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Abstract

Many signal processing applications require performing statistical inference on large datasets, where
computational and/or memory restrictions become an issue. In this big data setting, computing an exact global
centralized estimator is often unfeasible. Furthermore, even when approximate numerical solutions (e.g., based
on Monte Carlo methods) working directly on the whole dataset can be computed, they may not provide a
satisfactory performance either. Hence, several authors have recently started considering distributed inference
approaches, where the data is divided among multiple workers (cores, machines or a combination of both). The
computations are then performed in parallel and the resulting distributed or partial estimators are finally
combined to approximate the intractable global estimator. In this paper, we focus on the scenario where no
communication exists among the workers, deriving efficient linear fusion rules for the combination of the
distributed estimators. Both a Bayesian perspective (based on the Bernstein-von Mises theorem and the
asymptotic normality of the estimators) and a constrained optimization view are provided for the derivation of
the linear fusion rules proposed. We concentrate on minimum mean squared error (MMSE) partial estimators,
but the approach is more general and can be used to combine any kind of distributed estimators as long as
they are unbiased. Numerical results show the good performance of the algorithms developed, both in simple
problems where analytical expressions can be obtained for the distributed MMSE estimators, and in a wireless
sensor network localization problem where Monte Carlo methods are used to approximate the partial estimators.
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1 Introduction

Estimation theory addresses the problem of inferring a set of unknown variables
of interest given a collection of available data [1, 2]. This is a central problem in
statistical signal processing, where a parametric model for the data is often assumed
and its parameters have to be inferred from the observations [3, 4, 5]. Indeed, even
non-parametric approaches typically have a reduced set of hyperparameters that
have to be estimated from the data [6, 7, 8]. Unfortunately, determining the global

estimator of these parameters using all the available information is often unfeasi-
ble or impractical for many real-world scenarios. Many current signal processing
applications require performing statistical inference on large datasets, where the
amount of data at hand imposes computational and/or storage constraints that
impede the global estimation process [9]. Furthermore, even when approximate nu-
merical solutions working directly on the whole dataset can be computed, they may
not provide a satisfactory performance either. For example, Monte Carlo (MC)
methods are often used to attain asymptotically exact estimators when closed-form
analytical expressions cannot be otained [10, 11, 12]. However, large datasets pose a
challenge for MC-based estimators, since the posterior density tends to concentrate
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on a relatively small space as the number of data increases [13]. MC algorithms may
have trouble locating this area (especially if the state space is also large) and thus
can lead to a poor performance in practice.

An alternative to global estimation is dividing the available data into groups of
manageable information, and distribute them among multiple workers (cores, ma-
chines or a combination of both). The computations are then performed in parallel
(with or without communication among the different workers) and distributed or
partial estimators of the unknown parameters are obtained. In this setting, two ex-
treme situations may arise, namely the multi-core and the multi-machine scenarios
[14]. On the one hand, in the multi-core case, the estimation is performed using
several cores of a single machine (e.g., inside a graphics processing unit [GPU])
and communication among the cores can be considered costless [15, 16]. This ap-
proach allows for communication among workers, can provide significant speed-ups
(if synchronization issues are properly addressed), and solves the computational cost
problem, but not the memory/disk storage bottleneck. On the other hand, in the
multi-machine case, the estimation is distributed among several machines (typically
lying inside a large cluster), and the cost of inter-machine communications cannot
be ignored. This approach can alleviate all the issues associated to big data sig-
nal processing (i.e., both computational and memory/storage issues), but requires
each machine to work independently without any communication among workers
(which typically communicate only to the central node at the beginning and the
end of their tasks) [17]. Finally, note that a combination of both scenarios often
occurs in practice (i.e., a large cluster where each machine may have several cores),
thus resulting in situations where a moderate amount of communications may be
acceptable.

In this paper, we focus on the scenario where no communication exists among the
workers, deriving efficient linear fusion rules for the combination of the distributed
minimum mean squared error (MMSE) estimators. The objective is thus finding
an optimal combination of these distributed or partial estimators to achieve the
performance of the global one. The fusion of different models or estimators has
been widely studied in many different areas including control, signal processing,
economics and communications. The literature on the subject is rather vast, and
here we only mention the most important results related to the addressed problem.

On the one hand, a related field in the statistical literature is the combination
of forecasts [18]. Indeed, the optimal linear combination for the single parameter
case was already derived in [19, 20], a Bayesian perspective was provided in [21],
and a general procedure to combine estimators in the multiple parameter case has
been proposed very recently in [22]. However, there are two important differences
with respect to the scenario addressed here: (1) each forecaster is assumed to have
access to the whole dataset; (2) the computational complexity issue is not addressed.
Therefore, problems related to the scarcity of data per estimator (when the number
of data is large but the ratio data/workers is not so large), such as the so-called
small sample bias [23], or the feasibility of the optimal combination rules when the
number of parameters to be estimated is also large, have never been investigated in
this context as far as we know.

On the other hand, in wireless sensor networks the focus has been on distributed
learning/estimation under communication constraints [24, 25]. The optimal linear
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fusion rule for the multi-dimensional case has also been derived in this context [25,
26], but the focus has been on developing optimal compression rules to restrict the
amount of information being transmitted, rather than on obtaining efficient fusion
schemes. However, this compression is not useful in the multi-machine learning
scenario, since passing messages among multiple machines is expensive regardless
of their size [14]. Distributed fusion approaches, obtained by adapting methods
developed for graphical models, have also been proposed [27], as well as many
different consensus, gossip or diffusion algorithms [28, 29, 30]. However, all of these
methods require a significant amount of communication that constitutes a burden
for multi-machine signal processing.

