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Abstract

This paper introduces the differential operators in the Gg o Geometric Algebra, called
the Double Conformal / Darboux Cyclide Geometric Algebra (DCGA). The differen-
tial operators are three x, y, and z-direction bivector-valued differential elements and
either the commutator product or the anti-commutator product for multiplication
into a geometric entity that represents the function to be differentiated. The general
form of a function is limited to a Darboux cyclide implicit surface function. Using the
commutator product, entities representing 1st, 2nd, or 3rd order partial derivatives in
X, vy, and z can be produced. Using the anti-commutator product, entities representing
the anti-derivation can be produced from 2-vector quadric surface and 4-vector conic
section entities. An operator called the pseudo-integral is defined and has the prop-
erty of raising the x, y, or z degree of a function represented by an entity, but it does
not produce a true integral. The paper concludes by offering some basic relations to
limited forms of vector calculus and differential equations that are limited to using
Darboux cyclide implicit surface functions. An example is given of entity analysis for
extracting the parameters of an ellipsoid entity using the differential operators.
Keywords: conformal geometric algebra, calculus, differential operators

A.M.S. subject classification: 15A66 53A30 97140 47B47

1 Introduction

This paper! introduces the DCGA geometric differential operators, which are the funda-
mental operators of the DCGA geometric differential calculus on the DCGA geometric
entities. The DCGA geometric differential calculus is an algebraic calculus, where the
differential operators are algebraic operators within the Gg » Geometric Algebra, DCGA.
The derivative of a DCGA geometric entity is a DCGA geometric derivative entity that
represents the geometry associated with the derivative.

The reader is assumed to be familiar with the Gg » Geometric Algebra, also called the
Double Conformal / Darboux Cyclide Geometric Algebra (DCGA), that is introduced in
the earlier paper G8,2 Geometric Algebra, DCGA? [7] by this author.

2 Geometric Algebra

This section is a review of some Geometric Algebra products, identities, and notations
that apply to DCGA operations on DCGA entities. For general introductions to geometric
algebra, there are many books [8][9][10][4][5][13]. The book [10] is the standard reference
that first introduced Geometric Algebra and Geometric Calculus.

1. First version vl, December 13, 2015, uploaded to http://vixra.org/author/robert b _easter. This first
version is an early draft and may be superseded at the above link by revised versions.

2. The paper G8,2 Geometric Algebra, DCGA (revised wersion vA) was uploaded to
http://vixra.org/abs/1508.0086 on October 1, 2015. The first version v1 is dated August 11, 2015.
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2.1 Blades, vectors, and multivectors

A vector a=) a;e; is a linear combination of vector elements e;. An r-blade A, =A )=
a; A...\a, is the outer product of r linearly independent vectors a;. An r-vector A,= A,
is a linear combination of r-blades. A multivector A is a linear combination of blades
that may be of different grades. An r-versor, or grade-r versor, is the geometric product
of r vectors with inverses [10]. A degenerate multivector D has the property D - D =0
and D?= 0, while a null multivector N has the property N?=0.

All of the DCGA entities and operators are even-grade multivectors A, which sim-
plifies some of the algebra as shown in the next sections. A DCGA point (§3.1)

T = D(t) =C(te1)C?*(tg2) =CHtg1) AC?(tg2)
is a null bivector with square T?=0. All of the DCGA geometric surface entities B, are
s-vectors of even-grade s that are either a 2-vector By = (2, 4-vector By, 6-vector Bg, or
an 8-vector Bs. The By, Bg, and Bg entities are usually intersection entities of a bivector
Darboux cyclide entity €2 with one, two, or three bivector-valued spheres S or planes I1.
The DCGA operators for rotation
R = RcRe2= Rei A Ree,
translation
T = Teille2=Te1 Nee,
and dilation

D = De¢iDe2= Dei A\ De2

are 4-versors with scalar, bivector, and 4-vector parts. The DCGA operators for spherical
inversion

S = Sc1Sc2=Sc1 A Se2
and planar reflection
II = Ilpdlee=1I0 ATl

are 2-versors and are 2-blades, and they are just the standard DCGA bivector-valued
sphere S and plane IT entities. The DCGA differential elements (§3.3)

D, = 2T, T =2T, x T,5'
D, = 2T,T5' =2T, x T3
D, = 21075 =2T, x T.5"

are degenerate bivectors that are each the product of a degenerate bivector 27}, 2T, or
2T, and a 2-blade versor Tzél, T;zl, or TZEl, respectively. The differential elements should
not be confused with the dilator D.
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2.2 Geometric product

The geometric product of any two multvectors A and B is written as A B, without any
product symbol. The geometric product AB can be expanded as the sum of the anti-
symmetric commutator product A x B and the symmetric anti-commutator product
AXB as

AB = Ax B+ AxB
= S(AB—BA)+ [(AB+BA).

The geometric product AB can be expanded as a sum of grade projections
AB = (AB)+(AB)1+{(AB)s+--+(AB),

where n=p+ ¢+ is the number of unit vector elements e;: 1 <¢ <n in the algebra G, ;.
having p Euclidean e?=1:1<4i < p, ¢ pseudo-Euclidean e?=—1:p+1<i<p+¢, and r
null e =0:p+ ¢+ 1<i<n clements.

The geometric product A,B; of an r-vector A, and s-vector By can be expanded as a
sum of specific grade projections

min(r,s)

ArBs = Z <A7‘BS>7‘+872I
=0

= <A7"Bs>7"+s + <AT’BS>T’+S_2 +ot <A7’BS> r—s]-

The grades r + s — 2l of the terms (A, Bs),ys_o differ in steps of two grades 2/ since
the product of any two elements e;e; = e; - e; + e; A e; is either the grade-0 scalar
e;-e;=signature(e;):i=j or the grade-2 bivector e; Ae;:i# j. The minimum-grade term
is the inner product A, - By of grade r + s — 2] = |r — s| using the maximum [

r+s |r—s|

max (I) = 5 5 =min (7, s)
max (r,s) = T;—S%—lrgslzr—l—s—min(r,s).

The maximum-grade term is the outer product A, A Bs of grade r +s — 2l =r + s using
the minimum [, which is min (I) =0. The integer range of [ is 0 </ <min (7, s). Integer
values of [ between min (/) and max (/) expand other products that are terms of the
geometric product A, B.

