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Abstract

A brief review of the basics of the Clifford Cl(5, C) Unified Gauge Field
Theory formulation of Conformal Gravity and U(4) ×U(4) ×U(4) Yang-
Mills in 4D is presented. A physically relevant subgroup is SU(2, 2) ×
SU(4)C × SU(4)L × SU(4)R and which is compatible with the Coleman-
Mandula theorem (in the absence of a mass gap). This proposal for a
Clifford Algebraic Unification of Conformal Gravity with an Extended
Standard Model deals mainly with models of four generations of fermions.
Mirror fermions can be incorporated as well. Whether these mirror fermions
are dark matter candidates is an open question. There are also residual
U(1) groups within this Clifford group unification scheme that should play
an important in Cosmology in connection to dark matter particles coupled
to gravity via a Bimetric extension of General Relativity. Other four gen-
eration scenarios based on Cl(6, R), Cl(8, R) algebras, Supersymmetric
Field Theories and Quaternions are discussed.
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1 Introduction : Clifford Algebraic Unification

A proposal for a Cl(5, C) unified gauge field theory formulation of conformal
Gravity and U(4)× U(4)× U(4) Yang-Mills in 4D, and its implications for the
Pati-Salam group SU(4)× SU(2)L × SU(2)R, the Trinification GUT models of
3 fermion generations (based on the group SU(3)C × SU(3)L × SU(3)R) and
the Standard Model group SU(3)× SU(2)×U(1) was analyzed in detail in [1],
[2]. One can also obtain a U(2, 2) × U(2, 2) × U(4) × U(4) Yang-Mills gauge
theory from a Cl(5, C) gauge theory [1].

1



Recently in a short note we provided further evidence why this tentative
proposal for a unification model of gravity and the Standard Model in four
dimensions, that is based on the complexified Clifford algebra Cl(5, C), has
precisely the right number of 4×64 = 256 degrees of freedom 1 to accommodate
the vielbein field eaµ of gravity, the 12 gauge bosons and 48 fermions (three
generations) of the Standard Model. Clifford algebras are very natural to use
because spinors are just the left/right ideal elements of the Clifford algebra [4].

The complex Clifford Cl(5, C) algebra [3], [4] admits the decomposition

Cl(5, C) = Cl(4, C)⊕ Cl(4, C) (1.1)

and each complex Cl(4, C) algebra is isomorphic to the matrix algebra M(4, C)
consisting of 4× 4 matrices with complex entries. Consequently, one has

Cl(4, C) ∼ M(4, C) ∼ Cl(p, q,R)⊕ i Cl(p, q,R) (1.2)

where (p, q) represents the chosen signature of the 4-dimensional tangent space
metric subjected to the condition p + q = 4. Hence, from the isomorphism
described in eq-(1.2) one can construct many different (pesudo) unitary algebras,
u(4), u(3, 1), u(2, 2), u(1, 3) in terms of the Cl(p, q,R) algebra generators [1].

For example, the Hermitian generators of the su(4) algebra associated with
the compact U(4) = SU(4)× U(1) unitary group can be expressed in terms of
the Cl(3, 1) algebra generators as [1], [2]

Ma =
1

2
Γa (1 + Γ5); Na =

1

2
Γa (1 − Γ5); D =

i

2
Γ5, Lab = − i

2
Γab.

(1.3)
where Γ5 ≡ −Γ0Γ1Γ2Γ3 and (Γ5)2 = −1. The above generators lead to the
algebra so(6) ∼ su(4) whose commutators are given by

[Ma, D] = i Na; [Na, D] = − i Ma; [Ma, Nb] = − 2i gab D

[Ma, Mb] = [Na, Nb] =
1

2
Γab = i Lab; . . . (1.4)

In the most general case, any pseudo-unitary algebra u(p, q) can be obtained
from the unitary one u(p+q) via the Weyl unitary trick [5] which maps the anti-
Hermitian generators of the compact group U(p + q;C) to the anti-Hermitian
and Hermitian generators of the noncompact group U(p, q;C) as follows :

The (p+ q)× (p+ q) U(p+ q;C) complex matrix generator is comprised of

the diagonal blocks of p× p and q × q complex anti-Hermitian matrices M†11 =

−M11; M†22 = −M22, respectively. The off-diagonal blocks are comprised of

the q × p complex matrix M12 and the p × q complex matrix −M†12, i.e. the
off-diagonal blocks are the anti-Hermitian complex conjugates of each other.
In this fashion the (p + q) × (p + q) U(p + q;C) complex matrix generator M
is anti-Hemitian M† = −M such that upon an exponentiation U(t) = etM it

1Not to be confused with the actual physical degrees of freedom
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generates a unitary group element obeying the condition U†(t) = U−1(t) for
t = real.

