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Abstract
Maxwell’s Classical Electrodynamics (MCED) shows several related in-
consistencies, as the consequence of a single false premise. The Lorentz
force law of MCED violates Newton’s Third Law of Motion (N3LM) in
case of General Magnetostatics (GMS) current distributions, that are not
necessarily divergence free. A consistent GMS theory is defined by means
of Whittaker’s force law, which requires a scalar magnetic force field, BL.
The field BL mediates a longitudinal Ampère force, similar to the vec-
tor magnetic field, BT , that mediates a transverse Ampère force. The
sum of transverse- and longitudinal Ampère forces obeys N3LM for sta-
tionary currents in general. The scalar field, BΦ, is also a physical, as a
consequence of charge continuity.

MCED does not treat the induction of the electric field, EL, by a time
varying BL field, so MCED does not cover the reason for adding EL to
the superimposed electric field, E. The exclusion of EL from E simplifies
MCED to Classical Electrodynamics (CED). The MCED Jefimenko fields
show a far field contradiction, that is not shown by the CED fields. CED
is based on the Lorentz force and therefore violates N3LM as well.

Hence, we define a General Classical Electrodynamics (GCED) as a
generalization of GMS and CED. GCED describes three types of far field
waves: the longitudinal Φ-wave, the longitudinal electromagnetic (LEM)
wave and the transverse electromagnetic (TEM) wave, with vacuum phase
velocities respectively a, b and c. GCED power- and force theorems are
derived. The general force theorem obeys N3LM only if the three phase
velocities satisfy the Coulomb premise: a � c ∧ b = c. GCED with
Coulomb premise is far field consistent, and resolves the classical 4

3
energy-

momentum problem of a moving charged sphere. GCED with the Lorentz
premise (a = c ∧ b = c) reduces to the inconsistent MCED.

Many experimental results verify GCED with Coulomb premise, and
falsify MCED. GCED can replace MCED as a new foundation of modern
physics (relativity theory and wave mechanics). It might be the inspiration
for new scientific experiments and electrical engineering, such as new wave-
electronic effects based on Φ-waves and LEM waves, and the conversion
of natural Φ-waves and LEM wave energy into useful electricity, in the
footsteps of Nikola Tesla and Thomas Henry Moray.
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1 Introduction

A generalization of Maxwell’s Classical Electrodynamics (MCED) theory [26]
is presented, called General Classical Electrodynamics (GCED), that is free of
inconsistencies. For the development of this theory we make use of the funda-
mental theorem of vector algebra, also known as the Helmholtz decomposition
theorem: a vector function F(x) can be decomposed into two unique vector
functions Fl(x) and Ft(x) , such that:

F(x) = Fl(x) + Ft(x) (1.1)

Fl(x) = − 1

4π
∇
∫
V ′

∇′ · F(x′)

|x− x′|
d3x′ (1.2)

Ft(x) =
1

4π
∇×

∫
V ′

∇′ × F(x′)

|x− x′|
d3x′ (1.3)

The lowercase subindexes ’l’ and ’t’ will have the meaning of longitudinal and
transverse in this paper. The longitudinal vector function Fl is curl free (∇×
Fl = 0), and the transverse vector function Ft is divergence free (∇·Ft = 0).
We assume that F is well behaved (F is zero if |x| is infinite). The proof of the
Helmholtz decomposition is based on the three dimensional delta function δ(x)
and the sifting property of this function, see the following identities:

δ(x) =
−1

4π
∆

(
1

|x|

)
(1.4)

F(x) =

∫
V ′

F(x′) δ(x− x′) d3x′ (1.5)

Let us further introduce the following notations and definitions.
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x, t = x, y, z, t Place and time coordinates

∇=

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
Del operator (in Cartesian coordinates)

∂t =
∂

∂t
Partial differential with respect to time

∆ = ∇ · ∇ ∆Φ = ∇·∇Φ, ∆A = ∇∇·A−∇×∇×A

ρ Net electric charge density distribution

J = Jl + Jt Net electric current density distribution

Φ Net electric charge (scalar) potential

A = Al + At Net electric current (vector) potential

EΦ = −∇Φ Primary electric field

EL = −∂Al

∂t
Field induced divergent electric field

ET = −∂At

∂t
Field induced rotational electric field

BΦ = −∂Φ

∂t
Field induced scalar field

BL = −∇·Al Primary scalar magnetic field

BT = ∇×At Primary vector magnetic field

φ0 � ε20µ0 Fs
2/m3 Polarizability of vacuum

µ0 = 4π10−7 H/m Permeability of vacuum

ε0 = 8.854−12 F/m Permittivity of vacuum

The permittivity, permeability and polarizability of vacuum are constants. The
charge- and current density distributions, the potentials and the fields, are func-
tions of place and not always functions of time. Time independent functions
are called stationary or static functions. Basically, there are three types of
charge-current density distributions:

A. Current free charge J = 0
B. Stationary currents ∂tJ = 0

1. closed circuit (divergence free) ∂tJ = 0 ∧ ∇·J = 0
2. open circuit ∂tJ = 0 ∧ ∇·J 6= 0

C. Time dependent currents ∂tJ 6= 0
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The charge conservation law (also called ’charge continuity’) is true for all types
of charge-current density distributions:

∂ρ

∂t
+∇·J = 0 (1.6)

The physics of current free (J = 0) charge density distributions is called Elec-
trostatics (ES): ∂tρ = −∇·0 = 0. The physics of stationary current (∂tJ = 0)
density distributions is called General Magnetostatics (GMS). A special case of
GMS are divergence free current distributions (∇·J = 0), and this is widely called
Magnetostatics (MS) in the scientific educational literature. In case of Magneto-
statics, the charge density distribution has to be static as well: ∂tρ = −∇·J = 0,
such that the electric field and the magnetic field are both static.

The Maxwell-Lorentz force law satisfies Newton’s third law of motion (N3LM)
in case of Electrostatics and Magnetostatics, however, this force law violates
N3LM in case of General Magnetostatics. A violation of N3LM means that
momentum is not conserved by GMS systems, for which there is no experimental
evidence! This remarkable Classical Physics inconsistency is hardly mentioned
in the scientific educational literature.

This is not the only problematic aspects of MCED. Jefimenko’s electric field
expression, derived from MCED theory, shows two longitudinal electric field
terms that do not interact by induction with other fields, and nevertheless
these two electric fields fall off in magnitude by distance, as far fields, which
is inconsistent. A third inconsistency is the famous 4/3 problem of electric
energy/momentum of a charged sphere. In the next sections we describe these
related inconsistencies of MCED theory in more detail, and how to resolve them.