Let A, = Z:n:l Ay, and By = Z?:l B, be linear combinations of m r-blades and
n s-blades, respectively. For each geometric product Ay B, of an r-blade A, and
s-blade By, that is a term of the geometric product A,B;, the further expansion of
(A Bsy,)r4s—21 is given by a formula called the Expansion of the Geometric Product
of Blades (EGPB), which is discussed in [12] and [8]. The EGPB formula will not be

discussed here, but it can be used to generate identities and formulas for specific products
that may be of interest in a detailed analysis of products that is not undertaken here.
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For r =2 and s € {2,4, 6, 8}, then [ € {0, 1, 2}. For these values of r, s, and [, the
geometric product AsB, can be expanded into the sum of only three products

AQBSIZ (AgBs)ors—a = (AaBs)sia+ (AaBs)s+ (A2Bs)s—2
1
AQ/\BS - <A >5+2
AQ : Bs = < >s 2
AQ X BS = < >

Az;(Bs = AQ'BS+A2ABS.

The commutator product B, = A, x B, holds the grade s and is called the derivation of
Bs. The derivation may be related to the Lie derivative in Lie Algebra, but this possible
relation is not explored in this paper. As a DCGA surface entity B, = Ay x B, the
derivation BJ can represent a derivative function that can be evaluated as D(p) - B. at a
DCGA point P =D(p), and B} is the surface on which derivatives are zero.

The anti-commutator product B = Asx B, can be called the anti-derivation of B,.
The anti-derivation may be related to the exterior derivative or curl, but this possible
relation is not fully explored in this paper. As a DCGA surface entity B, = A;x B,
the anti-derivation B, can represent the surface on which the reciprocal and infinite
derivatives exist.

The abstract definitions of the terms derwation and anti-derivation are given in
[2]. These terms are used as alternative terminology to describe the DCGA differential
operations B! = Dy, x B, and B} = D,x B;, where D, is a DCGA differential element
(§3.3) and Dy, x is a DCGA differential operator (§3.4) on a DCGA surface entity B
that represents an implicit surface function F'. The abstract definitions, propositions,
corollaries, and examples for derivations given in [2] may be useful in further studies of
the DCGA differential operators.

For r = 2, the inner product A, - B, = By - A and outer product As A By =
Bg A\ Ay are both symmetric products and are terms of the symmetric anti-commutator
product Asx B;= Byx As. The 2-vector A, can be a linear combination Dy, of the DCGA
degenerate 2-vector differential elements D,, D,, and D, (§3.3). For As = D, and any
DCGA extraction element Ty (§3.2), we find that

Dy-T; = 0.

For A; =D, and any DCGA 2-vector surface entity By = (2 that is a linear combination
of extraction elements T, then

D,- Q2 =0
DnxQ = Dy A

For a DCGA 2-vector Darboux cyclide surface entity By = By = €2, the derivation or
derivative entity 4 ="D, x € is a sum of differential extraction elements D,, x Ty.
Using the derivative property or Jacobi identity of the commutator product, then

AQXB4 = DnX(Q/\H)
= (DaxQ)AII+ QA (D, x II).

For a plane IT/™ that contains the direction n, then D, x II'™ =0 and

Dy x (QATII?) = (D, x Q) ATII
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represents the derivative of a DCGA 4-vector cyclidic section By = ©Q A ITI™ in the
direction n in the plane IT/™.

2.3 The scalar product

The scalar product A, x B; is defined as the grade 0 projection or part (A,Bs)o of the
geometric product

A, x By = (A.Bs)=(A,Bs)o

which is the scalar part of the geometric product. The grade g projection operator (AB),
is introduced in [10]. The scalar product is equal to the inner product or contraction
product when r =s.

2.4 The inner product

The inner product A, - B is defined as the grade |s — r| projection of the geometric
product

AT'BS = <A7" Bs) [s—r|

for r#0 and s# 0. The inner product is defined as zero when r =0 and/or s =0.
The commutation of the inner product can affect the sign and is given by

By-Arcy = (1) YA, B,

In this paper, A,= A, and B,= B, are always even-grade vectors, denoted generally by
subscript + [10], of grades r, s €{2,4,6,8}. In this case, the inner product is commutative

B+‘A+ - A+‘B+

and is always a term of the symmetric anti-commutator product A, X Bj.

2.5 The dot product
The dot product A, e By is defined as the grade |s — r| projection of the geometric product

AT’.BS - <Ar Bs> [s—7|

for any r and s. The dot product allows scalar multiplication, while the inner product is
defined as zero for any scalar multiplication.
The commutation of the dot product can affect the sign and is given by

Bs. ATSS = (—1)r(871)Ar§s d BS'

In this paper, A, = A, and B;= B, are always even-grade vectors, denoted generally by
subscript +, of grades r, s € {2,4,6,8}. In this case, the dot product is commutative

B+.A+ = A+.B+

and is always a term of the symmetric anti-commutator product A, X Bi.

2.6 The outer product
The outer product A, A By is defined as the grade r 4 s projection of the geometric product

AT‘ N BS = <AT'BS>T'+S~
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The outer product has the associative property
ANBANC = (AANAB)AC=AN(BAC)

which the geometric product also has, but which other products do not have in general.
The commutation of the outer product can affect the sign and is given by

BsNA, = (=1)*"A, A Bs.

In this paper, A, and By are always even-grade vectors, denoted generally by subscript
+, of grades r, s € {2,4,6,8}. In this case, the outer product is commutative

B+/\A+ - A+/\B+

and is always a term of the symmetric anti-commutator product A, X Bi.

2.7 The left and right contraction products

Chapter 2, The Inner Products of Geometric Algebra by Leo Dorst, in [3] introduces the
left and right contraction products, and also the dot product. The concepts associated
with contractions and duality operations are clearly explained using these products in
[5]. The left and right contraction products are nearly the same as the inner product for
the purposes considered in this paper.

The left contraction is defined as

ATSSJ Bs = <Ar§s Bs)sfr

for r <s. The left contraction is defined as zero when r > s.
The right contraction is defined as

BSLATSS - <BSA7‘§S>87’!'

for r <s. The right contraction is defined as zero when r > s.

The contractions are also defined for scalars where =0 and/or s=0, while the similar
inner products are defined as zero when =0 and/or s=0.

The relation between left and right contraction is

Bs LArgs - (_1)r(871)AT§sJBs

which follows from the commutation formula for inner products. For any multivectors A
and B,

A|B+A|B = AxB+AeB.

2.8 The symmetric anti-commutator product

The symmetric anti-commutator product X of any two multivectors A and B is defined as
AXB — %(AB—l—BA)
which has the symmetric commutative property

BxA = AxB.
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In this paper, the anti-commutator product X is used to define the symmetric differential
operators as elements of the DCGA algebra. Also in this paper, A, = Ay will usually be
grade-2 and Bj is always an even-grade vector of grade s € {2,4,6,8}. In this case, the
anti-commutator product is the sum of the commutative inner and outer products

A2>7<Bs = <AQBS>872 + <AZBs>s+2
AQ : Bs = <AZBS>5—2
AQ/\BS - <AQBs>s+2-

Also in this case, the other part, of grade s, is leftover as the anti-commutative commu-
tator product

AQX BS = <AQBS>5.