Conformal Gravity can be constructed as a gauge field theory based on the
su(2, 2) algebra. By applying the Weyl unitary trick to the u(4) algebra, one can
obtain the generators of the su(2, 2) conformal algebra in terms of the Cl(3, 1)
algebra as follows

Pa =
1

2
Γa (1 −i Γ5); Ka =

1

2
Γa (1 +i Γ5); D = − i

2
Γ5, Lab =

1

2
Γab.

(1.5)
Pa ( a = 1, 2, 3, 4) are the translation generators; Ka are the conformal boosts; D
is the dilation generator and Lab are the Lorentz generators. The total number
of generators is respectively 4+4+1+6 = 15. From the above realization of the
conformal algebra generators (1.5), the explicit evaluation of the commutators
yields

[Pa, D] = Pa; [Ka, D] = −Ka; [Pa, Kb] = − 2gab D + 2 Lab

[Pa, Pb] = 0; [Ka,Kb] = 0; . . . (1.6)

which is consistent with the su(2, 2) ∼ so(4, 2) commutation relations.
The complex extension of U(p + q, C) is GL(p + q;C). Since the algebras

u(p+q;C), u(p, q;C) differ only by the Weyl unitary trick, they both have iden-
tical complex extensions gl(p+ q;C) [5]. gl(N,C) has 2N2 generators whereas
u(N,C) has N2. As a direct result of the Weyl unitary trick, from the com-
plex Clifford algebra Cl(5, C) on can extract many different algebras given
by the direct sum of unitary and/or pseudo-unitary algebras by choosing the
appropriate basis of generators.

In particular, the algebras u(2, 2)⊕u(2, 2)⊕u(4)⊕u(4), and u(2, 2)⊕u(4)⊕
u(4) ⊕ u(4). Setting aside the u(1) subalgebras, from the algebra u(2, 2) ⊕
u(2, 2) ⊕ u(4) ⊕ u(4) one can construct a complexified conformal gravity (or a
bi-conformal gravity model with two gravitons) and a SU(4)×SU(4) Yang-Mills
theory [1]. The complexified conformal algebra is sl(4, C) ∼ su(2, 2)⊕i su(2, 2).
A SU(4)C × SU(4)F color-flavor unification model was proposed long ago by
[14] inspired by the Pati-Salam model [15]. The right-handed multiplets are
flipped with respect to the left-handed ones and which allows to gauge both
the right and left-handed multiplets under the same flavor group SU(4)F [14].
There are four generations of fermions in this model.

The complexified conformal gravity model (bi-conformal gravity with two
gravitons) combined with the GUT group SU(4)C × SU(4)F [14] also deserves
further investigation. Bimetric theories of gravity has been an active research
topic in recent years as a promising avenue to modify General Relativity at large
distances in order to explain the accelerating expansion of the Universe (Dark
Energy). A review of Bimetric gravity with a large number of references can be
found in [7]. The fact that conformal gravity is encoded in the Cl(5, C)algebra

3



unification program might be relevant to the recently introduced Mimetic grav-
ity (a Weyl-symmetric extension of the General Relativity) which can play the
role of an imperfect fluid-like Dark Matter [8].

In this Cl(5, C) unification scheme, there are residual U(1) groups which
should have important physical consequences. For example, in cosmology a
U(1) vector field has been recently introduced to link together two different
species of dark matter particles coupled to gravity via a bimetric extension of
general relativity. The rich phenomenology and physical consequences of this
model were studied with great detail in [9]. The impact of the extra U(1) vector
fields in cosmology and particle physics is beyond the scope of this work at the
moment, and should be addressed in the future.