Finally, there is currently a great deal of interest in parallel Bayesian computa-
tion using MC methods [31], and a few communication-free parallel Markov chain
Monte Carlo (MCMC) algorithms working on disjoint partial datasets have been
developed following the so-called embarrassingly parallel architecture [32]. In [33],
four alternatives were proposed to combine the samples drawn from the partial pos-
teriors using either a Gaussian approximation or importance resampling. Then, [14]
derived the optimal linear combination of weights required to obtain samples ap-
proximately from the full posterior, noting that the approach is optimal when both
the full and the partial posteriors are Gaussian. This was followed by [34], where
three different approaches to approximate the full posterior from the partial poste-
riors were proposed: a simple parametric approach, a non-parametric estimator and
a semi-parametric method. At last, [35] proposed using the Weierstrass transform
to improve the quality of the approximation to the full posterior. However, none
of these previous works addresses the potentially large dimension of the optimal
combiners. This issue has been initially tackled in [36]. In this paper we ellaborate
on that work, providing a theoretical analysis of the proposed fusion rules, delv-
ing deeper into their underlying strengths and limitations, and performing more
simulations to analyze their performance in practice.

1.1 Main Contributions

The main contribution of this work is the derivation of two novel efficient linear
schemes for the fusion of the distributed or partial estimators. Although we focus
on minimum mean squared error (MMSE) partial estimators throughout the paper,
the proposed fusion schemes are independent from the specific approach followed
to obtain those partial estimators (they are only assumed to be unbiased). The
motivation comes from the optimal linear combination, which involves the calcu-
lation of one weighting matrix per partial estimator and thus may be too compu-
tationally demanding for large dimensional systems (both in number of unknowns
and observations), as it requires as many weighting matrices (whose size depends
quadratically on the number of unknowns) as partial estimators (whose number is
typically a fraction of the number of observations). For instance, in a setting where
the number of parameters to be estimated is D and the N observations available are
equally distributed among L partial estimators, the optimal linear fusion approach
requires computing one D ×D matrix per partial estimator (L matrices and LD2

parameters in total), which must be estimated from the partial dataset composed
of N/L samples. In order to reduce the computational complexity, we propose two
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linear approaches that require only a single weighting coefficient per partial estima-
tor (i.e., L weights in total) and one weighting coefficient per parameter and partial
estimator (i.e., LD weights in total), respectively.

Another important contribution of the paper is providing both a Bayesian per-
spective (based on the Bernstein-von Mises theorem and the asymptotic normality
of the estimators) and a constrained optimization view for the derivation of all
the linear fusion rules considered. These two complementary visions help to ex-
plain their good performance even when the normality assumption is not fulfilled.
The optimal linear combination, derived first, provides the global MMSE estima-
tor only when the partial MMSE estimators have a Gaussian distribution. Under
certain regularity conditions, this is ensured by the Bernstein-von Mises theorem
in the large-sample size limit for each partial estimator (i.e., when N/L is large).
However, even when this theorem is not fulfilled and the partial estimators do not
follow a Gaussian distribution, the optimal linear fusion rule provides the best lin-
ear unbiased estimator given the unbiased partial estimates. This explains the good
performance of the optimal fusion rule observed in [14] for some cases where the
underlying distributions were not Gaussian. The efficient linear fusion rules derived
next can then be seen as the optimal restricted linear fusion rules corresponding to
a single coefficient and a diagonal matrix, respectively.

Finally, we analyze the performance of all the fusion rules on several numeri-
cal examples. First, we perform a detailed study on simple examples, where exact
closed-form expressions for the partial and the global estimators can be obtained.
This allows us to rule out any approximation effects (e.g., due to slow convergence
and poor mixing in MC methods) and analyze the effect of the number of samples,
the number of estimators, the prior, and the dimensionality of the state space. Then,
we apply the proposed algorithms to the problem of target localization in a wireless
sensor network using measurements acquired by several sensors with different noise
characteristics. In this scenario, MC partial estimators (based on parallel chains)
are used to deal with the groups of measurements, showing that the performance of
the novel fusion rules is close to that of the optimal fusion rule with only a fraction
of its computational cost.

1.2 Organization

The reminder of the paper is structured as follows. The notation and the problem
statement are provided first in Section 2. This is followed by Section 3, which
briefly recalls the Bayesian framework to derive parameter estimators based on
the Bayesian risk (Section 3.1), provides the optimal MMSE fusion rule for the
Gaussian case (Section 3.2), discusses the asymptotic optimality of this fusion rule
in other cases based on the asymptotic normality of the partial MMSE estimators as
formulated by Bernstein-von Mises theorem (Section 3.3), and provides some hints
on fusion rules for particular cases (Section 3.4). An alternative approach is then
pursued in Section 4, where the optimal linear combination method is obtained by
solving a constrained minimization problem (Section 4.1), and two novel efficient
linear fusion rules are also derived following this approach (Sections 4.2 and 4.3).
Several numerical experiments are analyzed and discussed in Section 5, first on a
simple problem where analytical expressions for the partial MMSE estimators can
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be obtained (Section 5.1) and then on a localization problem in wireless sensor
networks, where MCMC methods have to be used to obtain the partial estimators
(Section 5.2). Finally, some concluding remarks and future lines are provided in
Section 6.