These are the only products that have to be considered in this paper. The grade-2 vector
Ay will usually be a bivector-valued differential element D, and B, will usually be a
DCGA GIPNS 2-vector geometric entity 2. The product Ay x By always has the same
grade s as By and can produce a differentiated version of B, that, as shown later, can
actually represent an exact derivative.

2.9 The anti-symmetric commutator product

The anti-symmetric commutator product x of any two multivectors A and B is defined as
AxB = %(AB—BA)
which has the anti-symmetric anti-commutative property
BxA = —AXxB.

In this paper, the commutator product x is used to define the anti-symmetric differential
operators as elements of the DCGA algebra.

For any multivectors A, B, and C', the commutator product is linear, or distributive
over addition

Ax(B+C) = AxB+AxC.

For any multivectors A, B, and C, the commutator product has the important derivative
identity (Equation 1.57 in [10])

Ax(BC) = (AxB)C+B(Ax()
and the Jacobi identity (Equation 1.56¢ in [10])
Ax(Bx(C) = (AxB)xC+Bx(AxC(C).

As we will see later, if A = Dy, and B = D,,, are two bivector differential elements
that differentiate an even-grade entity C' = €2 successively in the ny and n; directions,
then any differential element operating on another differential element produces zero
Dyn, X Dyn, =0 and the Jacobi identity reduces to

Dy, X (Dny X Q) = Dy, X (D, X 2)
which is the expected result of the form

oF  OF
oxdy  Oyox’
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A bivector element D, that satisfies this result is can be a differential element and can
define a differential operator 0, = D, X that can differentiate, in some direction n, certain
other elements or entities C' of the algebra that may represent functions that can be
differentiated as 9,C' = D,, x C'. Later in this paper, a complete set of bivector differential
elements are defined to form differential operators that can differentiate functions that
are represented by DCGA geometric entities.

For a bivector Ay = (A)s and any multivectors B and C, other known identities are
(Equations 1.65 and 1.66 in [10])

AQX(BC) = (AQXB)C+B(A2XC)
Asx (BAC) = (Asx BYAC+ BA(Asx O).

Later in the paper, we will see that when A, = D, is a bivector differential element, and
By=P is a bivector DCGA null point entity, and Cy=£2 is a bivector geometric function
entity, then the evaluation or test By- Co=P -2 =d is a scalar d and

AQX(BQ'CQ) = D, Xd—g(Dnd—an):O

and using the identities above we have

BQ'(AQXCQ) = (BQXAQ)'CQ
P-(DpxQ) = —(Dy,xP)-Q.

This result says that we can differentiate the entity and then evaluate €2 at point P, or we
can differentiate the point P as —0,P = —D, x P then evaluate 2 using the differential
point. Since a surface function F' represented by an entity 2p is for an implicit surface
F =0 that is evaluated at a point p=1xe;+ yes+ zes as F(p)=P-Qr=D(p) - U, then
the minus sign on the differential point —0,P can sometimes be ignored.

For a bivector A2 = (A)s and any multivector B that has no vector part (B); =0 then
(Equation 1.63 in [10])

AQB = AQB+A2XB+A2/\B

When A; = (A)9 is a bivector and By is an even-grade s 2, 4, 6, or 8-vector, then the
geometric product As By is the sum of three possible product terms

AsBy = (A2B;)s—o+ (AaBs)s+ (A2B;) 42
(A9Bs)sy2 = AN DB
(A2Bg)s—2 = As-B
(AsBg)s = Agx B,

We will only be concerned with these products and the identities associated with them. In
DCGA, only even-grade vectors of grades 2, 4, 6, and 8 are used for operators and entities.

The derivative identity is named after the form of the product rule for differentiating
a product of scalar functions fg in the n-direction of a unit vector n

On(fg) = (On f)g+f( 9)

= (V-n)f)g+ f((V-n)g)
(V-nf)g+ f(V-ng)
(Vf-n)g+ f(Vg-n).
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Notice how scalar-valued functions f and g generally commute with all other values and
products, but they cannot commute into and out of a differential operator. Scalars and
scalar-valued functions usually commute in general within an algebra, but the differential
operators are not elements of the algebra and are special symbolic operators. The DCGA
differential operators defined later in this paper implement differential operators as ele-
ments in the algebra that enforce the non-commutativity with respect to the differential
operators.

The gradient operator V, also called the vector derivative operator, is a symbolic
vector-valued operator

V = &Cel + 8yeg + 8Ze3
0
= —e;+—€x+ —Zeg

Ox oy 0

where each differential operator 9,, 0,, and 0, is symbolically handled as a scalar.
In a fixed direction such as the e;-direction that is conventionally assigned to the x
variable or z-axis direction, the product rule reduces to

0.5y =D = Wy

In geometric calculus, multivector-valued functions f and g are generally non-commuta-
tive and the differential operation must not commute f and g. The overdot notation

On(fg) = Oufg+0ufg

denotes a function having an overdot is the function that is differentiated by the differ-
ential operator Oy.

2.10 Associative and non-associative products

The geometric product has the general associative property
ABC = (AB)C=A(BC).

The geometric product is an associative product.

The commutator x and anti-commutator X products generally do not have the asso-
ciative property and are non-associative products. By convention, products are evaluated
from the left to the right unless enclosed in parentheses. Therefore, in general

AxBxC = (AxB)xC
+ Ax(BxC)
AXBxC = (AxB)xC
+ AX(BxC).
There may be exceptions to the general case, where particular associative products exist,
but these particular exceptions are not considered here.
The non-associative property of the commutator and anti-commutator products is

important in this paper. To obtain correct results, it will usually be required to enclose
these products in parentheses. Partial derivative computations such as

oC

m — DIX(DyXC):DyX(D:pXC)

# (DyxDy)xC

will be defined in the next sections.
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3 DCGA geometric differential calculus

In this section, a type of differential calculus, which is being called here the DCGA
geometric differential calculus, is introduced. The DCGA geometric differential calculus
is the work of a continued independent research by this author that adds new results to
previous work on DCGA [7]. No prior works that offer these specific results were consulted
or known to this author at the time of research into this paper. The results presented
in this section may be new results that are being introduced for the first time into the
literature.

In standard differential calculus, derivatives are defined as certain limits that are
evaluated and simplified to obtain expressions that represent tangents to curves and
surfaces. Generalizing on the results of limits, the familiar rules for differentiation are
derived, memorized, and applied to form derivatives, without evaluation of limits and
without algebraic operations for computing derivatives.