Let us focus for now on the subalgebra su(2, 2)⊕su(4)⊕su(4)⊕su(4) of the
algebra u(2, 2)⊕u(4)⊕u(4)⊕u(4) which is physically relevant for our purposes.
It corresponds to the group SU(2, 2)× SU(4)C × SU(4)L × SU(4)R that is the
direct product of the Conformal group SU(2, 2) (spacetime symmetry) with
the gauge internal group [SU(4)]3, and consequently is compatible with the
Coleman-Mandula theorem in the absence of a mass gap. If there is a mas gap,
then the spacetime symmetry must be given by the Poincare group. The first
factor of the internal group SU(4)C reflects the extended color symmetry, and
the last two factors SU(4)L × SU(4)R are the gauge internal groups associated
with the left, right handed fermions, respectively.

The group SU(4)C×SU(4)L×SU(4)R is the natural extension of the group
SU(3)C × SU(3)L × SU(3)R associated with the Trinification gauge model of
Glashow [6] involving 3 generations of fermions. The group is combined with
a discrete symmetry group Z3 exchanging left, right and color symmetries. A
breaking of SU(3)C×SU(3)L×SU(3)R → SU(3)C×SU(2)W ×U(1)Y furnishes
the Standard Model gauge group.

As a reminder, the Clifford Cl(p, q,R) algebra generators Γa obey the anti-
commutator relations

{ Γa, Γb } ≡ Γa Γb + Γb Γa = 2 gab 1 (1.7a)

where 1 is the unit element and the metric gab has (p, q) signature. In four
dimensions, the generators Γab,Γabc,Γabcd are defined by a signed-permutation
sum of the anti-symmetrizated products (exterior algebra) of the gammas Γa
such that

[Γa,Γb] = 2 Γab, . . . , Γ5 = − Γ0 Γ1 Γ2 Γ3, {Γ5,Γa} = 0 (1.7b)

(Γ5)2 = (−1)(p−q)(p−q−1)/2 (1.7c)

which equals 1 when p− q = 0, 1, and −1 when p− q = 2, 3. There are also the
important relations

Γabcd = εabcd Γ5, Γabc = εabcd Γ5 Γd,
1

4!
εabcd Γabc = Γ5 Γd (1.8)

One can represent each element of the 16-dim Clifford Cl(4) algebra as ΓA
where the polyvector valued index A ranges from 1, 2, . . . , 16 and spans the
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identity element 1, the four vectors Γa, the six bivectors Γab = Γa ∧ Γb, the
four trivectors Γabc = Γa ∧ Γb ∧ Γc, and the pseudo-scalar Γabcd. As a result,
the above relations (1.6-1.8) will then allow a gauge field Aµ valued in the
su(2, 2) ⊕ su(4)C ⊕ su(4)L ⊕ su(4)R algebra to be decomposed into a linear
combination of the Cl(5, C) algebra generators (excluding the identity element)
as follows

Aµ = Ωiµ Ti + Giµ TiC + Wi
µL TiL + Wi

µR TiR =

(1)AAµ (1)ΓA + (2)AAµ (2)ΓA + (3)AAµ (3)ΓA + (4)AAµ (4)ΓA (1.9)

where (1)ΓA, (2)ΓA, (3)ΓA, (4)ΓA are the respective generators of the four copies
of the Cl(4) algebras associated with the decomposition of the Cl(5, C) algebra
(excluding the identity element). The indices i range from 1, 2, . . . , 15. More
precisely, in eq-(1.5) one has the expression for the generators of the su(2, 2)
conformal algebra given in terms of a linear combination of the Cl(3, 1) algebra
generators. Writing the generators of eq-(1.5) in the form Ti = (1)cAi (1)ΓA,

where (1)cAi are numerical coefficients, gives

Ωiµ Ti = Ωiµ ((1)cAi (1)ΓA) = (1)AAµ (1)ΓA ⇒ (1)AAµ = (1)cAi Ωiµ (1.10)

and from which one can read the linear relationship between (1)AAµ and Ωiµ. In
similar fashion, the expressions in eq-(1.3) furnishing the su(4) generators in
terms of the Cl(3, 1, R) algebra ones, yields the corresponding relations among
the other fields (2)AAµ ,

(3)AAµ ,
(4)AAµ and Giµ,Wi

µL,Wi
µR, involving the coeffi-

cients (2)cAi ,
(3)cAi ,

(4)cAi , respectively.
The algebra of Grand Unified theories, related to the SO(10), SU(5) and

Pati-Salam group, was analyzed from a different perspective than the Clifford
algebraic one presented here by [12]. It is interesting to note that the number
of gauge fields associated with the SO(10) group is the same as the number in
SU(4)C × SU(4)L × SU(4)R : 10×9

2 = 3× 15 = 45.