2 General Magnetostatics

Let J(x) be a stationary current distribution. The vector potential A(x) at
place vector x is given by:

A(x) =
µ0

4π

∫
V ′

J(x′)

r
d3x′ (2.1)

r = x− x′

r = |x− x′|

Since ∂tA = 0 for stationary currents, the electric field equals E = EΦ = −∇Φ,
such that Gauss’ law is given by

∇·EΦ(x, t) =
1

ε0
ρ(x, t) (2.2)

The magnetostatic vector field BT (x) is defined by Biot-Savart’s law as follows:
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BT (x) = ∇×At(x) = ∇×A(x)

= −µ0

4π

∫
V ′

J(x′)×∇
(

1

r

)
d3x′

=
µ0

4π

∫
V ′

1

r3

[
J(x′)× r

]
d3x′ (2.3)

The magnetic field is indeed static, since the current density is stationary.

2.1 Magnetostatics

The magnetic force density, fT (x), that acts transversely on current density
J(x) at place x, is given by:

fT (x) = J(x)×BT (x)

=
µ0

4π

∫
V ′

1

r3
J(x)×

[
J(x′)× r

]
d3x′

=
µ0

4π

∫
V ′

1

r3

[[
J(x) · r

]
J(x′) −

[
J(x′) · J(x)

]
r
]

d3x′

=
µ0

4π

∫
V ′

fT (x,x′) d3x′ (2.4)

This is the Lorentz force density law for Magnetostatics; it is assumed that
the electric force densities are neglibible. Notice that the integrand is non-
reciprocal: fT (x,x′) 6= −fT (x′,x), and that r changes into −r by swapping x
and x′. This means that the Lorentz force law agrees with N3LM, but only if
one calculates the total force on closed on-itself current circuits (magnetostatics
is usually defined for divergence free currents only), which is proven as follows.
Consider two non-intersecting and closed current circuits C and C ′, that carry
the stationary electric currents I and I ′, see for instance [38] pages 4-6. The
currents I and I ′ are equal to the surface integral of the current density over a
circuit line cross section of respectively circuits C and C ′. The total force acting
on circuit C is a double volume integral of the Lorentz force density. We assume
that the currents in C and C ′ are constant for each circuit line cross section,
therefore we replace the double volume integral by a double line integral over
the circuits C and C ′, in order to determine the force, FC , acting on C:
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FC = −µ0II
′

4π

∮
C

∮
C′

dl× (dl′ ×∇
[

1

r

]
)

= −µ0II
′

4π

∮
C′

∮
C

(dl · ∇
[

1

r

]
)dl′ +

µ0II
′

4π

∮
C

∮
C′

(dl · dl′)∇
[

1

r

]

=
µ0II

′

4π

∮
C

∮
C′

(dl · dl′)∇
[

1

r

]
(2.5)

This is Grassmann’s force law [8] for closed current circuits. Since the curl of
a gradient is zero, the first integral (see expression 2.5 after derivation step 1)
disappears. The final integral after derivation step 2 has a reciprocal integrand,
such that the force acting on circuit C ′ is the exact opposite of the force acting on
circuit C (FC = −FC′), in agreement with N3LM. Fubini’s theorem is applicable
in derivation step 1 (switching the integration order in the first integral), since
it is assumed the circuits C and C ′ do not intersect.

The standard literature on Classical Electrodynamics usually defines Magne-
tostatics as the physics of stationary and divergence free (closed circuits) electric
currents. For example, Richard Feynman defines Magnetostatics via Ampère’s
law (∇×B = µJ) such that Magnetostatic current is divergence free and the
electric field is static as well, and such that charge density is constant in time:
∇·J = 0 = ∂tρ, see [11] after eq. 13.13. Feynman further suggests that the cir-
cuits ’may’ contain batteries or generators that keep the charges flowing. Sure,
Feynman must have been joking [12]: ”a battery delivers electric current and
its charge density does not change in time” (a perpetuum mobile). Faraday’s
homopolar disk generator generates stationary currents, so a ’stationary closed
current loop’ can be induced with such a generator. One has to measure the
force on the entire closed circuit that includes the generator as well, while the
generator is externally driven with constant speed. Such a magnetostatic force
experiment has yet to be done, so Feynman’s generator suggestion was just
another joke. John D. Jackson’s third edition of Classical Electrodynamics pos-
tulates without proof that ∇·J = 0 = ∂tρ (charge density is time-independent
anywhere in space, see [22], equation 5.3) before Jackson treats the laws of
magnetostatics. David J. Griffiths’ treatment of magnetostatics [16] is likewise:
”stationary electric currents are such that the density of charge is constant any-
where”, which is equivalent with stationary currents that are divergence free.
It is the same old story with Alexander Altland’s publication on Classical Elec-
trodynamics [3]: ’statics’ is defined as ’static electric fields and static magnetic
fields’, and again this implies that ∇·J = 0 = ∂tρ. The list goes on.

It is not at all straightforward to find practical examples of a measured force
exerted on a perfectly closed-on-itself stationary current circuit. The Meisner
effect is such an example: a free falling permanent magnet approaches a super-
conductor, which induces a closed-circuit current in the superconductor. The
magnet falls until the induced currents and magnetic field of the superconductor
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perfectly opposes the field of the magnet, which causes the magnet to levitate,
and from that moment on the superconductor current is stationary and diver-
gence free. Electrically charged rotating objects also represent closed-circuit
currents, however, it seems impractical to measure forces on such objects while
keeping the rotation speed constant during the measurements. The measure-
ment of forces exerted on several coil windings gives the impression of perfectly
closed current loops, however, this is only by approximation true.

Many stationary current experiments have been conducted to measure the
force on a circuit that is not closed-on-itself. One can perform such experiments
by applying two sliding contacts in order to enable a rotation- or translation
motion of a circuit part that is non-closed, such that a force can be measured on
just this movable circuit part. Faraday’s homopolar disk motor is an example
of this principle. Stefan Marinov’s Siberian Coliu motor [25] is another example
of a two sliding contacts motor, driven by a stationary current. Another type of
non-closed current circuits make use of light weight movable batteries, such that
sliding contacts can be avoided. This shows that the condition ∇·J = 0 = ∂tρ,
as well as the conditions ∇×B = µJ and ∂tE = 0, are artificial and superfluous
for exploring the physics of stationary currents.

The most likely reason for reducing GMS to MS with the unnatural condition
of divergence free currents, is to obscure mathematically the violation of N3LM
by Grassmann’s force law and by the Maxwell-Lorentz force density law. MCED
has to be replaced by a theory that is consistent with Classical Mechanics,
starting with a consistent GMS theory.