In the DCGA geometric differential calculus, derivatives of polynomial implicit surface
functions F(z, y, z), which can represent Darboux cyclides, are produced and repre-
sented as certain algebraic products of differential operators with geometric entities. The
DCGA differential operators are elements of the DCGA algebra that compute derivatives,
without using the rules for differentiation that form derivatives.

The DCGA differential operators are of two complementary orthogonal types, which
are the DCGA anti-symmetric differential operators and the DCGA symmetric differen-
teal operators. The DCGA anti-symmetric differential operators D, x , D, x , and D, X
are the primary differential operators that correspond to the differential operators D,,
D,, and D, of standard differential calculus, and they can be related to the divergence
operator (div or V - ) of vector analysis. The DCGA symmetric differential operators
D,x, Dyx, and D,x can be related to the circulation operator (curl or V x ) of vector
analysis. The sums D, = D, x +D,x, D, = D, x +D,x, and D, = D, x +D,Xx
of DCGA anti-symmetric and symmetric differential operators can be related to the
gradient operator (grad or V) of vector analysis. A weighted sum of differential elements
D,, = (nzDy + nyD, + n,D,) forms a directional derivative element in a unit direction
n = nge; + n,es + n.e3 and the directional derivation D,, x and anti-derivation D,,X
operators.

The relations to vector analysis operations are not direct since both the DCGA geo-
metric entities and the DCGA differential operators are not vectors. The relations to
vector analysis are also limited to using polynomial functions F(x, y, z) in the general
form of Darboux cyclide implicit surface functions. The relations to vector analysis will
be considered later as examples, but the derivatives of DCGA geometric entities have
a geometrical significance and a geometrical representation that are different than the
derivatives of ordinary scalar-valued functions F'(z, y, z) and vector-valued functions
F(x,y, z) in vector analysis.

The DCGA differential operators could also be called DCGA geometric differential
operators, and when these operators act on DCGA geometric entities they produce deriv-
ative entities that could be called DCGA geometric derivative entities.

There two types of DCGA geometric derivative entities, which are the DCGA anti-
symmetric derivative entities and the DCGA symmetric derivative entities. A DCGA
anti-symmetric derivative entity B'= D, x B is produced by applying a DCGA anti-sym-
metric differential operator D, x to a DCGA geometric entity B. A DCGA symmetric
derivative entity B' = D,x B is produced by applying a DCGA symmetric differential
operator Dyx to a DCGA geometric entity B.
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Using abstract terminology for derivations and anti-derivations 2], B’ can be called
a derivation entity, and B’ can be called an anti-derivation entity. Using more abstract
terminology, it may also be appropriate to call these entities function objects, function
entities, or functors when the entities are seen as representing functions rather than
surfaces. If a DCGA geometric derivative entity has zero-points, then they represent an
implicit surface of those points.

The intersection of a GIPNS surface B with its anti-symmetric derivative surface B’
is the set of surface points P on B where tangents are parallel to the direction n of the
derivative, and where P - B’ = 0. The intersection of a GIPNS quadric surface or conic
section B with its symmetric derivative surface B’ is the set of surface points P on B
where tangents are perpendicular to the direction n of the derivative, and where P - B’ =0
but P - B’=00. For any surface B, the surface B’ is also being called a 0-derivative surface
or derivation surface. While restricted to a quadric surface or conic section B, the surface
B’ is also being called a co-derivative surface or anti-derivation surface.

In this paper, the interpretation of the symmetric derivative entity B’ is limited to the
case where B is a quadric surface or conic section entity. The meaning or significance of
B’ is undefined in this paper when B is any entity other than a quadric surface or conic
section.

The anti-symmetric derivative entity B’ is valid for any DCGA entity B, and its
meaning is clearly the derivative surface for all entities that are formed directly from
the extraction entities, which are reviewed next. However, if B is a standard(bi-CGA)
DCGA sphere or plane, then the derivative surface B’ may not represent the derivative
that is expected since these entities represent the squared implicit surface function F2, up
to a scalar multiple, and then the derivative surface B’ = D, x B represents the implicit
surface function 2F0,F', not 0,F as may be expected.

3.1 DCGA points

The Gs 2 Double Conformal / Darboux Cyclide Geometric Algebra (DCGA) is introduced
in |7]. This section defines Ggo DCGA and gives the definitions of CGA1, CGA2, and
DCGA points in Gg » DCGA.

Gs,2 DCGA uses the ten unit vector elements e;: 1 <7 <10 with signatures

e - 1 ie{1,2,3,4,6,7809}
P71 =1 s ie{s,10).

The elements ey, e, €3 are the elements of a G Algebra of Physical Space (APS) [9] that
is called Euclideanl and denoted £!. A Euclideanl test vector t =tg: is

t=ts = ze;+ yes+ zes.

The elements e, es, €3, €4, €5 are the elements of a G, ; Conformal Geometric Algebra
(CGA) [14]

1
€1 = 5(—84 —+ 85)

€1 = (84 + 85)

that is called CGA1 and denoted C'. A CGA1 null point T¢1 is defined as

Tei=Cl(t) = t—l—%thooH—eo.
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The elements eg, €7, eg are the elements of another G3 APS that is called Euclidean2 and
denoted £2. A Euclidean? test vector tg2 is

th = xe6+ye7+ze8.

The elements eg, €7, €g, €9, €19 are the elements of another G, CGA

1
€n = 5(—99+810)
€2 = (ey9+eq)

that is called CGA2 and denoted C2. A CGA2 null point T¢: is defined as

Tc2 == CQ(tg2) - th + l

2
5 t526002 + eyo.

The DCGA null point T =Tp is defined as
T=Tp=D(t) = C'ter) NC*(te2)
where tg2=(t-e1)eg+ (t-e2)er+ (t-e3)es. The DCGA points for the origin and infinity are

€ = eg ey

€ = €501 N\ €soa.

3.2 DCGA value-extraction elements

The DCGA point value-extraction elements or operators are
Tx - _(el N €oo2 + €501 N\ e6)

(€2 \ ex2+ €001 A €7)

N~ RN~

(€3 €xo2 + €0c1 A €3)

g'ﬂ
Il

(e7Nej+esNey)

>3
I

(87/\83 +eg 82)

>~
8
Il
DO =N =N =

(esNejl+egAes)

)

2 = €g/\ep
Tyz = e;N\ey

Tz2 = eg/\ej

Tz = (e1/N\en)+ (en Aeg)
T2 = (eaNew)+ (e, Ner)
(

T2 = (esNeq)+ (en Nes)
Tl = _<eool A eooZ) = —€x
Tz = —(€cc1N€p2+€p1 Nexs)

Tie = —4(eo Ney)=—4e,

and these were first introduced in [7], where they are used to define many DCGA GIPNS
2-vector geometric surface entities.
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Using the symbolic DCGA null point entity T = D(t) that represents the symbolic
test point t = ze; + yey + ze3 in Euclidean 3D space, the value s is extracted from any
test point T as s=T - Tj.