2 Fermionic Kinetic Terms and 4 Generations

In this section we shall study the fermionic kinetic terms corresponding to the
SU(4)C ×SU(4)L×SU(4)R multiplets and explore other possibilities based on
Cl(6, R), Cl(8, R) algebras, Supersymmetric Field Theories and Quaternions.
In most of these cases, the models with four generations are the most natural.

The 16 fermions of each generation of the Standard Model can be assembled
into the entries of a 4× 4 matrix representation of the Cl(4) algebra whose 16
generators are ΓA, A = 1, 2, 3, ...., 16. The latter generators can be represented
in terms of 4 × 4 matrices (ΓA)ij whose indices are i, j = 1, 2, 3, 4. A fermion
field ΨA

α carries double indices, A represents an internal Cl(4)-valued gauge
index, while α represents a Cl(3, 1) spinor index associated with the four-dim
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spacetime. The ordinary 16 fermions of the first generation of the Standard
Model (assuming a massive neutrino) can can be assembled into the entries of
a 4× 4 matrix as [1], [2]

∑
A

ΨA
α (ΓA)ij ≡


νeL urL ubL ugL
eL drL dbL dgL
e+
R d̄r̄R d̄b̄R d̄ḡR

ν̄eR ūr̄R ūb̄R ūḡR

 (2.1)

where both left and right handed particles are lumped together into a single
matrix. There are many ways to extend the Standard Model. One way is
by doubling the number of fermions in such a way that left and right handed
particles are not lumped together inside the same matrix. The number of 16
fermions can be doubled to 32 such that the the left handed sector can be
assembled as

∑
A

ΨA
α,L (ΓA)ij ≡


νe ur ub ug
e dr db dg
e+ d̄r̄ d̄b̄ d̄ḡ

ν̄e ūr̄ ūb̄ ūḡ


L

(2.2)

and the right handed sector as

∑
A

ΨA
α,R (ΓA)ij ≡


νe ur ub ug
e dr db dg
e+ d̄r̄ d̄b̄ d̄ḡ

ν̄e ūr̄ ūb̄ ūḡ


R

(2.3)

We have arranged the entries of the above 4 × 4 matrix in order to accommo-
date the chiral fermions into representations of the Pati-Salam (PS) SU(4) ×
SU(2)L×SU(2)R group [15] such that the above 4×4 matrix entries admit the
following SU(4)× SU(2)L × SU(2)R decomposition. The left-handed fermions
are displayed in the following representation of the Pati-Salam group

(4,2,1) :

(
νe ur ub ug
e dr db dg

)
L

(2.4)

Since the right-handed antiparticles feel the left-handed weak SU(2)L force [12]
one has

(4̄,2,1) :

(
e+ d̄r̄ d̄b̄ d̄ḡ

ν̄e ūr̄ ūb̄ ūḡ

)
R

(2.5)

Since the left-handed antiparticles feel the right-handed weak SU(2)R force [12]
one has

(4̄,1,2) :

(
e+ d̄r̄ d̄b̄ d̄ḡ

ν̄e ūr̄ ūb̄ ūḡ

)
L

(2.6)

and, finally, the right-handed fermions are displayed in the representation

(4,1,2) :

(
νe ur ub ug
e dr db dg

)
R

(2.7)
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where we have omitted the spacetime spinorial indices α = 1, 2, 3, 4 in each one
of the entries of the above matrices. In particular, e, νe denote the electron and
its neutrino. The subscripts r, b, g denote the red, blue, green color of the up
and down quarks, u, d. The subscripts r̄, b̄, ḡ denote the anti-red, anti-blue, anti-
green color of the up and down antiquarks, ū, d̄. The anti-particles are denoted
by ē, ν̄e, ū, d̄. The remaining chiral fermions (Weyl spinors) of the second and
third generation have identical decomposition as the one displayed in eqs-(2.4-
2.7). One simply replaces e for the muon and tau µ, τ particles; the neutrino νe
for the neutrinos νµ, ντ , and the u, d quarks for the charm, strange c, s and top,
bottom t, b quarks, respectively.