2 Problem Statement: Global vs. Partial Estima-
tors

2.1 Exact Global Bayesian Estimators

Many applications in statistical signal processing require inferring a set of variables
of interest or unknowns given a collection of observations or measurements. Let us
consider a D-dimensional vector of unknowns, x ∈ X ⊆ RD, and let y ∈ Y ⊆ RN

be the collection of N i.i.d. observed data. From a Bayesian point of view, all the
information about the unknown variables x is contained in the posterior probability
density function (PDF), which is given by

p(x|y) =
L(y|x)g(x)

Z(y)
, (1)

where L(y|x) is the likelihood function, g(x) is the prior PDF and Z(y) is the
model evidence or partition function. In general, Z(y) is unknown, so we consider
the corresponding (usually unnormalized) target PDF,

π(x,y) = L(y|x)g(x), (2)

such that p(x|y) = 1
Z(y)π(x,y) ∝ π(x,y).[1]

Let us assume a fixed model, where the likelihood and the priors are given and the
posterior is thus automatically obtained by applying (1). The Bayesian inference
problem is then solved by minimizing some risk function on the posterior PDF
(see Section 3.1 for further details). For instance, it is well-known that the MMSE
estimator corresponds to the conditional mean, i.e., the expected value of x w.r.t.
the posterior PDF [1, 3, 4, 5],

x̂(MMSE) = E(x|y) =
∫
X

x p(x|y)dx, (3)

whereas the maximum a posteriori (MAP) estimator corresponds to the location of
the highest mode in the posterior PDF,

x̂(MAP) = arg max
x∈X

p(x|y). (4)

2.2 Asymptotically Exact Global Estimators: Monte Carlo-
Based Approaches

Unfortunately, the direct computation of either (3) or (4) exactly is unfeasible in
most problems of interest, especially for high-dimensional scenarios (i.e., for large
[1]Note that, for the sake of simplicity and since the observations are fixed, in the sequel we will
use π(x) instead of π(x,y).
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values of D). In those cases, a practical solution consists of using an MC approach to
compute an asymptotically exact approximation of the desired estimator. MC-based
algorithms are designed to provide an efficient approximation to some moment of
x (i.e., an integral measure w.r.t. the target PDF),

If(x)(y) =
∫
X
f(x)p(x|y)dx =

1
Z(y)

∫
X
f(x)π(x,y)dx, (5)

where f(x) can be any integrable function of x, and the unknown partition function
is given by

Z(y) = I1(y) =
∫
X
π(x,y)dx. (6)

Monte Carlo approaches can be divided in two large families of methods: Markov
chain Monte Carlo (MCMC) and importance sampling (IS). On the one hand,
MCMC algorithms are based on sampling from a Markov chain whose station-
ary density is the target PDF, π(x). Candidate samples are drawn from a proposal
distribution q(x), and they are either accepted or rejected according to some proper
rule. After an initial “burn-in” period, it can be assumed that the chain has con-
verged and the accepted samples are distributed according to the target, π(x). Let us
assume that we have M random samples drawn from the target PDF, x(1), . . . ,x(M)

with x(m) ∼ π(x) for m = 1, . . . ,M . Then, MCMC-based approaches construct a
numerical approximation to (5) and (6) as a sum of the function f(x) evaluated at
those samples,

Î
(MCMC)
f(x) (y) =

1
M

M∑
m=1

f(x(m)), (7)

On the other hand, importance sampling (IS) approaches accept all the samples
drawn from q(x), weighting them appropriately according to their “quality”. Thus,
the numerical approximation to (5) and (6) corresponds now to a weighted sum of
these samples,

Î
(IS)
f(x)(y) =

M∑
m=1

wmf(x(m)), (8)

Î
(IS)
1 (y) =

M∑
m=1

wm. (9)

with the weights wm depending on the specific approach followed. In the classical
IS approach, the weights are given by the ratio between the target and the proposal
evaluated at each sample (i.e., wm = π(x(m))

q(x(m))
), but other approaches to calculate

the weights (such as the deterministic mixture weighting scheme) are possible [37].
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2.3 Distributed Partial Bayesian Estimators

In big data problems, we cannot deal with the whole data set globally due to
computational and/or memory restrictions.[2] A natural solution is splitting the
data into L disjoint groups/clusters, so that the `-th cluster (1 ≤ ` ≤ L) only
has access to N` samples. Then, we can obtain the partial MMSE estimator for
each cluster (i.e., the MMSE estimator of x given all the data available to the `-th
estimator, y`) as

x̂(MMSE)
` = E(x|y`) =

∫
X

x p`(x|y`)dx, (10)

where p`(x|y`) = 1
Z`(y`)

π`(x,y`) is the partial posterior associated to the `-th
dataset (see Table 1 for a summary of the notation used throughout the paper).
The goal is obtaining the global MMSE estimator, x̂(MMSE), from the set of partial
MMSE estimators, {x̂(MMSE)

` }L`=1.[3]

In this paper we consider only the communication-free situation for the partial
estimators, i.e., we assume that the partial estimators can only transmit their final
estimators to the fusion center (FC) and are not allowed to communicate with
each other during the estimation process. The FC will then be the responsible
for combining all the estimates in an efficient way to obtain the global MMSE
estimator (if it is feasible) or at least the best possible approximation. With respect
to this goal, let us remark that in general the exact global MMSE estimator is a
non-linear function of the whole dataset and cannot be attained from the partial
MMSE estimators. A particular case where the exact global MMSE estimator can
be obtained from the partial MMSE estimators occurs when both the global and the
partial posteriors have Gaussian PDFs. In this case, it can be shown (see Section
3.2) that the global MMSE estimator is a weighted linear combination of the partial
MMSE estimators:

x̂(MMSE) =
L∑
`=1

Λ`x̂
(MMSE)
` , (11)

where Λ` is a D × D weighting matrix. When the conditions for the Bernstein-
von Mises theorem are fulfilled, all the posterior PDFs are Gaussian and (11) be-
comes asymptotically optimal, as discussed in Section 3.3. However, even when the
Bernstein-von Mises theorem does not hold, the linear combination of Eq. (11) can
be a good fusion rule, since it corresponds to the best linear unbiased estimator of
x̂(MMSE) given x̂(MMSE)

` for ` = 1, . . . , L, as shown in Section 4.1. In the following
sections we discuss all these issues and provide more efficient linear fusion rules
(Sections 4.2 and 4.3), which correspond to restricted versions of the best linear
unbiased estimator and may be optimal under certain circumstances.