The extraction elements T are used to define the DCGA GIPNS 2-vector surface
entities that can represent implicit surface functions F(z, y, z), where the most general
implicit surface is a Darboux cyclide

F(z,y,z) = At'+ Bt*+
Cat?> + Dyt? + Ext> +
Fa? +Gy?+ H2% +
Izy+ Jyz+ Kzx +
Lz + My+ Nz+O.

The vector t =ze; + yes + zes3 is a test point and the A...O are 15 real scalar constants.
The surface is the set of points where F(x,y, z) =0. When some of the constants A...O
are zero, the degenerate surfaces include Dupin cyclides, parabolic cyclides, and quadric
surfaces.

The DCGA GIPNS 2-vector Darbouz cyclide surface entity €2 represents an implicit
surface F(r,y,2) =0, and it is defined as a linear combination of extraction elements as

Q = ATu+ BT+
CTyo2+ DTy2+ ET 42+
FTo+GTp+ HT 2+
ITyy+ JTye+ KTy +
LT,+MT,+ NT,+ O1T;.

3.3 DCGA differential elements

The extraction elements T2, T2, and T2 are the only ones that have inverses

1 /TxQ = ng_gl = e;Neg
1/Ty2:TyE1 = esNer
1/T22:Tz_21 = eg/\es.

These three inverses can be used to define the following three ratios.
The DCGA differential elements D,, D,, and D, are defined as
D, = 2T, /Ty =2T,T"
= € A (64 + 65) + €g A (eg + elo)
= ejN\eyx1t+ e e
D, = 2T,/T,.=2T,T;
= ey (es+e;5)+erA(eg+eq)
= ex/N\ex1terNeq
D. = 2T, /T,.=2T.T5"
= e3N (84 + 95) +eg A (eg + 610)
= e3/\ €y t+eg/\eyo.
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Using the anti-symmetric commutator product Dy, x Ts, where D, is one of the three
differential elements D,, D,, or D, and T is the extraction element for value s, the
product table of all such products D, x Ty is computed as shown in Table 1.

X NI | T | Ty | T | T2 | T2 | T2 | Toy | Tyz | Tha | Th2 | Tre2 Ty2 T2 Tia

D,(0 |T1]|0 |0 (27,10 0 |Ty |0 |1, |27, | 2T+ T2 | 2T, 2T, 4T 42
Dy|0 (0 |T71]0 (O 2T,|10 |T, |T. |0 2T, | 2T, 2T+ T2 | 2T, 4T 4o
D.{0 |0 |0 |T1|0 0 27,10 Ty, |Ty |27, | 2T, 2T, 2T 2+ T2 | AT 42

Table 1. Differential operations D, X on extraction elements T

As shown in Table 1, the operations D, x T produce the correct derivative extraction
elements that extract derivative values 0ns =T - (D, x T) in the direction n.

It can be verified that all inner products of any differential element D, with any
extraction element T are equal to zero

D,- T, = 0.
and then
DuxTs = Dy Ts+ Dy ANTs=Dy AT,

The DCGA GIPNS 2-vector surface entities Bs are defined as linear combinations of
the extraction elements T, and any such surface entity By that is operated on by an
operator D, x is transformed into the derivative entity Dy x By that is differentiated in
the direction n=nze; + nye; + n.es. The operator Dy, X = (ng,D,+nyDy+n.D,) x is a
differential operator on DCGA entities in the direction n.

3.4 DCGA anti-symmetric differential operators

The conventional x, y, and z differential operators a_i = D,, % = D,, and % =D, of

standard calculus are represented in DCGA by the DCGA =z, y, and 2z anti-symmetric
differential operators Dy x , D, x , and D, x that are defined as

% —0,= D, x = (2T, /Th) x =(21,T3") %
% —0,=Dyx = (2T,/T,2) x =(2T,T3") x
(%:azzDz X = (2T./T) x =(2T.T3Y x .

The symbols, such as a_ax and 0., are alternative notations for the algebraic operators,
such as D, x .

The DCGA differential elements D,, D,, and D, are the left-hand side (LHS)
operands of the commutator product x, and they are defined as the ratios of certain
DCGA point wvalue-extraction elements Ty, which were first introduced and defined in
[7]. The right-hand side (RHS) operand of one of the DCGA anti-symmetric differential
operators should be the DCGA GIPNS entity B, or its dual DCGA GOPNS entity B*P,
that is to be differentiated. Swapping the LHS and RHS is anti-commutative such that

BxD, = —D,xB
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where D, is one of the DCGA differential elements D,, D,, or D, and B is a DCGA
GIPNS or GOPNS entity. The vector n represents the direction of the derivative, where
the z, y, z-directions conventionally correspond to the ey, ey, es-directions, respectively,
in a Euclidean 3D space.

Given any DCGA GIPNS 2-vector surface entity € as defined in [7], then the following
DCGA GIPNS 2-vector 0-derivative surface entities 0,€2, 0,2, and 0,€2 are computed as

%:aynzpyxa = (27,/T,2) x 2
%_?:aZQ:DZXQ = (21,/T2) x 2.

The DCGA surface entity €2 represents a scalar field or implicit surface function F(z, vy,
z), which can represent any Darboux cyclide or any degenerate, such as a Dupin cyclide,
parabolic cyclide, or quadric surface. The derivative surface entities 0,€2, 9,2, and 0.2
represent the partial derivatives of an implicit surface function F' in different z, y, and 2
directions, and they can represent surfaces or curves on which those derivatives are zero.
At the points where a surface entity intersects its derivative surface entity, the surface
tangent has a zero slope or zero derivative relative to the direction in which the derivative
was taken, such that the surface tangent is parallel to the direction of the derivative.

Given any DCGA GIPNS 4-vector section 1D-surface plane-curve entity 1 =Q A Il
as defined in [6], then the following DCGA GIPNS 4-vector 0-derivative curve entities
0.9, O,p, and 0.3p are computed as

W dp=D.x9p = (OT./To) x 2
B =Dy = (21,/T,) x ¥

%
%zasz xp = (2T, /T,2) x ¢
az z z z 4 N
The derivative entities 9,7, d,4p, and 0,3 can represent other coplanar curves on which
the derivatives are zero.

The DCGA anti-symmetric differential operators can be applied successively to pro-
duce entities representing higher-order mixed partial derivatives of an implicit surface
function F' that is represented by a geometric entity €2. As examples, the following are
valid derivative surface entities:

0’Q

? = D$X(D$XQ)

0"

m = D$X(DyXQ)—DyX(DxXQ)

9

20y = D, X (Dyx(Dyx8))=D, x (D, x (D, xQ))=D, x (D, x (D, x82)).