The uphsot of having the Cl(4)-algebraic description of the 16 left/right
handed fermions (Weyl spinors) in eqs-(2.2-2.3) is that it is consistent with the
SU(4) color symmetry (force) of the Pati-Salam model [15]. The leptons are
seen as the carriers of the white ”fourth” color. Furthermore, one is confined to
the observed four-spacetime dimensions.

Another way to extend the Standard Model is by adding a fourth generation
of fermions such that now the fermionic arrangement of entries of the 4 × 4
matrices are assigned into representations of SU(4)C×SU(4)L×SU(4)R, instead
of the Pati-Salam group SU(4)C×SU(2)L×SU(2)R. Henceforth, we shall have
one multiplet Ψ1L (omitting spinorial indices) which belongs to the (4,4,1)
representation given by

(4,4,1) : Ψ1L ≡


νe ur ub ug
e dr db dg
νµ cr cb cg
µ sr sb sg


L

(2.8)

The antiparticles (charge conjugation is denoted now by the superscript c)
of the above multiplet (Ψ1L) belong to the right handed antiparticle multiplet
(Ψc

1R) and which feels the left-handed SU(4)L force. Therefore one has

(4̄,4,1) : Ψc
1R ≡


νce ucr ucb ucg
ec dcr dcb dcg
νcµ ccr ccb ccg
µc scr scb scg


R

(2.9)

One has another multiplet (Ψ2L) which also belongs to the (4,4,1) represen-
tation, and containing the third and fourth generation of fermions given by

(4,4,1) : Ψ2L ≡


ντ tr tb tg
τ br bb bg
νE Tr Tb Tg
E Br Bb Bg


L

(2.10)

where the new leptons are E, νE (its neutrino) and the new quarks are T,B in
three colors, r = red, b = blue, g = green.
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The antiparticles (charge conjugation) of the above multiplet (Ψ2L) belong
to the right handed antiparticle multiplet (Ψc

2R) and which feels the left-handed
SU(4)L force. Therefore one has

(4̄,4,1) : Ψc
2R ≡


νcτ tcr tcb tcg
τ c bcr bcb bcg
νcE T cr T cb T cg
Ec Bcr Bcb Bcg


R

(2.11)

If one wishes one could add mirror fermions, although it is not necessary.
The mirror fermions multiplets are obtained under the exchange L↔ R above
so that now (Ψ1R) and (Ψ2R) belong to the (4,1,4) representation, and (Ψc

1L)
and (Ψc

2L) belong to the (4̄,1,4) representation. This would amount to having
4 generations and doubling the number of fermions in each generation if, and
only if, one were to introduce mirror fermions.

The fermionic kinetic terms (omitting spacetime spinorial indices) associated
with the (4,4,1) representation are of the form

Lm =

i=2∑
i=1

Trace
(

Ψ̄iL γµ ( ∂µΨiL + ig2 Gµ Ψ̃iL + ig3 WµL ΨiL)
)

(2.12)
the kinetic terms associated with the (4̄,4,1) representation are obtained by
replacing ΨiL → Ψc

iR in eq-(2.12). g2, g3 are the respective coupling constants
of SU(4)C and SU(4)L. One may notice that the SU(4)C color group above
acts on the transpose matrix Ψ̃i

2. The Dirac adjoint of the above matrices Ψ̄
is obtained by taking the Dirac adjoint of each one of the entries of the 4 × 4
matrices Ψ (each entry represents a Weyl/chiral spinor) .

The 4 × 4 matrix representation of the SU(4)C-Lie algebra valued gauge
field is Gµ = (GaµTaC)mn. The matrix representation of the SU(4)L-Lie algebra
valued gauge field is WµL = (W a

µLTaL)mn. The range of the matrices indices is
m,n = 1, 2, . . . , 4. TaC (a = 1, 2, . . . , 15) are the 15 generators of SU(4)C ; and
TaL (a = 1, 2, . . . , 15) are the 15 generators of SU(4)L. One has summed over
the two multiplets i = 1, 2 in eq-(2.12) (encoding the four generations) and the
trace is taken over the 4×4 matrix obtained from the products of 4×4 matrices
in eq-(2.12).