2.2 A consistent General Magnetostatics

Figure 1: Open stationary current circuits

We continue first with the derivation of a consistent GMS theory that includes
open circuit stationary current distributions, see Figure 1. From the continuity
of charge it follows that Jl = −ε0∂t(EΦ), hence the generalized Ampère law for
GMS becomes:
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∇×BT −
1

c2
∂EΦ

∂t
= µ0J (2.6)

The first suggestion, in order to fix Grassmann’s force law, is simple: just drop
the first integral in eq. 2.5 after derivation step 1, such that the resulting
force law agrees with N3LM for open circuits. However, this force law cannot
be generalized to a field force density law, and if we drop the concept of the
magnetic field, we also do away with the successful electromagnetic free field
theory. An analysis of Ampère’s original force law by E. T. Whittaker [44]
(p.91), resulted in the following Whittaker force law,

FC =
µ0II

′

4π

∫
C

∫
C′

1

r3
[(dl′ · r)dl + (dl · r)dl′ − (dl · dl′)r)] (2.7)

which is Grassmann’s force law with an extra term. Both force laws predict the
same force acting on closed on-itself circuits, since the line integral of the extra
term over a closed circuit disappears as well. In general Whittaker’s force law
is reciprocal (FC = −FC′), also for non-closed circuits, and obeys N3LM. By
means of the following functions, defined as follows,

BL(x) = −∇·Al(x) = −∇·A(x)

= −µ0

4π

∫
V ′

J(x′) · ∇
(

1

r

)
d3x′

=
µ0

4π

∫
V ′

1

r3

[
J(x′) · r

]
d3x′ (2.8)

fL(x) = J(x)BL(x) (2.9)

we generalize Whittaker’s force law as a double volume integral of field force
densities, see [41](eq. 13), and [36]:

∫
V

[fL(x) + fT (x)] d3x =

∫
V

[J(x)BL(x) + J(x)×BT (x)] d3x =

µ0

4π

∫
V

∫
V ′

1

r3

[[
J(x′) · r

]
J(x) +

[
J(x) · r

]
J(x′) −

[
J(x′) · J(x)

]
r
]

d3x′ d3x

(2.10)

This double volume integral of force densities satisfies N3LM for stationary
current densities in general, since the integrand is reciprocal. The additional
force density, fL, is called the longitudinal Ampère force density, which balances
the transverse Ampère force density, fT , such that the total Ampère force density
f(x) = fL(x) + fT (x) satisfies f(x) = −f(x′), see figure 2.
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Figure 2: Total Ampère force density

It is obvious that the scalar function BL is a physical field that mediates an
observable Ampère force, just like the vector magnetic field BT , and therefore
it is called the scalar magnetic field [29]. By means of the identities 1.4 and 1.5
and the definitions 2.3 and 2.8, we derive the following equations:

∇BL(x) +∇×BT (x) = −∆A(x) = µ0J(x) (2.11)

∇BL(x) = −∇∇·Al(x) = µ0Jl(x) (2.12)

∇×BT (x) = ∇×∇×At(x) = µ0Jt(x) (2.13)

The following GMS condition follows from eq. 2.6, 2.11 and 3.1, and is known
as the Lorenz condition [24]:

∇( BL + ε0µ0BΦ ) = 0 (2.14)

This GMS condition is not a free to choose ”gauge” condition. If the scalar
function BL has the meaning of a physical field, then Lorenz’s condition shows
that the scalar function BΦ also has the meaning of a physical field. So far we
have shown a consistent GMS theory in agreement with classical mechanics.

3 General Classical Electrodynamics

We continue to develop the theory of General Classical Electrodynamics for the
general situation of time dependent currents, taking into account the physical
scalar fields BL, BΦ and the near field equations 2.2, 2.12 and 2.13.

9



3.1 Generalized secondary field induction

The field induction equations, describing the general induction of secondary
fields by primary time dependent fields, follow directly from the field definitions
and the fact that the operators ∇, ∇· and ∇× commute with ∂t:

∇BΦ −
∂EΦ

∂t
= −∇∂Φ

∂t
+
∂(∇Φ)

∂t
= 0 (3.1)

∇·EL −
∂BL
∂t

= −∇· ∂Al

∂t
+
∂(∇·Al)

∂t
= 0 (3.2)

∇×ET +
∂BT

∂t
= −∇× ∂At

∂t
+
∂(∇×At)

∂t
= 0 (3.3)

This is the generalization of Faraday’s law of induction [10]. A divergent electric
field EL is induced by a time varying scalar magnetic field BL, see eq. 3.2. The
induction of EL is similar to the Faraday induction of electric field ET (see eq.
3.3), and will be called Nikolaev’s electromagnetic induction, after G.V. Nikolaev
[29] who described this type of induction for the first time. Electric fields are
sourced by static charges, or induced by time varying vector- and scalar magnetic
fields. According to the superposition principle, a superimposed electric field is
defined as E = EΦ + EL + ET = −∇Φ− ∂tA. Notice that El = EΦ + EL and
that Et = ET .

3.2 A simplification of Maxwell’s CED

Maxwell’s famous treatise on electricity and magnetism does not define the
fields BL and BΦ, nor does it define Nikolaev’s induction of the curl-free electric
field EL (see eq. 3.2). Nevertheless Maxwell defined the superimposed electric
field as follows: E = EΦ + EL + ET . This is a mistake: if the field BL is
excluded from the theory, then the electric field EL should be excluded from
the theory as well. The superimposed electric field can be defined only as
E = EΦ + ET , within the context of a theory that does not treat scalar fields.
Only this superimposed electric field is well understood by the experiments
known in Maxwell’s time. Disregarding the field EL reduces the complexity of
MCED considerably, and fixes the indeterminacy (gauge freedom) of MCED,
since the electric field EΦ + ET is not invariant with respect to the ”gauge”
transform [1]:

EΦ + ET = E (3.4)

∇·E = ∇·EΦ =
1

ε0
ρ (3.5)

∇×E = ∇×ET = −∂BT

∂t
(3.6)

∇×BT − ε0µ0
∂(EΦ + ET )

∂t
= µ0J (3.7)
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Completed with the Lorentz force law, these field equations are simply called
Classical Electrodynamics (CED). From the charge continuity law follows the
next ’displacement current’ equation:

−ε0
∂EΦ

∂t
= Jl (3.8)

Substraction of eq. 3.8 from eq. 3.7 gives the following equation.

