-degenerate quadratic forms. We restate this theorem here again,
specialized for space-time functions and the SFT of (3.1).

Theorem 4.2 (SFT of convolution). The SFT of the convolution (4.1) of two
functions a, b ∈ L1(R3,1;Cl3,1) can be expressed as

F{a ? b} =

F{a+et}F{b+i3}+ Fet,−i3{a+et}Fet,i3{b−i3}
+ Fet,i3{a−et}F−et,i3{b+i3}+ Fet,−i3{a−et}F−et,i3{b−i3} (4.4)

+ 2Fet,s{a+et}istFs,i3{b+i3}+ 2Fet,−s{a+et}istFs,i3{b−i3}
+ 2Fet,s{a−et}istF−s,i3{b+i3}+ 2Fet,−s{a−et}istF−s,i3{b−i3}.

Note that due to the commutation properties of (3.4) and (3.5) we can
place the pseudosalar ist also inside the exponential-sine transform terms as
e.g. in

Fet,s{a+et}istFs,i3{b+i3} = Fet,s{a+etist}Fs,i3{b+i3}
= Fet,s{a+et}Fs,i3{istb+i3}. (4.5)

By applying the inverse SFT to (4.4), we can now easily express the
convolution of two space-time signals a ? b in terms of only eight Mustard
convolutions (4.2) and (4.3).

Theorem 4.3 (Convolution in terms of two types of Mustard convolution).
The convolution (4.1) of two space-time functions a, b ∈ L1(R3,1;Cl3,1) can be
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expressed in terms of four Mustard convolutions (4.2) and four exponential-
sine Mustard convolutions (4.3) as

a ? b = a+et ?M b+i3 + a
(0,1)
+et ?M b−i3 + a−et ?M b

(1,0)
+i3

+ a
(0,1)
−et ?M b

(1,0)
−i3

+ 2a+et ?Ms istb+i3 + 2a
(0,1)
+et ?Ms istb−i3

+ 2a−et ?Ms istb
(1,0)
+i3

+ 2a
(0,1)
−et ?Ms istb

(1,0)
−i3 . (4.6)

Remark 4.4. We use the convention, that terms such as a+et ?Ms istb+i3 ,
should be understood with brackets a+et ?Ms (istb+i3), which are omitted to
avoid clutter.

Furthermore, applying (3.7) and (3.8), we can expand the terms in (4.4)
with exponential-sine transforms into sums of products of SFTs. For example,
the first term gives, using etist = −i3,

Fet,s{a+et}istFs,i3{b+i3}
= 1

4

(
Fet,i3{a+eti3}−Fet,−i3{a+eti3}

)(
Fet,i3{etistb+i3}−F−et,i3{etistb+i3}

)
= 1

4

(
Fet,i3{a+eti3}−Fet,−i3{a+eti3}

)(
Fet,i3{−i3b+i3}−F−et,i3{−i3b+i3}

)
= 1

4

(
F{a+eti3}F{−i3b+i3} − F{a+eti3}F{−i3b

(1,0)
+i3
}

−F{a(0,1)+et i3}F{−i3b+i3}+ F{a(0,1)+et i3}F{−i3b
(1,0)
+i3
}
)

= 1
4

(
F{a+et}F{b

(1,0)
+i3
} − F{a+et}F{b+i3}

−F{a(0,1)+et }F{b
(1,0)
+i3
}+ F{a(0,1)+et }F{b+i3}

)
, (4.7)

because

F{a+eti3}F{−i3b+i3} = F{a+et}i3(−i3)F{b(1,0)+i3
} = F{a+et}F{b

(1,0)
+i3
},

etc. (4.8)

where we applied (2.18) for the first equality.