The fermionic kinetic terms associated with the (4,1,4) representation are
of the form

Lm =

i=2∑
i=1

Trace
(

Ψ̄iR γµ ( ∂µΨiR + ig2 Gµ Ψ̃iR + ig4 WµR ΨiR )
)

(2.13)
the kinetic terms associated with the (4̄,1,4) representation are obtained by
replacing ΨiR → Ψc

iL in eq-(2.13). g4 is the SU(4)R coupling constant. The

2Instead of reversing the order of the matrix product ΨiLGµ as in [14].
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matrix representation of the SU(4)R-Lie algebra valued gauge field is WµR =
(W a

µRTaR)mn. TaR (a = 1, 2, . . . , 15) are the 15 generators of SU(4)R.
There other ways to incorporate 4 generations. Within the context of Clifford

algebras, and supersymmetric field theories, the 4 generations of 16 fermions
(4 × 16 = 64) fit into the 64-dimensions of the adjoint representation of the
Cl(6, R) algebra if one identifies the massless fermions with the gauginos ψA

of a Cl(6)-valued vector supermultiplet comprised of the gauge fields AAµ , the

gauginos ψA and auxiliary scalar fields DA in the Wess-Zumino gauge [13]. The
range of indices is A = 1, 2, . . . , 64. In this case the fermionic kinetic terms
encoding the 4 generations is

Lm = Ψ̄A
α γµαβ ( δAC ∂µ + ig fABC ABµ ) ΨC

β . (2.14)

where the indices A,B,C = 1, 2, 3, ....., 64 run over the 26 = 64-dimensions of
the Cl(6) algebra and fABC denote the structure constants of the Cl(6) gauge
algebra.

The 4 generations and Quaternions also fit into the Cl(6, R) algebra pic-
ture. It is known that the Cl(6, R) algebra is isomorphic to the matrix al-
gebra M(4,H) of Quaternionic-valued 4 × 4 matrices (whose real dimension is
4×16 = 64). Thus the 4 generations of 16 fermions can be collectively assembled
into the entries of the Quaternionic valued 4 × 4 matrices Ψ. The Lagrangian
for the fermionic kinetic terms is in this case given by

Lm = Trace
(

Ψ̄ γµ ( ∂µΨ + ig Aµ Ψ)
)

(2.15)

where Aµ is a matrix algebra M(4,H) valued gauge field and Ψ comprises the
fermionic entries of the 4 × 4 Quaternionic-valued matrices. A Lagrangian for
Gravity and a SU(3) × SU(2) × U(1) Yang-Mills in 4D can be obtained from
a 8D Quaternionic Gravitational theory after a Kaluza-Klein compactification
on an internal four-dimensional space CP 2 [16], [2]. Thus, we have shown
that Quaternions can play an important role in building unification models as
advanced by [11].

Since the fermions of the Standard Model belong to the fundamental rep-
resentation of the gauge groups, instead of identifying the fermions with the
gauginos of a Cl(6, R)-valued vector superfield, one may instead recur to a
Cl(8, R) algebra such that the 16 fermions of each generation are accommo-
dated into the 16 entries of a column matrix ψm, m = 1, 2, . . . , 16, and the
fermionic kinetic terms, summed over nf generations, are of the form

nf∑
i=1

ψ̄mi γ
µ
(
∂µψmi + ig (AAµ ΓA)mn ψni

)
, m, n = 1, 2, . . . , 16, i = 1, 2, . . . , nf

(2.16)
the index A ranges over the 256 generators of the 28-dimensional Cl(8) algebra,
A = 1, 2, . . . , 256 and the (ΓA)mn’s are 16 × 16 square matrices corresponding
to the fundamental representation of Cl(8). A Cl(8) algebraic approach to
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unification in D = 8 has been advanced by Smith [10]. Its relation to E8 has
also been studied by Smith [10] and analyzed and reviewed in detail by us in
[2]. An explicit realization of E8 in terms of Cl(16) = Cl(8)⊗Cl(8) generators
can be found in [17].