[2]Even when we can deal with the whole data set globally, splitting it into L data sets may be more
efficient and lead to a better performance. This is due to the fact that the posterior PDF tends
to become more “peaky” as the number of data increases, thus rendering the inference process
harder, especially for high-dimensional scenarios.
[3]Note that we use the name partial MMSE estimator instead of local MMSE estimator to empha-

size the fact that x̂
(MMSE)
` corresponds to the MMSE estimator of the complete set of variables

of interest obtained using only partial information.
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Table 1 Summary of the Notation.

x Unknown parameters to be estimated.

D Number of unknowns (i.e., dimension of x).

y Vector of observations.

N Number of observations (i.e., dimension of y).

M Total number of particles.

L Number of parallel (partial) estimators.

N`, M` Number of data/particles for the `-th estimator.

y` Data set for the `-th estimator.

p(x|y) Global posterior PDF.

p`(x|y`) Partial posterior PDF for the `-th estimator.

π(x,y) Global target PDF.

π`(x,y`) Partial target PDF for the `-th estimator.

Z(y) Global partition function.

Z`(y`) Partial partition function for the `-th estimator.

3 Optimal Linear Fusion: A Bayesian Perspective

3.1 Bayesian Risk

From a Bayesian point of view, the problem of finding an optimal estimator can be
formulated as the minimization of a given risk function. Let us define the Bayesian
risk as

R(x̂) =
∫
Y

∫
X
C(x, x̂)p(x,y)dxdy =

∫
Y
r(x̂)p(y)dy, (12)

where x̂ can be any estimator of x,

r(x̂) =
∫
X
C(x, x̂)p(x|y)dx, (13)

and C(x, x̂) is some suitable cost function. Since p(y) is a fixed non-negative func-
tion (as the observations are fixed and p(y) is a PDF), minimizing (12) or (13) is
equivalent. Now, let us consider the quadratic cost,

C(x, x̂) = (x̂− x)>(x̂− x), (14)

which is the most common cost function for regression problems. Then, (13) becomes

r(x̂) = MSE(x̂|y) =
∫
X

(x̂− x)>(x̂− x)p(x|y)dx, (15)

and the optimal estimator corresponds to the MMSE estimator, which is given by
Eq. (3):

x̂(MMSE) = E(x|y) =
∫
X

x p(x|y)dx.
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Let us remark that, in the Bayesian literature, r(x̂), as given by (15), is usually
known as the Bayesian Expected Loss. The Bayesian MSE is obtained performing
a double integral on both the data and the parameters of interest using the joint
PDF p(x,y), i.e., inserting the quadratic loss function of (14) in (12):

MSE(x̂) =
∫
Y

∫
X

(x̂− x)>(x̂− x)p(x,y)dxdy. (16)

Hence, strictly speaking Eq. (15) does not correspond to the Bayesian MSE. How-
ever, by assuming that the data are fixed, we can remove the outer integral in (16)
and perform the integration only on x using p(x|y). In order to distinguish this con-
ditional MSE from the full Bayesian MSE we use the notation MSE(x̂|y) instead
of simply MSE(x̂). However, for the sake of simplicity, in the following we refer to
it just as the MSE. Thus, whenever we mention the MSE in the sequel we refer to
the conditional MSE as defined by (15).

3.2 Gaussian Estimators: Optimal Fusion Rule

Let us consider that our observations are the outputs of each of the L partial
MMSE estimators, x̂(MMSE)

` , which are independent and have Gaussian densities
with means equal to the true parameter vector x and covariance matrices C(`)

x .
Then, the full posterior is

p(x|y) =
L∏
`=1

N (x̂`|x,C(`)
x )

=
L∏
`=1

(2π)−D/2|C(`)
x |−1/2

× exp

(
−1

2

L∑
`=1

(x̂` − x)>
(
C(`)

x

)−1

(x̂` − x)

)
.

(17)

It is straightforward to see that

p(x|y) =(2π)−D/2|Cx|−1/2

× exp
(
−1

2
(x̂− µx)>C−1

x (x̂− µx)
)
, (18)

where

Cx =

[
L∑
`=1

(
C(`)

x

)−1
]−1

, (19a)

µx = Cx

L∑
`=1

(
C(`)

x

)−1

x̂(MMSE)
` . (19b)
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Hence, the global MMSE estimator, which corresponds to the mean of the full
posterior, is finally given by

x̂(MMSE) =
L∑
`=1

Λ`x̂
(MMSE)
` , (20)

with

Λ` = Cx

(
C(`)

x

)−1

=

[
L∑
k=1

(
C(k)

x

)−1
]−1 (

C(`)
x

)−1

. (21)

3.3 Asymptotic Normality: Bernstein-von Mises Theorem

The Bernstein-von Mises (a.k.a. Bayesian central limit) theorem states that, under
suitable regularity conditions, a posterior PDF converges to a Gaussian PDF as
the number of samples tends to infinity [38, 39]. Applying this result to the partial
posterior PDFs, we have

p`(x|y`)→ N (x|µ(`)
x ,C(`)

x ) as N` →∞, (22)

with N (x|µ(`)
x ,C(`)

x ) indicating that x has a Gaussian PDF with a mean vector
µ

(`)
x = x̂(MMSE)

` and a covariance matrix

C(`)
x = E

(
(x̂(MMSE)
` − x)(x̂(MMSE)

` − x)>
)

=
∫
X

(x̂(MMSE)
` − x)(x̂(MMSE)

` − x)>p`(x|y`)dx.