∇×BT − ε0µ0
∂ET
∂t

= µ0Jt (3.9)

The presence of Maxwell’s displacement current term ε0 ∂tET in eq. 3.7 and 3.9
does not follow from the charge continuity law, because its divergence is zero.
The addition of this speculative term (ε0 ∂tET ) to the Ampère law gives the
Maxwell-Ampère law (eq. 3.7), which allows for derivation of the wave equations
for the transverse electromagnetic (TEM) wave. H. Hertz famously proved the
existence of the TEM wave by experiment [17], and this alone justified Maxwell’s
speculation. Rewriting eq. 3.5 and eq. 3.9 in terms of the potentials gives:

−∆Φ =
1

ε0
ρ (3.10)

ε0µ0
∂2At

∂t2
+∇×∇×At = µ0Jt (3.11)

CED does not require ”gauge” conditions in order to find decoupled inhomoge-
neous differential equations for the potentials. Within the context of MCED,
the indeterminacy (gauge freedom) of the potentials is the direct consequence of
Maxwell’s illogical addition of the electric field EL to the superimposed electric
field. These potential equations have the following solutions.

Φ(x, t) =
1

4πε0

∫
V ′

ρ(x′, t)

r
d3x′ (3.12)

At(x, t) =
µ0

4π

∫
V ′

Jt(x
′, tc)

r
d3x′ (3.13)

r = |x− x′| c =
1

√
ε0µ0

tc = t− r

c
(3.14)

The net charge potential Φ is instantaneous at a distance, while the net current
potential At is retarded with time interval r/c, relative to current potential
sources at a distance r. The following expressions are Jefimenko’s field solutions,
derived from the retarded potentials of MCED in the Lorenz gauge:
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BT (x, t) =
µ0

4π

∫
V ′

[
Jt(x

′, tc)× r

r3
+

J̇t(x
′, tc)× r

cr2

]
d3x′ (3.15)

E(x, t) =
1

4πε0

∫
V ′

[
ρ(x′, tc)r

r3
+
ρ̇(x′, tc)r

cr2
− J̇l(x

′, tc)

c2r
− J̇t(x

′, tc)

c2r

]
d3x′

(3.16)

The Jefimenko field expressions do not depend on the choice for gauge condition
[21]. Notice that Jefimenko’s magnetic field depends only on the divergence free
current density, Jt. The second term and third term of the integrand of eq. 3.16
are longitudinal electric far fields that fall off in magnitude by r. These two far
field terms represent an inconsistency, since far fields are defined as two fields
that induce each other in turn, and MCED does not describe the two other far
fields that mutually induce these longitudinal electric far fields. This is the far
field inconsistency of MCED. The two missing far fields are BΦ and BL. We
derive similar CED field functions from the potential functions 3.12 and 3.13,
and definition 3.4:

BT (x, t) =
µ0

4π

∫
V ′

[
Jt(x

′, tc)× r

r3
+

J̇t(x
′, tc)× r

cr2

]
d3x′ (3.17)

E(x, t) =
1

4πε0

∫
V ′

[
ρ(x′, t)r

r3
− J̇t(x

′, tc)

c2r

]
d3x′ (3.18)

The second term in equations 3.18 and 3.17 are the far fields of the transverse
electromagnetic wave. Since these two fields induce each other and fall off by r,
CED is manifestly far field consistent.

N3LM describes the motion of bodies that have mass; this law does not take
into account the momentum of massless electromagnetic radiation. N3LM can
be replaced by the more general principle of momentum conservation of the sum-
mation of mass- and massless radiation momentum. However, MCED violates
this principle as well: circuits of stationary currents do not send or receive free
electromagnetic radiation, and it was already shown that the Grassmann forces
acting on non-closed circuits of stationary currents violate N3LM. The presented
CED theory is also inconsistent with classical mechanics, in case Jl 6= 0, since
it is based on the Lorentz force law.

If Jl = 0 then CED is a consistent theory, as a special case of a more general
consistent theory. If Jl = 0 then also the second and third term in the integrand
of eq. 3.16 disappear, however, MCED still differs from CED: the first integrand
term of eq. 3.16 is retarded, while the first integrand term of eq. 3.18 is
instantaneous.
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3.3 Generalized ’displacements’ and wave types

In order to complete GCED, we combine the consistent GMS theory and CED
theory. Since GCED also treats the interaction of the source Jl and the fields
BL, BΦ, EL, it is necessary to define the superimposed electric field as E =
EΦ + EL + ET . We already generalized Faraday’s field induction law in §3.1.
Next, we generalize Maxwell’s speculative addition of the displacement current
term (see eq. 3.9), as follows.

∇·EΦ − φ0

ε0

∂BΦ

∂t
=

φ0

ε0

∂2Φ

∂t2
−∇·∇Φ =

1

ε0
ρ (3.19)

∇BL − λ0µ0
∂EL
∂t

= λ0µ0
∂2Al

∂t2
−∇∇·Al = µ0Jl (3.20)

∇×BT − ε0µ0
∂ET
∂t

= ε0µ0
∂2At

∂t2
+∇×∇×At = µ0Jt (3.21)

A displacement charge, φ0 ∂tBΦ, and a second displacement current, λ0 ∂tEL,
are added as well. The extra theoretical predictions by GCED are testable, as
before Maxwell’s TEM wave prediction was tested by Hertz. The constant, φ0,
is called the polarizability of vacuum. In case of a stationary current potential
(∂tA = 0), the GCED equations 3.20 and 3.21 reduce to the GMS equations 2.12
and 2.13, such that GCED will obey N3LM for open circuit stationary current
distributions by deducing the correct force theorem later on. The following
inhomogeneous field wave equations can be derived from eq. 3.1, 3.2, 3.3 and
3.19, 3.20, 3.21.

φ0

ε0

∂2EΦ

∂t2
−∇∇·EΦ = − 1

ε0
∇ρ (3.22)

φ0

ε0

∂2BΦ

∂t2
−∇·∇BΦ = − 1

ε0

∂ρ

∂t
(3.23)

λ0µ0
∂2EL
∂t2

−∇∇·EL = −µ0
∂Jl
∂t

(3.24)

λ0µ0
∂2BL
∂t2

−∇·∇BL = −µ0∇·Jl (3.25)

ε0µ0
∂2ET
∂t2

+∇×∇×ET = −µ0
∂Jt
∂t

(3.26)

ε0µ0
∂2BT

∂t2
+∇×∇×BT = µ0∇×Jt (3.27)

These wave equations describe the Transverse Electromagnetic (TEM) wave and
two types of longitudinal electric waves. One type of longitudinal electric wave
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is expressed only in terms of the electric charge potential Φ, so it is not induced
by electric currents, see eq. 3.22 and 3.23. It will be called a Φ-wave. The
second type of longitudinal electric wave is associated with the curl free electric
current potential, see eq. 3.24 and 3.25, and it will be called a Longitudinal
Electromagnetic (LEM) wave. The following notations for the phase velocities
of these wave types is used.

a =

√
ε0
φ0
, b =

√
1

λ0µ0
, c =

√
1

ε0µ0
(3.28)

Initially we assume that the values of these phase velocities are independent
constants, hence the introduction of the new constants λ0 and φ0.