It remains now to include gravity into the picture. The covariant derivative
of a Lorentz spinor is defined via the introduction of the spin connection ωabµ
and given in terms of the tangent space Clifford algebra generators as follows

∇µψα = ∂µψ
α +

1

2
ωabµ γ

αβ
ab ψβ , γab =

1

4
[γa, γb] (2.17)

The fermionic kinetic terms are ψ̄γµ∇µψ, and the spacetime Clifford algebra
generators γµ are given in terms of the tangent spacetime ones γa by γµ = eµaγ

a,
with eµa being the inverse vielbein field. The inclusion of conformal gravity
requires using the SU(2, 2) covariant derivatives acting on the spinor fields. As
explained in the derivation of eqs-(1.9, 1.10), after expressing the conformal
algebra generators Ti in terms of the Clifford algebra ones as displayed in eqs-
(1.5), it allows to generalize the expression of the fermionic kinetic terms in
eq-(2.17) from the Lorentz group SO(3, 1) to the Conformal group SO(4, 2)
case and given by (omitting spacetime spinorial indices)

ψ̄ eµa γ
a (∂µψ + Ωiµ Ti ψ) = ψ̄ eµa γ

a (∂µψ + (1)AAµ (1)ΓA ψ) (2.18)

where the (1)ΓA span the generators of the Cl(3, 1) algebra (excluding the iden-
tity element) living inside Cl(5, C).

If one wishes to implement full covariance under SU(2, 2) and SU(4)C ×
SU(4)L × SU(4)R it requires to use the derivative operator in (2.18)

Dµ = ∇µ + Aµ = ∂µ + Ωµ + Gµ + WµL + WµR (2.19)

Eq-(2.19) can be rewritten in terms of the Cl(5, C) algebra generators as ex-
plained in the derivation of eqs-(1.9, 1.10). The SU(2, 2)-valued gauge field
Ωµ = Ωiµ Ti = ((1)AAµ (1)ΓA)αβ acts on each one of the 16 spinorial entries
of the 4 × 4 matrices Ψ, explicitly displayed in eqs-(2.8-2.11), as shown in eq-
(2.18). The kinetic terms for the Lie-algebra valued gauge field strengths Fµν
corresponding to the group SU(2, 2) × SU(4)C × SU(4)L × SU(4)R, after ab-
sorbing the four coupling constants into the definition of the gauge fields, are
given as usual by

LF = −
4∑
i=1

1

4g2
i

(i)FµνJ (i)F
µνJ , J = 1, 2, . . . , 15 (2.20)

at the grand unification point all the values of the gauge couplings coincide
g1 = g2 = g3 = g4.

The Pati-Salam (PS) SU(4)C×SU(2)L×SU(2)R group arises very naturally
from the symmetry breaking of SU(4)C × SU(4)L × SU(4)R. It contains the
Standard Model Group, which in turn, breaks down to the ordinary Maxwell
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Electro-Magnetic (EM) U(1)EM and color (QCD) group SU(3)C after the fol-
lowing chain of symmetry breaking patterns

SU(2)L × SU(2)R × SU(4)C → SU(2)L × U(1)R × U(1)B−L × SU(3)C →

SU(2)L × U(1)Y × SU(3)C → U(1)EM × SU(3)C . (2.21)

where B−L denotes the Baryon minus Lepton number charge; Y = hypercharge
and the Maxwell EM charge is Q = I3 + (Y/2) where I3 is the third component
of the SU(2)L isospin.

The symmetry breaking scheme of SU(4)C×SU(4)F into SU(3)C×U(1)EM
is quite elaborate [14]. The mass matrix for the gauge bosons (after symmetry
breaking) was calculated by looking at the couplings of the Higgs scalars and
gauge fields. The Yukawa couplings of fermions and Higgs scalars lead to the
fermionic masses at tree level when the Higgs scalars acquire non-vanishing vac-
uum expectation values. The symmetry breaking scheme of SU(4)C×SU(4)L×
SU(4)R into SU(3)C ×U(1)EM is even more elaborate than the one of [14] and
is outside the scope of this work.

To conclude, the Clifford Algebraic Unification of Conformal Gravity with
an Extended Standard Model deals mainly with models of four generations of
fermions. Mirror fermions can be incorporated as well. Whether these mirror
fermions are dark matter candidates is an open question. As mentioned earlier
in the previous section, there are also residual U(1) groups within this Clifford
group unification scheme that should play an important in Cosmology in con-
nection to dark matter particles coupled to gravity via a Bimetric extension of
General Relativity [9], [7]. Our findings based on Clifford algebraic extensions
of the Standard Model (SM) should be contrasted with the different background
models of extended theories of gravity, which are minimally coupled to the SM
fields, to explain the possibility of the genesis of dark matter without affecting
the SM particle sector [18].
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