(23)

Assuming that we have independent (though not necessarily identically distributed)
observations and that each of them can only belong to one cluster (i.e., we have
disjoint sets of samples such that N =

∑L
`=1N`), the global posterior PDF also

converges to a Gaussian PDF as N tends to infinity, i.e.,

p(x|y) =
L∏
`=1

p`(x|y`) = N (x|µx,Cx) as N →∞, (24)

with Cx and µx given by (19a) and (19b), respectively. In the context of distributed
MC algorithms, Eq. (20) has been already proposed in [14] to combine samples
from the partial posteriors in order to obtain approximate samples from the full
posterior. This approach has also been exploited in [34] to obtain asymptotically
exact samples from the global posterior by sampling from a multivariate Gaussian
whose covariance matrix and mean vector are given by (19a) and (19b), respectively.

3.4 Particular Cases

Note that Eq. (20) requires computing a D ×D weight matrix, given by (21), for
each of the L estimators. This implies computing up to D2L weights, which may
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be unfeasible (or at least very costly from a computational/storage point of view)
when D and/or L is large. However, in certain cases the optimum weight matrix
may contain a reduced number of coefficients. Furthermore, “reduced matrices” can
always be used to obtain an approximation of the optimal case.

Let us consider first the case where the parameters are not interrelated. Then,
the covariance matrix for the `-th estimator will be given by

C(`)
x = diag

(
σ2
`,1, . . . , σ

2
`,D

)
, (25)

with

σ2
`,d =

∫
Xd

(x̂`,d − xd)2p(xd|y`)dxd (26)

for d = 1, . . . , D. In this scenario, the optimal weight matrix becomes

Λ` = diag
(
α2
`,1, . . . , α

2
`,D

)
, (27)

with

α`,d =
σ−2
`,d∑L

k=1 σ
−2
k,d

. (28)

Note that only D parameters are required for each of the L estimators in this case
(i.e., DL parameters in total). If we want to reduce the number of parameters
further, then we can consider using a single parameter per estimator (i.e., only L

parameters in total), which can be obtained by averaging (28) over the set of all
the parameters:

α` =
1
D

D∑
d=1

α`,d =
1
D

D∑
d=1

(
L∑
k=1

σ−2
k,d

)−1

σ−2
`,d . (29)

This corresponds to the best isotropic Gaussian approximation of the full poste-
rior. Furthermore, when the partial estimators have the same variance for all the
parameters (i.e., σ−2

`,d = σ−2
` for 1 ≤ d ≤ D), then (29) becomes

α` =
σ−2
`∑L

k=1 σ
−2
k

, (30)

which corresponds to the optimal weights. Finally, when all the covariance matrices
of the partial estimators are equal, we simply have α` = 1/L.

4 Alternative Approach: Constrained Minimization

4.1 General Case: Optimal Linear Combination

Let us consider the most general linear combination of estimators,

x̂ =
L∑
`=1

Λ`x̂`, (31)
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where x̂` can be any partial estimator (not necessarily the MMSE estimator) based
on the `-th partial dataset, y`, and x̂ is the corresponding global estimator obtained
by linearly combining all those partial estimators. In this case, assuming that all
the partial estimators are unbiased, the mean of the global estimator is given by

E(x̂) =
L∑
`=1

Λ`E(x̂`) =

(
L∑
`=1

Λ`

)
x. (32)

Thus, in order to obtain an unbiased global estimator we need to impose the fol-
lowing condition:

L∑
`=1

Λ` = I. (33)

The covariance matrix of the global estimator can be expressed as a function of the
partial estimators, C(`)

x , and the weight matrices, Λ`, as

Cx =
L∑
`=1

Λ`C(`)
x Λ>` . (34)

The MSE of the global estimator is then given by

MSE(x̂|y) = Tr (Cx) =
L∑
`=1

Tr
(
Λ`C(`)

x Λ>`
)
, (35)

where Tr(·) denotes the trace of a matrix.
Now, in order to obtain the unbiased global estimator that minimizes the MSE,

we need to solve the following constrained optimization problem:

Λ∗ = arg min
Λ

L∑
`=1

Tr
(
Λ`C(`)

x Λ>`
)
, (36a)

s.t.
L∑
`=1

Λ` = I, (36b)

where Λ = [Λ1, . . . , ΛL]>. Since (36a) and (36b) correspond to a convex optimiza-
tion problem, by applying the method of the Lagrange multipliers, it can be shown
that the solution for each of the weighting matrices is simply given by Eq. (21):

Λ` =

[
L∑
k=1

(
C(k)

x

)−1
]−1 (

C(`)
x

)−1

.

Substituting this expression in (31), we note that the optimal linear MMSE (LMSE)
fusion rule is given exactly by (20), i.e., x̂(LMSE) = µx, regardless of the approach
followed to derive the partial estimators.
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4.2 Particular Case: Single Coefficient

Let us consider the particular case in which a single coefficient per estimator is used
to construct the global estimator:

x̂ =
L∑
`=1

α`x̂`, (37)

which is obtained by setting Λ` = α`I in (31). Clearly this will provide a suboptimal
solution in general, but it is a fast and low-cost solution for the combination of
estimators, and we can easily obtain the optimal weights in closed form.