The sequence in which the partial derivatives are taken does not affect the result.

Using a symbolic computer algebra system (CAS), such as the Geometric Algebra
Module for Sympy [1], the DCGA anti-symmetric differential operators can be defined
and then tested on any DCGA entity to check that the correct derivative entities are
produced. The derivative entities are produced by using the DCGA differential elements
with commutator products, without using differentiation rules or limits.
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3.5 DCGA anti-symmetric directional derivative operator

The DCGA anti-symmetric differential operators D, x , D, x , and D, x are direc-
tional derivative operators in the fixed = (e1), y (e2), and z (e3) directions, respectively.
The DCGA anti-symmetric directional derivative operators correspond to the directional
derivative operators of vector calculus. The general n-directional derivative operator,
in the direction of a Fuclidean 3D vector n, can be formed as a weighted sum of these
operators.

The DCGA anti-symmetric directional derivative operator Dy X in the direction of a
unit vector n =n,e; + nyes + n.es can be defined as

Oh=Dnx = ((n-e1)D,+(n-e2)Dy+ (n-e3)D,) x.

For any DCGA GIPNS entity €2 representing an implicit surface function F(z,y, z), the
DCGA GIPNS anti-symmetric directional derivative entity 0,82 = D, x €2 can represent
the surface or curve, if it exists, on which 0,F = (V -n)F =0 in standard calculus. The
zero-points on the surface of 9,€2 that intersect the surface €2 are the points where n is
tangent to the surface €2.

Any DCGA GOPNS entity 2P may also be differentiated by the same operator Dj, X
to produce a DCGA GOPNS anti-symmetric directional derivative entity 9,Q2*7.

3.6 DCGA symmetric differential operators

The DCGA symmetric differential operators can be defined as
0p=D,=D,x = (2T, /Tp2)x = (2T, T5") %
Jy=Dy=Dyx = (2T,/T,p)x = (2T, T2")x
0.=D.=D.x = (2T./T.2)x = (2T. 15" ) x.

The DCGA symmetric differential operators are known to be valid on any DCGA GIPNS
2-vector quadric surface entity B = Q, and also on any DCGA GIPNS 4-vector conic
section entity B = Q A Il cut from a quadric surface Q by a standard DCGA plane II.
The possible meanings of products that are produced by the DCGA symmetric differential
operators applied to other DCGA entities could be researched in future work.

For a DCGA GIPNS 2-vector quadric surface entity B=Q or DCGA GIPNS 4-vector
conic section entity B = Q A Il representing an implicit surface function F(z, y, z), the
symmetric co-derivative surface entity OnB can represent the surface or curve of points T
on which the anti-symmetric 0-derivative surface entity gives (T x Dy,) - B =00, or where
OnF' = 00 in standard calculus.

3.7 DCGA symmetric directional derivative operator

The DCGA symmetric directional derivative operator Dyx in the direction of a unit
vector n=nge; +n,es+n.ez can be defined as

On = Dyx=((n-e))D,+ (n-ey)D,+ (n-e3)D,)x

The DCGA symmetric directional derivative operator is known to be valid on any DCGA
GIPNS 2-vector quadric surface entity B =Q, and also on any DCGA GIPNS 4-vector
conic section entity B = Q A II cut from a quadric surface Q by a standard DCGA
plane II. The possible meanings of products that are produced by the DCGA symmetric
directional derivative operator applied to other DCGA entities could be researched in
future work.
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For any DCGA GIPNS entity B=Q or B=Q AII of types just described representing
an implicit surface function F(z, y, z), the DCGA GIPNS symmetric directional oo-
derivative surface entity D,x B can represent the surface or curve, if it exists, on which
OnF"' = o0 in standard calculus. The zero points on the surface of OnB that intersect the
surface B are where n is perpendicular to the surface B.

The dual DCGA GOPNS entity B*P of types B just described may also be differenti-
ated by the same operator D,x to produce a DCGA GOPNS symmetric directional oco-
derivative surface entity OnB*P.

3.8 DCGA differential point

The DCGA null 2-vector differential point —0,T of a DCGA null 2-vector point T =D(t)
is defined as

—0,T = —D,xT=T x D,,.
For any DCGA GIPNS 2-vector entity B, it can be verified that
(TxDy)-B = T-(Dyx B).
For any dual DCGA GOPNS 8-vector entity B*P, it can be verified that
(T x D) AB*P = T A(Dyx B*P).

In the expression (T x D) - B, the entity B extracts differentiated values Ons from
the differential point —0,T to represent an implicit surface O F(x, y, z) = 0 that is
differentiated in a direction n.

In the expression T'- (D,, x B), the differential entity 0,,B extracts differentiated values
Ons from the point T to represent an implicit surface OpF'(x, y,z) =0 that is differentiated
in a direction n.

For any higher grade DCGA GIPNS 4, 6, 8—vector intersection entity B, including
conic sections and cyclidic sections, the test values using a differential point T x D, or
a differential surface D,, x B are not equal multivectors (T x D,)- B+T - (D, x B), but
they both still represent the same derivative surface or curve, if it exists.

3.9 DCGA tangent point

The DCGA null 4-vector tangent point 9, T of a DCGA null 2-vector point T =D(t) is
defined as

0,T = TxD,=D,xT

The point T is a tangent point of the DCGA GIPNS 2-vector quadric surface Q in the
direction n if the test

(TxDy)-Q = 0

holds good. The set of all such points T on the surface of Q is the curve of tangency
where the quadric surface Q and its derivative surface D,, x Q intersect.

The tangent point test on surfaces other than quadrics is left undefined in this paper,
but could be the subject of further research.
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3.10 DCGA pseudo-integral operators

The operators that are presented in this subsection are being called here, for lack of any
other known terminology, pseudo-integral or pseudo anti-derivative operators. They do
not produce the exact anti-derivatives, but they do produce results or entities that have
a relation to the correct anti-derivatives.

Each extraction element 7}, has a pseudo-inverse 7, such that

T, - T = 1.
Some of these pseudo-inverses T, are

T = —%TH

T; - T{L‘t2

T; - Tyt2

Tj - thz'

Using these pseudo-inverses, the following ratios can be defined as pseudo-integral ele-
ments for a pseudo-integration with respect to =, y, and 2

[; = TJCXTl—F:% IQXT;:% IQT;:% th/Tzz
If = Tyx T =T x Ty =TTy = Ty /Ty
I;r = T, x Tfr = %TZQ X TZJr = %Tzﬂ;Jr = %th2/TZQ.