3.4 Generalized power- and force theorems

Three power- and force laws can be derived that are associated with the Φ-wave,
the LEM wave and the TEM wave. The power- and force law for the Φ-wave
fields BΦ and EΦ are derived from eq. 3.1 and 4.1:

ρBΦ = −φ0

2

∂B2
Φ

∂t
− ε0

2

∂E2
Φ

∂t
+ ε0∇·(BΦEΦ) (3.29)

ρEΦ = φ0(∇BΦ)BΦ + ε0(∇·EΦ)EΦ − φ0
∂(BΦEΦ)

∂t
(3.30)

The power- and force law for the LEM wave fields BL and EL are derived from
eq. 3.2 and 4.2:

EL · Jl = − 1

2µ0

∂B2
L

∂t
− λ0

2

∂E2
L

∂t
+

1

µ0
∇·(BLEL) (3.31)

BLJl =
1

µ0
(∇BL)BL + λ0(∇·EL)EL − λ0

∂(BLEL)

∂t
(3.32)

The power- and force law for the TEM wave fields BT and ET are derived from
eq. 3.3 and 4.3:

ET · Jt = − 1

2µ0

∂B2
T

∂t
− ε0

2

∂E2
T

∂t
+

1

µ0
∇·(BT ×ET ) (3.33)

BT × Jt =
1

µ0
BT ×∇×BT + ε0ET ×∇×ET − ε0

∂(BT ×ET )

∂t
(3.34)

Similar energy flux vectors as Poynting’s vector for the TEM wave, −BT ×ET ,
can be defined for the Φ-wave: BΦEΦ (see the last term in eq. 3.29 and in
eq. 3.30), and for the LEM wave: BLEL (see the last term in eq. 3.31 and in
eq. 3.32). For very small values of φ0, the Φ-wave contribution to momentum
change becomes very small as well, and yet the Φ-wave contribution to power
flux might be substantial!
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Notice that the fields in these power- and force theorems are not superimposed
fields. The most general power- and force theorems should be expressed in terms
of superimposed fields, and these are defined as follows:

E = EΦ + EL + ET (3.35)

E∗ =
1

c2
EΦ +

1

b2
EL +

1

c2
ET (3.36)

B =
1

c2
BΦ + BL (3.37)

B∗ =
1

a2
BΦ + BL (3.38)

The field equations 3.19, 3.20, 3.21 are rewritten in terms of these fields.

∇·E − ∂B∗

∂t
=

1

ε0
ρ (3.39)

∇B +∇×BT − ∂E∗

∂t
= µ0J (3.40)

General power- and force theorems follow from eq. 3.39 and 3.40:

E · J + c2Bρ = − 1

µ0
[E · ∂E

∗

∂t
+ BT ·

∂BT

∂t
+B

∂B∗

∂t
]

− 1

µ0
∇(E×BT −EB) (3.41)

ρE + J×BT + (
ε0
λ0

Jl + Jt)B
∗ = ε0(∇·E)E +

1

µ0
(∇×E)×E∗

+
1

µ0
(∇B +∇×BT )×BT

+(ε0∇BΦ +
ε0
λ0µ0

∇BL +
1

µ0
∇×BT )B∗

−ε0
∂(EB∗)

∂t
− 1

µ0

∂(E∗ ×BT )

∂t
(3.42)

In eq. 3.42, the expression ( ε0λ0
Jl + Jt) has to equal J in order to deduce the

force law of eq. 2.10 that satisfies N3LM. Therefore, the following condition is
generally true: λ0 = ε0 (b = c). Applying this condition, the general power-
and force theorems become (if b = c then E∗ = 1

c2E):
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E · J + c2Bρ = −ε0
2

∂E2

∂t
− 1

2µ0

∂BT
2

∂t
− B

µ0

∂B∗

∂t

− 1

µ0
∇(E×BT −EB) (3.43)

ρE + J×BT + JB∗ = ε0((∇·E)E + (∇×E)×E)

+
1

µ0
(∇B +∇×BT )×BT

+
1

µ0
(∇B +∇×BT )B∗

−ε0
∂(EB∗ + E×BT )

∂t
(3.44)

If the value of the Φ-wave phase velocity ’a’ is very high, then B∗ = BL by
approximation (see def. 3.38), such that Whittaker’s reciprocal force law follows
directly from force theorem 3.44. Should a = c be true, or for instance a � c?
From the law of charge continuity and the two scalar field wave equations (see
eq. 3.23 and 3.25, and apply λ0 = ε0), the following equation is derived:

1

c2
∂2B∗

∂t2
−∇·∇B = 0 (3.45)

For stationary current distributions the scalar fields are independent of time,
such that eq. 3.45 reduces to eq. 2.14, and such that B = 0 (the Lorenz
condition). Plugging the Lorenz condition in the definition of B∗, we derive
that B∗ = (1 − c2/a2)BL, and consequently the scalar field force density (see
force theorem 3.44) equals JB∗ = J(1 − c2/a2)BL . Since a scalar magnetic
field force density is required that is equal to JBL, in order to satisfy N3LM,
we conclude that a � c is generally true. This is the crux of GCED theory.
For stationary currents, the GCED power- and force theorems reduce to:

EΦ · J = −ε0
2

∂E2
Φ

∂t
− 1

µ0
∇(EΦ ×BT ) (3.46)

ρEΦ + J×BT + JB∗ = ε0(∇·EΦ)EΦ +
1

µ0
((∇×BT )×BT + (∇×BT )B∗)

−ε0
(
∂EΦ

∂t
B∗ +

∂EΦ

∂t
×BT

)
(3.47)

This shows that the energy flow carried by a stationary current (for example,
from a battery to an energy dissipating resistor [14]) only depends on the ’static’
electric field and the vector magnetic field (EΦ×BT ), where stationary current
forces depend also on the scalar magnetic field.
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3.5 The Coulomb premise versus the Lorentz premise

We will call the generally true assumption, a� c, the Coulomb premise, after
Charles Augustin de Coulomb, which can be expressed as B∗ = BL, and is not
to be confused with the Coulomb ”gauge” condition, BL = 0. Likewise, the
Lorenz ”gauge” condition, B = 0, and is not to be confused with the assumption
a = c (B∗ = B), which we call the Lorentz premise, after Hendrik Antoon
Lorentz. The Lorentz premise reduces GCED to MCED, which disobeys the
conservation of momentum, and for this reason this premise is generally false.
This is proven as follows: with a = c (B∗ = B), eq. 3.45 becomes:

1

c2
∂2(B)

∂t2
−∇·∇(B) = 0 (3.48)

Eq. 3.48 implies that ”the superimposed scalar field only exists as a free field
wave, that isn’t sourced by any charge current density distribution. Without a
source, B cannot exist, and therefore we can set B = 0”. It is easy to verify
that GCED with B = B∗ = 0 reduces to MCED. The following proposition
from Quantum Physics theory: ’the linearly dependent ”scalar” photon and
”longitudinal” photon do not contribute to field observables’, is based on the
false Lorentz premise as well, and therefore this statement is questionable.