By taking the inverse SFT of (4.7) we obtain an identity for expressing
a mixed exponential-sine Mustard convolution (4.3) in terms of four standard
Mustard convolutions (4.2),

a+et ?Ms istb+i3 (4.9)

= a+et ?M b
(1,0)
+i3
− a+et ?M b+i3 − a

(0,1)
+et ?M b

(1,0)
+i3

+ a
(0,1)
+et ?M b+i3 .
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This now allows us in turn to express the space-time signal convolution purely
in terms of standard Mustard convolutions,

a ? b = (4.10)

1
2 (a+et ?M b

(1,0)
+i3

+ a+et ?M b+i3− a
(0,1)
+et ?M b

(1,0)
+i3

+ a
(0,1)
+et ?M b+i3

+ a
(0,1)
+et ?M b

(1,0)
−i3 + a

(0,1)
+et ?M b−i3 − a+et ?M b

(1,0)
−i3 + a+et ?M b−i3

+ a−et ?M b+i3 + a−et ?M b
(1,0)
+i3
− a(0,1)−et ?M b+i3 + a

(0,1)
−et ?M b

(1,0)
+i3

+ a
(0,1)
−et ?M b−i3 + a

(0,1)
−et ?M b

(1,0)
−i3 − a−et ?M b−i3 + a−et ?M b

(1,0)
−i3 ) .

Furthermore, we can combine four pairs of space-time split terms, e.g.,

a+et ?M b+i3 + a+et ?M b−i3 = a+et ?M b, etc. (4.11)

This leaves only twelve terms for expressing a classical convolution in terms
of a Mustard convolution,

a ? b =

1
2 (a+et ?M b

(1,0)
+i3

+ a+et ?M b− a(0,1)+et ?M b
(1,0)
+i3

+ a
(0,1)
+et ?M b

+ a
(0,1)
+et ?M b

(1,0)
−i3 − a+et ?M b

(1,0)
−i3

+ a−et ?M b+i3 + a−et ?M b(1,0) − a(0,1)−et ?M b+i3 + a
(0,1)
−et ?M b(1,0)

+ a
(0,1)
−et ?M b−i3− a−et ?M b−i3 ) . (4.12)

Moreover, we can combine with the help of the involution et()i3 of (2.7) four
pairs of terms like

a+et ?M b
(1,0)
+i3
− a+et ?M b

(1,0)
−i3 = a+et ?M [b

(1,0)
+i3
− b(1,0)−i3 ]

= a+et ?M (et[b
(1,0)
+i3

+ b
(1,0)
−i3 ]i3) = a+et ?M etb

(1,0)i3, (4.13)

where in the final result we omit the round brackets, i.e. we understand
a+et ?M etb

(1,0)g = a+et ?M (etb
(1,0)i3). This in turn leaves only eight terms

for expressing a classical convolution in terms of Mustard convolutions,

a ? b = 1
2 (a+et ?M etb

(1,0)i3+ a+et ?M b− a(0,1)+et ?M etb
(1,0)i3+ a

(0,1)
+et ?M b

+ a−et ?M etbi3 + a−et ?M b(1,0) − a(0,1)−et ?M etbi3 + a
(0,1)
−et ?M b(1,0) ) . (4.14)

Finally, we note, that (4.14) contains pairs of functions a±et with unreflected
and reflected second three-dimensional space vector argument. Adding these
pairs leads to even ⊕ or odd 	 symmetry in the second three-dimensional
space vector argument. That is, we combine

a⊕+et = 1
2 (a+et + a

(0,1)
+et ), a	+et = 1

2 (a+et − a
(0,1)
+et ). (4.15)

Remembering the Notation 2.2, the space-time function a⊕+et , mapping R3,1 →
Cl(3, 1), is therefore symmetrized in its three-dimensional space vector ar-
gument ~x, whereas a	+et is antisymmetrized in its three-dimensional space
vector argument ~x.
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This finally allows us to write the classical convolution in terms of just
four Mustard convolutions.

Theorem 4.5 (Convolution in terms of Mustard convolution). The convo-
lution (4.1) of two space-time functions a, b ∈ L1(R3,1;Cl(3, 1)) can be ex-
pressed in terms of four standard Mustard convolutions (4.2) as

a?b = 1
2 (a	+et ?M etb

(1,0)i3+a⊕+et ?M b+a	−et ?M etbi3+a⊕−et ?M b
(1,0) ) . (4.16)

4.2. Expressing the Mustard convolution in terms of the convolution

Now we will simply write out the Mustard convolution (4.2) and simplify it
until only standard convolutions (4.1) remain. In this Subsection we will use
the general space-time split of equation (2.5).