. + + + + . .
The pseudo-integral operators [ fy , [, sand [ " in the x, y, 2, and unit vector
n=nze; + nyes + n.e3 directions can be defined as

/: R < 2T+) ( xtQ/T2>
/y+ =0 =1 x = (1 2T+) ( t2/T2>
L =07 =Ix = <§T22Tz> ( th/ﬂz)
(n

+
/:a::qx = (nul} +nyl}+n.I) x

This notation is only suggestive as compared to standard calculus. A raised or exponenti-
ated + indicates a pseudo-inverse element, pseudo-inverse operator, or the pseudo-integral
operator, none of which are exact inverses or operators. A pseudo element or operator is
an approximation for an element or operator that does not exist in an exact form. The
pseudo-integral operators should be used with caution as experimental operators unless
specific results are obtained using them.

These operators can be experimented on any DCGA GIPNS 2-vector entity €2, which
may generally represent a Darboux cyclide. For example, an entity {2 may be differen-
tiated into its derivative entity 0,82 = D, x £ and then operated on to produce a third
surface entity called its pseudo-integral entity in the n direction

+
/ 02 = I} x (DyxQ)—CT.

A constant of integration C' is subtracted as the extraction element —C'T} so that the
result corresponds to an implicit surface function F(z,y,z) —C =0.
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X |11 | T Ty T, Tpe |Ty | Tz Ty |Ty: |Tow |Tez | Toge | Tyee | Toge | Ton

L To | 2Tpe+ 5 Te2 | 5Ty +Ten 2Ttz | 0 0 Ty | 0 3Te2 | 5Toe2 | $Tes |0 |0 |0
1 2 1 1 1 1 1 1 1

Lo\ T, 5Ty T2+ ;T2 | 5Ty 0 5Ty |0 Ttz | Ttz | O 5Tye2 |0 4Tei |0 0
1 1 2 1 1 1 1 1 1

LT | 5T 5Ty= T2+ 5Ti2 | O 0 5T=t2 |0 1 Tye2 | 3Twt2 | 5T | O 0 +Tes |0

Table 2. Pseudo-integral operations I} x on extraction elements T’

Table 2 shows the results of pseudo-integral operations on extraction entities. These
results are not the correct anti-derivatives. In most cases, the pseudo-integral operation
transforms an extraction element into an extraction element of a higher degree that
has some relation to the correct anti-derivative. The pseudo-integral operations and the
differential operations may find uses in entity analysis for the manipulation of entities
and the extraction of geometric surface parameters.

4 Examples

4.1 Vector calculus

The vector calculus, also called vector analysis, is standard engineering mathematics.
In this subsection, it is shown how vector calculus concepts can be applied within the
limitations of DCGA.
4.1.1 Dot product

In the subsections that follow, vectors of the form
F = F61+G82+H83

are used, and the coefficients F', GG, and H are always to be taken symbolically as scalars,
even where they are bivector expressions or differential operators.

The dot product F - G of F with another vector G =Ie; + Jey + Kes is symbolically
defined as

F-G = FI+GJ+HK.

The products are non-commutative. For example, F'I is not the same as [ F' unless they
are actually scalars or scalar-valued expressions.
4.1.2 Cross product
The cross product F x G of two vectors
F = F81+GGQ+H83
G = Ie1+Jeg—|—Keg
is symbolically defined as the determinant

€ € €3
FxG = | F G H
I J K
= (GK—HJ)eH—(H[—FK)e2+(FJ—GI)e3
= —GxF

The products are non-commutative. For example, F'J is not the same as JF unless they
are actually scalars or scalar-valued expressions.
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4.1.3 Scalar-valued function or field

Within the limitations of DCGA, a scalar field F' of the form
F(z,y,z) = At'+ Bt>+
Cat? + Dyt? + Ext? +
Fr?+Gy*+ H2? +
Izy+ Jyz+ Kzx +
Lz+My+Nz+0O

can be represented by a DCGA GIPNS 2-vector Darbouz cyclide surface entity 2z. The
function F' is evaluated at a point p=xe; + yes + ze3 as

where P =D(p) is the DCGA point embedding of p.
It will be convenient to identify a scalar function F' with its entity as

F = Qp
and to define the scalar function evaluation operation F(p) as
F(p) = D(p) - Qr=P - Qp
which evaluates the scalar function F' at the point p=xe; + yes + zes.

4.1.4 Vector-valued function or field

Within the limitations of DCGA, a vector field
F(Jj’, y,Z) = F(Jj” y,Z)el—l—G(l’, y72)82+H(x7 y,z)e3

can be represented by functions F', GG, and H, which are scalar functions as defined
in Section 4.1.3. Three entities Qp, ¢, and Qg can be identified with F', G, and H,
respectively. The vector function F is evaluated at a point p=xe; + yes + ze3 as

F(z,y,z)=F(p) = (P-Qr)e;+(P-Qg)es+ (P-Qp)es

where P =D(p) is the DCGA point embedding of p.
It will be convenient to identify a vector function F with its symbolic vector

F = Qre 4+ Qces+ Qpes
and to define the vector function evaluation operation F(p) as
F(p) = (P-Qr)ei+(P-Qg)ea+ (P-Qp)es
which evaluates the vector function F at the point p=xe; + yes + zes.

4.1.5 The gradient operator

The gradient operator V is defined as

V—ﬁe—l—ge%—ge
I AR R P

= a:zsel + aye2 + aze?»
= (Dz X )e1 + (Dy X )eg + (Dz X )83.
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Del V is a symbolic vector-valued operator. The coefficients on e;, e, and ez are bivector-
valued differential operators, but they are algebraically handled as scalars. The differ-
ential operators D, X have the anti-commutative property D, X B =—B x D, and our
definition of V expects a right-hand side operand B, such as VB, V- B, or V x B.

The del operator V can symbolically operate on a scalar function F' as VF', or on a
vector function F as V- F or V x F. In the next subsections, these symbolic operations
are defined as results that are known in vector calculus.

4.1.6 Gradient vector of a scalar field

The vector-valued gradient function VF' of a scalar field F' (per Section 4.1.3) can be
defined as

VF = VQp
= (Da: X Qp)e1 + (Dy X QF)82—|— (Dz X Qp)e3

The product VF' is symbolic and the bivector-valued coefficients on e, e;, and ez are
handled as scalars. The symbolic vector-valued gradient function has bivector-valued
coefficients until it is evaluated at a point into a vector with scalar-valued coefficients.

The vector function evaluation of the vector-valued gradient function VF' at a point
p=1xe;+ yes + zes is

VF(p) = (P . (Dx X QF))e1 + (P . (Dy X QF))e2+ (P . (Dz X QF))e3

where P = D(p) is the DCGA point embedding of p. The evaluation transforms the
coefficients on ey, e,, and e3 into scalar expressions, transforming the symbolic gradient
vector into an algebraic gradient vector result.