Since GCED requires the Coulomb premise for consistency with Classical Me-
chanics, this theory is not invariant with respect to the ”gauge” transform. The
formal ”gauge” transform is an unnecessary and needlessly confusing mathemat-
ical concept within the context of MCED, which is inconsistent anyway. The
potentials of GCED with Coulomb premise are determinate and physical, such
that a unique solution of charge-current potentials describes the physics of a
particular charge-current distribution. Hence, the so called ”gauge” conditions
are physical conditions for physical potentials.

3.6 Retarded potentials and retarded fields of GCED

Since a � c, and b = c, the scalar- and vector potentials are solutions of the
following decoupled inhomogeneous wave equations:

1

a2

∂2Φ

∂t2
−∆Φ =

1

ε0
ρ (3.49)

1

c2
∂2A

∂t2
−∆A = µ0J (3.50)

The solutions of these wave equations are the following retarded potentials:
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Φ(x, t) =
1

4πε0

∫
V ′

ρ(x′, ta)

r
d3x′ (3.51)

A(x, t) =
µ0

4π

∫
V ′

J(x′, tc)

r
d3x′ (3.52)

r = |x− x′| ta = t− r

a
tc = t− r

c

The four retarded fields, derived from these potentials, are:

BΦ(x, t) =
1

4πε0

∫
V ′

−ρ̇(x′, ta)

r
d3x′ (3.53)

BL(x, t) =
µ0

4π

∫
V ′

[
Jl(x

′, tc) · r
r3

+
J̇l(x

′, tc) · r
cr2

]
d3x′ (3.54)

BT (x, t) =
µ0

4π

∫
V ′

[
Jt(x

′, tc)× r

r3
+

J̇t(x
′, tc)× r

cr2

]
d3x′ (3.55)

E(x, t) =
1

4πε0

∫
V ′

[
ρ(x′, ta)r

r3
+
ρ̇(x′, ta)r

ar2
− J̇l(x

′, tc)

c2r
− J̇t(x

′, tc)

c2r

]
d3x′

(3.56)

We identify three near field terms, that fall off in magnitude by r2, and six far
field terms of the Φ, LEM and TEM waves, that fall off in magnitude by r, so
GCED is far field consistent. Beside ES and GMS, we define two extra types of
charge-current distributions with restricted behaviour: Quasi Dynamics (QD)
with a→∞ , and Quasi Statics (QS) with a→∞ ∧ c→∞ .

In case of QD, there is no noticeable retardation of the Coulomb field, EΦ,
and the scalar potential, Φ ( ta = t), which is also described as ’instantaneous
action at a distance’ [4]. The length of the circuit is much smaller than the
wavelength of the far Φ-wave, such that detection of a far Φ potential gradient
is impossible: the second term in eq. 3.56 becomes zero. The induction law
3.1 is still needed, since the secondary field BΦ does not disappear for quasi
dynamics. In case of QS, also the second term in eq. 3.54 and eq. 3.55 become
zero. The induction laws for the secondary fields EL and ET are still required
for quasi statics, since the third and fourth term in eq. 3.56 do not disappear.

3.7 The 4/3 problem of Maxwell’s electromagnetism

According to MCED, the electrostatic energy, Ee, and the electromagnetic mo-
mentum, pe, of an electron with charge qe (that is distributed on the surface
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of a sphere with classical electron radius, re) which has a constant speed v, are
the following expressions:

Ee =
1

2

1

4πε0

q2
e

re
= mec

2 (3.57)

pe =
2

3

µ0

4π

q2
e

re
v = m′ev (3.58)

Notice that m′e = 4
3me, and this is inconsistent. David E. Rutherford solved

the 4/3 problem of MCED rigorously [34]. First, Rutherford reasoned that the
electrostatic energy of the electron is twice that of expression 3.57, see [35],
since the work rate (in order to charge the electron sphere with radius re with a
charge qe) is equal to ∂t(qΦ) = ∂t(q)Φ + q∂t(Φ), and not just equal to ∂t(q)Φ.
This reasoning is supported by our GCED power theorem, see the left hand side
of eq. 3.43. Considering only the net charge potential, Φ, the power density is:
∇Φ · J + ∂t(Φ)ρ. The electron volume integral of ∇Φ · J equals Φ∂t(q), and
the electron volume integral of ∂t(Φ)ρ equals ∂t(Φ)q. Thus, the energy flow of
charging the electron sphere equals ∂t(qΦ). This shows that the 4/3 problem
is in fact a 2/3 problem: an electromagnetic momentum of 1

3mev is missing.
Next, Rutherford evaluates the electromagnetic momentum by using the fol-

lowing electromagnetic momentum density expression: ε0(BLE + E×BT ), see
[34]. This evaluation is supported by the GCED force theorem, see the last term
of eq. 3.44, and apply the Coulomb premise B∗ = BL. The volume integral
of the extra electromagnetic momentum density ε0(BLE) equals the missing
1
3mev momentum. Rutherford’s expressions for the electrostatic energy and the
electromagnetic momentum are:

Ee =
1

4πε0

q2
e

re
= mec

2 (3.59)

pe =
µ0

4π

q2
e

re
v = m′ev (3.60)

Now we have me = m′e, which is consistent. Obviously, GCED with the
Coulomb premise is the most natural theory that solves the 4

3 problem. This
shows that the mass of the electron is entirely electrostatic energy, and the mo-
mentum of the electron is entirely electromagnetic. Rutherford’s rigorous solu-
tion of the 4/3 problem can also be understood as the non-relativistic GCED
derivation of the famous equation, E = mc2, for a moving charge with speed v.