On the one hand, since the partial estimators are unbiased, it is straightforward
to see that the mean of the global estimator given by (37) is

E(x̂) =
L∑
`=1

α`E(x̂`) =

(
L∑
`=1

α`

)
x. (38)

Hence, in order to obtain an unbiased global estimator we need to have

L∑
`=1

α` = 1. (39)

On the other hand, the covariance matrix for the global estimator is given by

Cx =
L∑
`=1

α2
`C

(`)
x , (40)

and the MSE can be expressed as

MSE(x̂|y) = Tr(Cx) =
L∑
`=1

α2
`Tr

(
C(`)

x

)
, (41)

where Tr(Cx) denotes the trace of the global covariance matrix:

Tr(Cx) =
D∑
d=1

Cx[d, d] =
D∑
d=1

σ2
xd
, (42)

with σ2
xd

= E((x̂d− xd)2), and Tr(C(`)
x ) denotes the trace of the `-th partial covari-

ance matrix:

Tr(C(`)
x ) = T` =

D∑
d=1

C(`)
x [d, d] =

D∑
d=1

σ2
`,d, (43)

with σ2
`,d = E((x̂(`)

d − xd)2).
The goal is finding the set of α` that minimizes (41), subject to Eq. (39) in order

to obtain an unbiased estimator. Hence, the optimal selection of the weights can be
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formulated as a constrained optimization problem:

α∗ = arg min
α

L∑
`=1

α2
`Tr

(
C(`)

x

)
, (44a)

s.t.
L∑
`=1

α` = 1, (44b)

with α = [α1, . . . , αL]>. Eqs. (44a) and (44b) correspond again to a convex
optimization problem. Thus, by applying once more the method of the Lagrange
multipliers, it can be shown that the single coefficient MMSE (SCMSE) fusion rule
is given by

x̂(SCMSE) =
L∑
`=1

T−1
`∑L

k=1 T
−1
k

x̂`

=
L∑
`=1

[MSE(x̂`|y`)]−1∑L
k=1 [MSE(x̂k|yk)]−1

x̂`. (45)

4.3 Particular Case: Diagonal Weighting Matrices

The SCMSE estimator has a substantially reduced computational cost w.r.t. the
LMSE estimator, since it only requires the estimation of L parameters overall in-
stead of the D2L parameters of the LMSE estimator. However, noting that the
optimal weights in (45) involve the trace of the partial covariance matrices, we in-
troduce an independent linear minimum mean squared estimator (ILMSE) where
Λ` = diag(α`,1, . . . , α`,D). This approach leads to an independent estimation of
each of the D unknowns:

x̂
(ILMSE)
d =

L∑
`=1

α`,d x̂
(MMSE)
`,d , (46)

where 1 ≤ d ≤ D and x̂
(MMSE)
`,d denotes the d-th component of the `-th partial

MMSE estimator. In practice, the weights in (46) can be obtained by solving D

single parameter constrained optimization problems:

α∗d = arg min
αd

L∑
`=1

α2
`,dC

(`)
xd
, (47a)

s.t.
L∑
`=1

α`,d = 1, (47b)

where αd = [α1,d, . . . , αL,d]> and C(`)
xd is the d-th element along the main diagonal

of C(`)
x . The solution is now

α`,d =

[
MSE(x̂(MMSE)

`,d |y`)
]−1

∑L
k=1

[
MSE(x̂(MMSE)

k,d |yk)
]−1 . (48)
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This approach requires the estimation of DL parameters overall, and thus it can be
seen as an intermediate approach between the LMSE and the SCMSE.

5 Numerical Experiments

5.1 Simple Example: Gamma Distributions

Let us consider first a simple one-dimensional example, where exact calculations
may be performed. This allows us to rule out any potential issue with the under-
lying MC methods typically used to approximate the MMSE estimators (e.g., slow
convergence and poor mixing), and concentrate on the performance of the proposed
fusion rules. Let us assume that we have N i.i.d. observations distributed according
to a Gamma PDF with known shape parameter α > 0 and unknown rate parameter
β > 0. Then, the likelihood is given by

L(y|β) =
N∏
n=1

L(yn|β), (49)

with

L(yn|β) =
βα

Γ(α)
yα−1
n exp(−βyn). (50)

The conjugate prior is also a Gamma PDF over β with shape parameter α0 > 0
and rate parameter β0 > 0, and thus the global posterior density is another Gamma
PDF with parameters α∗ = α0 + α and β∗ = β0 + 1

N

∑N
n=1 yn. Hence, the global

MMSE estimator is

β̂(MMSE) =
α∗

β∗
=

α0 + α

β0 + 1
N

∑N
n=1 yn

, (51)

and its variance is given by

σ2
β =

α∗

(β∗)2
=

α0 + α(
β0 + 1

N

∑N
n=1 yn

)2 . (52)

For the distributed estimators, the partial MMSE estimates and their variances
are still given respectively by (51) and (52), but taking the sum only over the N`
samples available to each of the ` estimators.

We are interested now in analyzing the effect of the sample size, the number of
partial estimators and the number of samples per estimator. Therefore, we test N ∈
{103, 104, 105, 106, 5 · 106} with an equal number of samples per partial estimator
ranging from N` = 1 (i.e., as many partial estimators as observations) up to N` = N

(i.e., a single estimator that corresponds to the global estimator). For each case 1000
simulations are performed (except for N = 106 and N = 5 · 106, where only 100
simulations have been performed) to average the results.

Figure 1 shows the typical performance of the optimal linear fusion rule (since we
only have one parameter, all the fusion rules discussed in the paper are equivalent),
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Figure 1 Simple Example. Conditional MSE as a function of L for the Gamma posterior PDF
using an improper prior.
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Figure 2 Simple Example. Posterior density of the estimator for the three fusion rules considered
compared to the posterior of the global estimator.

the equal weights fusion (EWF) rule (that assigns the same weight to all the partial
estimators) and an empirical estimator that combines the optimal and the EWF
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estimates at the fusion center. In this example, the true parameters are α = 2
and β = 5, and an improper prior is used by setting α0 = β0 = ε with ε →
0. First of all, note that the optimal linear fusion rule performs better than the
EWF (as expected), especially when the number of partial estimators (a.k.a. filters)
increases. The unexpected result is that combining the optimal fusion strategy and
the EWF approach leads to a better performance than any of the two individual
strategies. The reason for this good performance can be seen in Figure 2, which
shows the estimated posterior PDFs of the estimators for the three fusion rules
considered compared to the posterior of the global estimator. It can be seen that the
optimal linear fusion rule introduces a negative bias, whereas the EWF introduces
a positive bias with approximately the same magnitude. Therefore, combining the
two estimator leads to an average estimator with a reduced bias and thus a better
performance.