4.1.7 Directional derivative of a scalar field

The scalar-valued directional derivative function O0,F of a scalar field F' = Qp in the
direction of a unit directional vector n=n,e; +nyes+n.es can be written

OnF = (VF) - n=(VQp)-n

(Dy x Q2p)er + (Dy, x Qp)es+ (D, x Qr)es) - n
ngDy X Qp) + (nyDy x Qp) + (n.D, x Qp)
V-n)F=(V-n)Qp

((Dy x)e1+ (Dy X )ea+ (D, X )es) -n)Qp
(nyDy x Qp) + (nyDy x Qp) + (n.D, X Qp).

(
(
=
(
(

The product 0,F is symbolic and the bivector-valued coefficients are handled as scalars.
The symbolic scalar-valued directional derivative function is bivector-valued until it is
evaluated at a point into a scalar-valued function.

The scalar function evaluation of the scalar-valued directional derivative function 0, F
at a point p=xe;+ yes + zes is

OF(p) = D) OnF =P -0,F
= P ((n.D; x Qp) + (nyDy x Qp) + (n.D.. x Q)

where P =D(p) is the DCGA point embedding of p.
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4.1.8 Divergence of a vector field

The scalar-valued divergence function V - F of a vector field F (per Section 4.1.4) can be
written
V-F = ((Dz X )91 —+ (Dy X )62 —+ (Dz X )83) . (QF91 + Qgeg + QHeg)
= (DyxQp)+(Dyx Qg)+ (D, x Q).
The dot product V - F is symbolic and the bivector-valued coefficients are handled
as scalars. The symbolic scalar-valued divergence function is bivector-valued until it is
evaluated at a point into a scalar-valued function.

The scalar function evaluation of the scalar-valued divergence function V- F at a point
p=xe;+ ye, + zes is

V-F(p) = P-((D:xQp)+(Dy x Q)+ (D. x Qpy))
where P =D(p) is the DCGA point embedding of p.

4.1.9 Circulation of a vector field

The vector-valued circulation function V x F of a vector field F = Qre; + Qges + Qyes
can be written

(3] €9 €3
VXxF = | D;,x Dyx D,x
Qr Q¢ Qg

(DyxQp— D, xQ¢g)er+
(Dz X QF—DJ; X QH)eg+
(DJ; X QGf—Dy X QF)eg,.

The cross product V x F is symbolic and the bivector-valued coefficients are handled as
scalars. The symbolic vector-valued circulation function has bivector-valued coefficients
until it is evaluated at a point into scalar-valued coefficients.

The vector function evaluation of the vector-valued circulation function V x F at a
point p=ze; + yes+ zes is

VxFpPp) = (P-(DyxQuy—D.xQ¢))e1+
(P-(D,xQr— D, xQp))es+
(P . (Da: X QGf—Dy X QF))e3

where P =D(p) is the DCGA point embedding of p.

4.2 Differential equations

Using the differential elements 0,Ts = Dy, X T given in Table 1, it is possible to write a
differential equation of a limited form and represent it as a scalar-valued function F' that
is identified with an entity €2r. The entity €2z can be a linear combination of ¢ differential
elements

Qp = Z ¢; D, X T,

7
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each having a scalar ¢;. The geometric surface represented by p is the solution set
{p | D) -Qr=0} of all points p for the differential equation F(p)=_0. The entity
Q7 could also be a linear combination of ¢ other differential entities

QF = Z CianiQFi: Z CiDni X QFZ

K3 K3

each having a scalar ¢;.

4.3 Entity analysis

In the G4 1 Conformal Geometric Algebra (CGA), all CGA geometric entities can be
formed as blades and the analysis of blades includes how to extract the parameters
describing an entity [13]. In DCGA, most of the geometric entities cannot be formed as
blades by wedging surface points. Therefore, a different analysis approach is required.

The DCGA differential operators provide the standard operations for analyzing any
DCGA geometric entity. The following subsection shows how to extract parameters from
an ellipsoid entity.

4.3.1 DCGA GIPNS 2-vector ellipsoid entity analysis

The implicit surface equation of an ellipsoid is

. 2 . 2 . 2
Fla,y, )= =Pl =p)l®  (Eopl
% Ty Ty

with center point (p,, py, p.) and radii r,, r,, and 7,. The LHS is the implicit surface
function F(z,y, z). Expanding this function and using the DCGA extraction elements,
the ellipsoid entity can be defined as follows.

The DCGA GIPNS 2-vector ellipsoid entity is defined as

T, T, Te. 2pT. 2pd, 2p.T. p>T0 p>Ty p°Th
E = 7"'_%"'?_ 2 TyQy_ 2 + 2 + ;2 + 2 —Ti.
x y z x Yy z x Yy z

A DCGA point T is on the ellipsoid surface E if the Geometric Inner Product Null Space
(GIPNS) condition T - E=0 holds good.
In standard differential calculus, the paramter r, can be extracted as

ey ey
e = 2 Ox? N 272

and similarly for r, and . Also in standard differential calculus, and using r,, the center
point coordinate p, can be extracted as

N \/_r_%aF<o,o,0>_ r22(0 - pd)
Pz = 2 ox o 2 r2

xT

and similarly for p, and p.. These standard differential operations can be translated into
DCGA differential operations as

= (b % (DoxE))
J(; )
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The evaluation at zero F'(0, 0, 0) is translated into a GIPNS evaluation at the DCGA
origin point e,. The extraction formulas for the parameters of other quadric surfaces are
similar.

If the ellipsoid or other quadric surface is rotated, then the analysis may be more
complicated, but should still be possible by using differential operations to differentiate
with respect to one axis and then another axis to obtain the coefficients of cross terms
and determine the rotated principal axes. It should also be possible to perform inverse
rotations to transform a rotated quadric into a principal axes-aligned quadric that is not
rotated, where the analysis is simple.

5 Conclusion

The DCGA geometric differential operators produce surface entities that represent the
derivative of an implicit surface function that may have the general form of a Darboux
cyclide. For quadric and conic section entities, the symmetric anti-commutator differen-
tial operator can produce a surface entity that represents where the derivative is infinite.
Plotting these surfaces using software such as Gaalop, which is introduced in [11], shows
interesting results that could be researched further.

The differential operators may have many applications not covered in this paper.
For example, the differential and pseudo-integral operators may provide the ability to
manipulate and analyze an entity for purposes such as determining the surface type of an
entity and extracting the implicit surface function parameters. This paper looked at one
example of entity analysis, for the extraction of parameters of a DCGA ellipsoid entity,
but much more could be worked out as a subject of additional research.
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