3.8 A distribution of identical charges

A charge density ρ(x) and a current density J(x) can be defined in terms of the
charge of particles, qk (k = 1, 2, ..., n), and in terms of the velocity of particles,
vk, where vk is the velocity of the kth particle. Assumed that the particles
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reside in a volume Vx, which includes the place coordinate x, the charge- and
current density are defined as follows:

ρ(x) = lim
Vx→0

1

Vx

n∑
k=1

qk (3.61)

J(x) = lim
Vx→0

1

Vx

n∑
k=1

qkvk (3.62)

For the special case that the particles have an identical charge (qk = q) at all
places under consideration, the charge- and current density are defined as:

ρ(x) = lim
Vx→0

nq

Vx
(3.63)

J(x) = lim
Vx→0

nq

Vx

1

n

n∑
k=1

vk (3.64)

A simple relation between charge- and current density follows from the definition
of the average velocity distribution, v(x), for a distribution of identical charges:

v(x) =
1

n

n∑
k=1

vk (3.65)

J = ρv (3.66)

The identity J = ρv does not hold for a distribution of particles with dissimilar
charges, for example: an electrically neutral metallic wire with ρ = 0 that carries
a current I. However, the low resistance wires of electrical circuits usually have
excess surface charge, such that Poynting’s vector expresses the wire energy flow
to dissipative resistors [14]. For high voltage high frequency circuits the excess
surface charge is very high, such that eq. 3.66 applies. An electronic vacuum
tube also shows a high excess of electrons. For a distribution of identical charges,
with J = ρv, we can express the power density or work rate density as the dot
product of force density and average velocity, f ·v, at a given position and time.
Within the context of GCED, the work rate density is (see eq. 3.44):

(ρE + ρv ×BT + ρvB∗) · v = E · J + ρ|v|2B∗ (3.67)

This expression has to be equal to the left hand side of the GCED power theorem
(see eq. 3.43), which results in the following relation between B and B∗:

B∗ =
c2

|v|2
B (3.68)

This identity is plugged in eq. 3.45 to obtain the following wave equations:
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1

|v|2
∂2B∗

∂t2
−∇·∇B∗ = 0 (3.69)

1

|v|2
∂2B

∂t2
−∇·∇B = 0 (3.70)

such that the fields BΦ and BL satisfy the following equations (a� c):

(
|v|2

a2
− 1)BΦ = (c2 − |v|2)BL (3.71)

1

|v|2
∂2BΦ

∂t2
−∇·∇BΦ = 0 (3.72)

1

|v|2
∂2BL
∂t2

−∇·∇BL = 0 (3.73)

With eq. 3.68, the field equations 3.39 and 3.40 become

∇·E − c2

|v|2
∂B

∂t
=

1

ε0
ρ (3.74)

∇B +∇×BT − 1

c2
∂E

∂t
= µ0ρv (3.75)

If it is further assumed that the charged particles all have a constant average
speed v at all space-time coordinates, then the elimination of the field B results
in a wave equation for the electric field:

1

|v|2
∂2E

∂t2
+

c2

|v|2
∇×∇×E− ∇∇·E = − 1

ε0

(
∇(ρ) +

1

|v|2
∂(ρv)

∂t

)
(3.76)

This equation expresses a combined LEM Φ-wave (with phase velocity |v|) and
TEM wave (with phase velocity c). GCED theory predicts that a distribution of
identical charges, that have a constant average velocity v, may naturally show
a travelling LEM wave and a travelling Φ-wave, with phase velocity equal to
the average particle speed, v. In that case, the charge- and current density
distribution behaves as a wave with constant phase velocity. This is known as a
travelling Charge Density Wave (CDW). The combined LEM wave and Φ-wave
mode in high voltage high frequency circuits explains the very high energy flow
over very thin single wire transmission lines [9]. The ’density functional theory’
model of a single free electron, which is a charge density oscillation-wave of only
negative charge [19], could benefit from GCED theory. If we substitute |v| = c,
or |v| = a� c, then eq. 3.76 reduces to well known equations.
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4 Review of electrodynamics experiments

4.1 The hyperluminal Coulomb near field

Hyperluminal evanescent ’tunneling’ of fields has been reported [30]. Usually
such effects are explained as quantum effects, however, GCED with the Coulomb
premise (a � c) explains such effects simply as a Coulomb near field with
’hyperluminal’ speed, see also [45]. The authors of [33] experimentally proved
that the Coulomb near field of a uniformly moving electron beam is ”rigidly
carried by the beam itself”, which is further described as follows: the Coulomb
near field travels with infinite velocity. This result can also be understood as
a finite hyperluminal Coulomb field velocity. It is impossible to explain these
experiments, that prove the Coulomb near field is hyperluminal, by means of
the Jefimenko electric field expression, since this expression shows a Coulomb
near field retardation of r/c. Hyperluminal Coulomb near field results agree
with N3LM, as a matter of fact, since the Coulomb premise is required for
consistency of GCED with N3LM.

4.2 General Magnetostatic force experiments

First of all, the historic Magnetostatic force experiments carried out by Ampère,
Gauss, Weber and other famous scientist, are mainly examples of open circuit
currents. It is certain that batteries or capacitor banks were used as electric
current sources and current sinks that typically show time varying charge den-
sities and divergent currents at the current source/sink interface. Specific Gen-
eral Magnetostatic experiments such as Ampère’s historic hairpin experiment,
demonstrate the existence of the longitudinal Ampère force [23] [37] [2]. In par-
ticular, Stefan Marinov [25] and Genady Nikolaev [29] published on the results of
several GMS force experiments that prove the existence of longitudinal Ampère
forces. Nevertheless, it is difficult to show that this force is proportional to the
inverse square of the distance between interacting currents. Nikolaev pointed
out that the Aharonov Bohm effect is explainable as a longitudinal Ampère
force, acting on the free electrons that pass through a double slit and pass a
shielded solenoid on both sides of the solenoid. Such a force does not deflect the
free electrons, and it slightly decelerate (delay) or accelerate (advance) the elec-
trons, depending on which side the electrons pass the solenoid, which explains
classically the observed phase shift in the interference pattern.

4.3 Nikolaev’s electromagnetic induction

As far as we know, not many experiments have been done yet to verify or falsify
Nikolaev’s induction law, see eq. 3.2. Primary sinusoidal divergent currents
induce a secondary sinusoidal divergent electric field EL and similar secondary
currents (depending on the resistive load in the secondary ’circuits’), such that
the secondary currents are at least 90 degrees out of phase with the primary
currents.
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4.4 The induction of BΦ

The field BΦ only exists as far field, so observable effects of this type of field are
not similar to near field force interaction, but through the emission and reception
of Φ-wave energy. In order to achieve high BΦ fields, one needs to induce
high electric charge potential amplitudes with high frequencies. For example, a
very high voltage Tesla coil transformer, or a controlled high voltage discharge
device, are suitable for this purpose. Probably the highest BΦ fields are induced
by means of collective tunneling of many electrons through a potential energy
barrier, since the tunneling of electrons is practically instantaneous. The Φ-
wave energy flux vector ε0BφEΦ also depends on the magnitude of the electric
field, which can be optimized as well.