The second important issue in Figure 1 is related to the increase of the MSE as
the number of partial estimators increases. This is precisely due to the fact that
the bias increases as the number of samples per partial estimator decreases (i.e., as
the number of partial estimator increases for a fixed number of data). This bias is
caused by the mismatch between the “true” prior (in this case a delta centered at
the true value β = 5) and the prior assumed by the model. In order to see this,
Figure 3 shows the evolution of the MSE with the number of filters using a narrow
prior (obtained setting β0 = β

ε and α0 = β × β0 for ε = 0.01) centered around the
true value of β. In this case all the estimators are unbiased and the MSE decreases
as we increase the number of partial estimators. These results, in an example where
the exact MMSE estimator can be obtained, highlights the importance of the prior
in the Bayesian distributed inference approach.

Finally, Table 5.1 provides the complete picture regarding the evolution of the
MSE with the number of data and the number of data per partial estimator for
all the fusion rules considered. On the one hand, note that a minimum amount of
samples per estimator are required in order to attain a performance that decreases
as a function of N for the optimal linear fusion and the EWF. Otherwise, the bias
dominates and nothing is gained by increasing N . On the other hand, note the
excellent behaviour of the average fusion rule for all the cases.

5.2 Localization in a Wireless Sensor Network

In this section, we address the problem of positioning a static target in the two-
dimensional space of a wireless sensor network using only range measurements.
More specifically, we consider a random vector X = [X1, X2]> to denote the target’s
position in the R2 plane. The position of the target is then a specific realization
x. The measurements are obtained from 6 range sensors located at h1 = [1,−8]>,
h2 = [8, 10]>, h3 = [−15,−7]>, h4 = [−8, 1]>, h5 = [10, 0]> and h6 = [0, 10]>. The
measurement equations are

Yj = −20 log
(
||x− hj ||2

)
+ Θj , j = 1, . . . , 6, (53)

where Θj ∼ N (θj |0, ω2
j I), with ωj = 5 for j ∈ {1, 2, 3} and ωj = 20 for j ∈ {4, 5, 6}.

We simulate N = 6000 observations from the model (N6 = 1000 observations from
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Figure 3 Simple Example. Conditional MSE as a function of L for the Gamma posterior PDF
using a narrow prior centered on the true value of β.

Table 2 Conditional MSE (averaged over 1000 independent runs) for the Gamma example and the
three fusion methods considered when N ∈ {103, 104, 105, 106, 5 · 106},
L ∈ {1, 2, 5, 10, 25, 100, 200, 500, 1000}, and N` = N/L ∈ {6, 12, 30, 60, 240, 600, 1200, 3000, 6000}.

.
Experiment N`

N Estimator 5 10 20 50 100 200 500 100 N

103

EWF 0.3480 0.1011 0.0369 0.0193 0.0159 0.0148 0.0143 0.0143

0.0143SCMSE 0.2042 0.0637 0.0243 0.0147 0.0141 0.0142 0.0143 0.0143

Average 0.0191 0.0152 0.0144 0.0143 0.0143 0.0143 0.0143 0.0143

104

EWF 0.3067 0.0695 0.0172 0.0035 0.0017 0.0013 0.0012 0.0012

0.0012SCMSE 0.2104 0.0598 0.0170 0.0038 0.0019 0.0014 0.0012 0.0012

Average 0.0034 0.0013 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012

105

EWF 0.3086 0.0695 0.0166 0.0027 0.0008 0.0003 0.0002 0.0001

0.0001SCMSE 0.2058 0.0566 0.0149 0.0025 0.0007 0.0003 0.0002 0.0001

Average 0.0027 0.0003 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001

106

EWF 0.3081 0.0691 0.0164 0.0025 0.0006 0.0002 0.000034 0.000016

0.000012SCMSE 0.2069 0.0568 0.0149 0.0025 0.0006 0.0002 0.000040 0.000020

Average 0.0025 0.0002 0.000020 0.000012 0.000012 0.000012 0.000012 0.000012

each of sensors) fixing x1 = 3.5 and x2 = 3.5. We consider a varying number of

partial estimators L with N` = N/L for 1 ≤ ` ≤ L, and three scenarios for splitting

the data:

Sc1 Exactly N
6L measurements from each sensor are provided to each partial esti-

mator.
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Sc2 The first L/2 estimators contain an equal number of observations from the
first 3 sensors (the best ones), whereas the remaining L/2 estimators work
with measurements from the last 3 sensors (the noisiest ones).

Sc3 Measurements are randomly assigned to the estimators.
For each scenario, we run M

(`)
C = 100 MCMC independent parallel chains with

length T (`)
C = 5000, compute the MMSE estimates x̂(`)

1 and x̂(`)
2 , and fuse these esti-

mates into the final result. We compare the Equal Weights Fusion (EWF) method,
where each estimator is given the same weight, 1/L, and the three fusion methods
described in the paper. We repeat the experiments 50 times and average the results.
The results, shown in Table 5.2 and Figures 4–6, confirm the good performance of
the SCME and ILMSE estimators, which outperform the naive EWF and show an
MSE similar to the optimal and more costly LMSE. Regarding the three scenarios
considered, we note that the best performance is obtained in the second case (with
MSE(x̂(LMSE)|y) = 0.0021), i.e., splitting the data in separate filters according to
their quality. This opens up the possibility of performing a “smart” division of the
data in order to optimize the performance.