We begin by writing the Mustard convolution (4.2) of two space-time
functions a, b ∈ L1(R3,1;Cl(3, 1)), with space-time vector arguments x =
tet + ~x, y = t′et + ~y, and z = t′′et + ~z, all in R3,1,

a ?M b(x) = 1
(2π)4

∫
R3,1

eett1ωtF{a}(ω)F{b}(ω)ei3~x·~ωd2ω

= 1
(2π)4

∫
R3,1

e−ett1ωt
∫
R3,1

e−ett
′
1ωta(y)e−i3~y·~ωd2y∫

R3,1

e−ett
′′
1ωtb(z)e−i3~z·~ωd2zei3~x·~ωd2ω

= 1
(2π)4

∫
R3,1

∫
R3,1

∫
R3,1

eet(t1−t
′
1)ωt(a+(y) + a−(y))e−i3~y·~ω

e−ett
′′
1ωt(b+(z) + b−(z))ei3(~x−~z)·~ωd2yd2zd2ω. (4.17)

Next, we use the identities (2.12) in order to shift the inner factor e−i3~y·~ω to

the left and e−ett
′′
1ωt to the right, respectively. We abbreviate

∫
R3,1

∫
R3,1

∫
R3,1

to
∫∫∫

.

a ?M b(x) = (4.18)

= 1
(2π)4

∫∫∫
eet(t1−t

′
1)ωteet~y·~ωa+(y)b+(z)ei3t

′′
1ωtei3(~x−~z)·~ωd2yd2zd2ω

+ 1
(2π)4

∫∫∫
eet(t1−t

′
1)ωteet~y·~ωa+(y)b−(z)e−i3t

′′
1ωtei3(~x−~z)·~ωd2yd2zd2ω

+ 1
(2π)4

∫∫∫
eet(t1−t

′
1)ωte−et~y·~ωa−(y)b+(z)ei3t

′′
1ωtei3(~x−~z)·~ωd2yd2zd2ω

+ 1
(2π)4

∫∫∫
eet(t1−t

′
1)ωte−et~y·~ωa−(y)b−(z)e−i3t

′′
1ωtei3(~x−~z)·~ωd2yd2zd2ω.

Furthermore, we abbreviate the inner function products as ab±±(y, z) :=
a±(y)b±(z), and apply the space-time split of equation (2.5) once again
to obtain ab±±(y, z) = [ab±±(y, z)]+ + [ab±±(y, z)]− = ab±±(y, z)+ +
ab±±(y, z)−. We omit the square brackets and use the convention that the
final space-time split indicated by the final ± index should be performed last.
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This allows to further apply (2.12) again in order to shift the factors e±i3t
′′
1ωt

ei3(~x−~z)·~ω to the left. We end up with the following eight terms

a ?M b(x) = (4.19)

= 1
(2π)4

∫∫∫
eet(t1−t

′
1−t

′′
1 )ωteet(~y−(~x−~z))·~ωab++(y, z)+d

2yd2zd2ω

+ 1
(2π)4

∫∫∫
eet(t1−t

′
1+t

′′
1 )ωteet(~y+(~x−~z))·~ωab++(y, z)−d

2yd2zd2ω

+ 1
(2π)4

∫∫∫
eet(t1−t

′
1+t

′′
1 )ωteet(~y−(~x−~z))·~ωab+−(y, z)+d

2yd2zd2ω

+ 1
(2π)4

∫∫∫
eet(t1−t

′
1−t

′′
1 )ωteet(~y+(~x−~z))·~ωab+−(y, z)−d

2yd2zd2ω

+ 1
(2π)4

∫∫∫
eet(t1−t

′
1−t

′′
1 )ωteet(−~y−(~x−~z))·~ωab−+(y, z)+d

2yd2zd2ω

+ 1
(2π)4

∫∫∫
eet(t1−t

′
1+t

′′
1 )ωteet(−~y+(~x−~z))·~ωab−+(y, z)−d

2yd2zd2ω

+ 1
(2π)4

∫∫∫
eet(t1−t

′
1+t

′′
1 )ωteet(−~y−(~x−~z))·~ωab−−(y, z)+d

2yd2zd2ω

+ 1
(2π)4

∫∫∫
eet(t1−t

′
1−t

′′
1 )ωteet(−~y+(~x−~z))·~ωab−−(y, z)−d

2yd2zd2ω.