Table 3 Conditional MSE (averaged over 50 independent runs) for the three scenarios and the four
fusion methods considered when N = 6000, L ∈ {1, 2, 5, 10, 25, 100, 200, 500, 1000}, and
N` = N/L ∈ {6, 12, 30, 60, 240, 600, 1200, 3000, 6000}.

Experiment N`

Scenario Estimator 6 12 30 60 240 600 1200 3000 6000

Sc1

EWF 0.0041 0.0049 0.0065 0.0090 0.0167 0.0590 0.1192 0.2899

0.5540
SCMSE 0.0039 0.0046 0.0063 0.0089 0.0166 0.0587 0.1191 0.2899

ILMSE 0.0038 0.0046 0.0063 0.0089 0.0166 0.0586 0.1188 0.2886

LMSE 0.0037 0.0045 0.0062 0.0088 0.0165 0.0584 0.1183 0.2878

Sc2

EWF 0.0087 0.0053 0.0064 0.0104 0.0343 0.0648 0.1681 0.3392

0.5540
SCMSE 0.0057 0.0034 0.0047 0.0092 0.0328 0.0628 0.1623 0.3290

ILMSE 0.0052 0.0031 0.0043 0.0085 0.0304 0.0588 0.1521 0.3159

LMSE 0.0037 0.0021 0.0028 0.0057 0.0210 0.0410 0.1107 0.2406

Sc3

EWF 0.0078 0.0061 0.0068 0.0092 0.0169 0.0587 0.1181 0.2877

0.5540
SCMSE 0.0060 0.0053 0.0066 0.0091 0.0168 0.0584 0.1180 0.2877

ILMSE 0.0055 0.0051 0.0065 0.0090 0.0168 0.0583 0.1177 0.2867

LMSE 0.0051 0.0048 0.0064 0.0090 0.0167 0.0582 0.1174 0.2861

Finally, in order to study the scaling behaviour of the fusion rules as N increases,
we have also simulated the three scenarios for N = 30000 as well as Scenario 2 for
N = 600000. The results, displayed in Table 5.2 and Figure 7 respectively, show that
the performance of all the fusion rules scales roughly as a function of the number
of samples, N .

6 Conclusions

In this paper, we have addressed the fusion of unbiased and uncorrelated partial
minimum mean squared error (MMSE) estimators using two novel efficient linear
combination schemes. The methods were tested through computer simulations by
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Figure 4 Localization Example. Conditional MSE as a function of L for Scenario 1 (Sc1) when
N = 6000.
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Figure 5 Localization Example. Conditional MSE as a function of L for Scenario 2 (Sc2) when
N = 6000.
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Figure 6 Localization Example. Conditional MSE as a function of L for Scenario 3 (Sc3) when
N = 6000.

applying them to a simple problem where all the posterior densities followed a
Gamma PDF, and to a localization problem with one target and six sensors whose
measurements were processed using several parallel filters. The new fusion methods
show a performance equivalent to the optimal linear combination with a reduced
computational cost. Furthermore, it has been shown that splitting the data can
be advantageous in terms of attaining a reduced mean squared error (MSE), but
only when the bias in the partial estimators can be controlled. In future works we
plan to address bias correction approaches, as well as optimal linear fusion schemes
for biased and/or correlated partial estimators, Some other interesting areas of
research are non-linear fusion techniques and the development of fusion schemes



Luengo et al. Page 21 of 22

Table 4 Conditional MSE (averaged over 50 independent runs) for the three scenarios and the four
fusion methods considered when N = 30000, L ∈ {1, 10, 25, 50, 125, 500, 1000, 2500, 5000}, and
N` = N/L ∈ {6, 12, 30, 60, 240, 600, 1200, 3000, 30000}.

Experiment N`

Scenario Estimator 6 12 30 60 240 600 1200 3000 30000

Sc1

EWF 0.0008 0.001 0.0013 0.0018 0.0033 0.0117 0.0231 0.0574

0.5879
SCMSE 0.0008 0.0009 0.0013 0.0018 0.0033 0.0117 0.023 0.0573

ILMSE 0.0008 0.0009 0.0013 0.0018 0.0033 0.0117 0.023 0.0572

LMSE 0.0007 0.0009 0.0012 0.0017 0.0033 0.0116 0.0229 0.057

Sc2

EWF 0.0007 0.0009 0.0012 0.0018 0.0036 0.0131 0.0335 0.0661

0.5879
SCMSE 0.0004 0.0006 0.0009 0.0015 0.0033 0.0125 0.0323 0.0638

ILMSE 0.0004 0.0005 0.0009 0.0014 0.0031 0.0118 0.0304 0.0611

LMSE 0.0003 0.0003 0.0006 0.0009 0.0021 0.0082 0.0214 0.0533

Sc3

EWF 0.0018 0.0011 0.0013 0.0018 0.0033 0.0118 0.0229 0.0579

0.5751
SCMSE 0.0014 0.001 0.0013 0.0018 0.0033 0.0118 0.0228 0.0577

ILMSE 0.0013 0.001 0.0013 0.0018 0.0033 0.0118 0.0228 0.0576

LMSE 0.0012 0.001 0.0013 0.0018 0.0033 0.0117 0.0227 0.0574

0 0.5 1 1.5 2 2.5 3 3.5 4
x 104

10−5

10−4

10−3

10−2

10−1

100

Number of filters

M
SE

 

 
EWF
SCMSE
ILMSE
LMSE

Figure 7 Localization Example. Conditional MSE as a function of L for Scenario 3 (Sc2) when
N = 600000.

where the partial Monte Carlo estimators are allowed to exchange a reduced amount
of information.
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