We now only show explicitly how to simplify the second triple integral, the
others follow the same pattern.

1
(2π)4

∫∫∫
eet(t1−t

′
1+t

′′
1 )ωteet(~y+(~x−~z))·~ω[a+(y)b+(z)]−d

2yd2zd2ω

= 1
(2π)4

∫∫ ∫
R
eet(t1−t

′
1+t

′′
1 )ωtdωt

∫
R3

eet(~y+(~x−~z))·~ωd~ω[a+(y)b+(z)]−d
2yd2z

=

∫∫
δ(t1 − t′1 + t′′1)δ(~y + (~x− ~z))[a+(y)b+(t′′1 , ~z)]−d

2yd2z

=

∫
R2

[a+(y)b+(−(t1 − t′1), ~x+ ~y)]−d
2y

=

∫
R2

[a+(y)b+(−(t1 − t′1),−(−~x− ~y))]−d
2y

=

∫
R2

[a+(y)b
(1,1)
+ (t1 − t′1,−~x− ~y)]−d

2y

= [a+ ? b
(1,1)
+ (t1,−~x)]−. (4.20)

Note that a+ ? b
(1,1)
+ (t1,−~x) means to first apply the convolution to the pair

of functions a+ and b
(1,1)
+ , and only then to evaluate them with the argument

(t1,−~x). So in general a+ ? b
(1,1)
+ (t1,−~x) 6= a+ ? b+(−t1, ~x). Simplifying the

other seven triple integrals similarly we finally obtain the desired decompo-
sition of the Mustard convolution (4.2) in terms of the classical convolution.
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Theorem 4.6 (Mustard convolution in terms of standard convolution). The
Mustard convolution (4.2) of two space-time functions a, b ∈ L1(R3,1;Cl(3, 1))
can be expressed in terms of eight standard convolutions (4.1) as

a ?M b(x) =

= [a+ ? b+(x)]+ + [a+ ? b
(1,1)
+ (t1,−~x)]−

+ [a+ ? b
(1,0)
− (x)]+ + [a+ ? b

(0,1)
− (t1,−~x)]−

+ [a− ? b
(0,1)
+ (t1,−~x)]+ + [a− ? b

(1,0)
+ (x)]−

+ [a− ? b
(1,1)
− (t1,−~x)]+ + [a− ? b−(x)]−. (4.21)

Remark 4.7. If we would explicitly insert according to (2.12) a± = 1
2 (a±etai3)

and b± = 1
2 (b ± etbi3), and similarly explicitly insert the second level space-

time split [. . .]±, we would obtain up to a maximum of 64 terms. It is therefore
obvious how significant and efficient the use of the space-time split (2.5) is
in this context.

Remark 4.8. The steerability (compare Remark 3.1) of the Mustard convolu-
tion (4.2) is seen in Theorem 4.6 in the explicit occurrence of the algebra of
space-time split (2.5).

5. Conclusion

We have introduced the Clifford algebra Cl(3, 1) for space-time R3,1 together
with the space-time split, based on the time vector et and its dual three-
dimensional space volume pseudoscalar e∗t = i3. In this context we looked
in detail at a number of involutions in Cl(3, 1) connected with et, i3 and
their product, the space-time hypervolume pseudoscalar ist = eti3. Next,
we briefly reviewed for space-time Clifford algebra Cl(3, 1) valued signals
over R3,1 the steerable space-time Fourier transform, and defined a pair of
related exponential-sine type Fourier transforms. This was followed by def-
initions of the (classical) convolution for space-time signals and two types
of steerable Mustard convolutions (with point wise products in the spectral
domain). Finally we expressed the convolution in terms of Mustard convo-
lutions (Theorems 4.3 and 4.5), and vice versa the Mustard convolution in
terms of classical convolutions in Theorem 4.6.

We expect our results to be relevant for applied mathematics, physics,
engineering and navigation, in particular for special relativistic quantum me-
chanics, optics, electro-dynamics and aero-space navigation. Furthermore, we
expect applications in electromagnetic signal transmission and processing. In
the convolutions one signal function could be an electromagnetic signal, the
other a filter function, window function, continuous mother wavelet, etc.
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