4.5 Longitudinal electric waves

The development of GCED was motivated by the remarkable achievements of
the electrical engineer Nikola Tesla. Tesla described his long distance electric
energy transport system as the transmission of longitudinal electric waves, con-
ducted by a single wire or the natural media, including the aether. Mainstream
physics describes a longitudinal electric wave only as a sound wave conducted
by a material medium (that has a longitudinal electric field component, indeed).
GCED describes the longitudinal electric LEM wave and Φ-wave through vac-
uum, so Tesla’s reference to aether sound waves is theoretically supported by
GCED. The characteristics of the Tesla coil device (the secondary coil shows
a quarter wave length charge density wave distribution across the entire ’un-
wound’ length of the coil wire) is hard to explain with conventional MCED
theory, where GCED explains this wave type naturally, see §3.8. Tesla also
mentioned the observation of teleforce effects by means of non-dispersive emis-
sions from a high voltage discharge vacuum tube, quite similar to Podkletnov’s
superluminal gravity impulse signal. It is likely that Tesla is the original dis-
coverer of both wireless LEM waves and wireless Φ-waves. He was far ahead of
his time [42] [43].

Wesley and Monstein published a paper on the transmission of a Φ-wave, by
means of a pulsating surface charge on a centrally fed ball antenna [27]. They
assumed that the ball antenna does not show divergent currents (∇·J = 0) and
emits Φ-waves only, however, this suggests a violation of charge conservation
(∇·J = 0 and ∂tρ 6= 0). We suggest that a centrally fed ball antenna conducts
curl free divergent currents that induce mainly LEM waves, and that Wesley
and Monstein actually observed LEM waves in stead of Φ-waves. They tested
and confirmed the longitudinal polarity of the received electric field.

Ignatiev and Leus used a similar ball shaped antenna to send wireless longi-
tudinal electric waves with a wavelength of 2.5 km [15]. They measured a phase
difference between the wireless signal and an optical glass fiber control signal
(the two signals are synchronous at the sender location) at a 0.5 km distance
from the sender location. They concluded from the measured phase shift that
the wireless signal is faster than the optical glass fiber signal, and that the wire-
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less signal has a phase velocity of 1.12 c. However, we assume that the 0.12 c
discrepancy is due to an incorrect interpretation of the data, for instance, the
optical glass fiber control signal has a phase velocity slower than c (in most
cases it is 200,000 km/sec, depending on the refractive index of the glass fiber).
Combining the results from the experiments by Wesley, Monstein, Ignatiev and
Leus, we conclude that the results verify the existence of the longitudinal LEM
wave that travels with luminal speed c in space, as predicted by GCED.

Podketnov’s ’impulse gravity’ generator emits far field superluminal signals
with velocity of at least 64c [32], over a distance greater than a kilometer. The
impulse gravity device is very different from a ball shaped electrical antenna:
the wireless pulse is generated by means of a high voltage discharge (maxi-
mum of 2 million volt) from a superconducting flat surface electrode to another
non-superconducting electrode. The emitted pulse travels into the direction lon-
gitudinal (parallel) to the electronic discharge direction. TEM wave radiation,
transverse to the direction of discharge, was not detected. Podkletnov concludes
the ’longitudinal direction’ signal isn’t a TEM wave, nor a beam of massive par-
ticles. We assume that Podkletnov’s impulse ’gravity’ device produces Φ-waves;
the measured signal speed of at least 64c agrees with the prediction of the su-
perluminal Φ-wave phase velocity (a � c). Secondly, Podkletnov expects that
the superluminal signal frequency matches the tunneling frequency of the dis-
charged electrons [31] (during the discharge pulse, many electrons tunnel collec-
tively through many superconducting layers before leaving the superconductor).
This implies that a high BΦ scalar field is involved, since electron tunneling is
a very fast instantaneous electronic effect. The GCED nature of the impulse
signal has not yet been fully investigated by Podkletnov and Modanese.

A very efficient ’quasi-superconducting’ Single Wire Electric Power System
(SWEP) has been developed and tested [9], that meets the same power require-
ments for standard 50/60Hz three-phase AC power lines. The SWEP system
applies high frequency high voltage signals that are send and received by ’tuned’
Tesla coils. SWEP applications are described in [9] that do not require ground-
ing of the SWEP system, so it is reasonable to assume the SWEP system is
based on the combined LEM-Φ wave concept, see §3.8. Single wire transmission
systems that require a ’ground return’ are in fact two-wire system based on
the TEM wave concept, such that the electric fields are perpendicular to the
wire-earth.

4.6 Natural longitudinal electric waves as energy source

The most important applications of GCED might be the conversion of natural
longitudinal far fields into useful electricity. The reception of Φ-waves is most
likely the reverse process of the generation of Φ-waves, so theoretically, the nat-
ural reception of Φ-wave energy causes quantum tunneling of electrons through
an energy barrier to a higher energy level. We will call Φ-wave stimulated quan-
tum tunneling the ’Φ-wave electric effect’, similar to the photoelectric effect of
electrons emitted by a metal surface that is exposed to TEM waves. Essential
to the Φ-wave electric effect is that it does not involve electric current, initially.
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Dr. T. Henry Moray’s radiant energy device converted the energy flow of
natural ’cosmic’ aether waves in fifty kilo Watt of useful electricity, day and night
[28]. Moray tuned his radiant energy device into a natural high frequency signal,
that we assume is a Φ-wave. Dr. Harvey Fletcher, who was the co-discoverer
of the elementary charge of the electron (for which Dr. Robert Millikan won
the Nobel price), signed an affidavit [13] describing that Moray’s radiant energy
receiver functioned as claimed. The most proprietary component of Moray’s
receiver was a high voltage cold cathode tube containing a Germanium electrode
doped with impurities, called ’the detector tube’ by Moray. This tube has been
described as a ’light’ valve, and its huge energy reception capability might be
based on a Φ-wave electric effect. The electric potential at the first energy
receiving stage were shown to be at least 200,000 volts. Very abrupt tunneling of
electrons in/out of the Germanium electrode through an energy barrier explains
the observed high frequencies generated/received by Moray’s valve, as well as
the reported negative slope in a part of the conduction characteristic of the
detector tube. The importance of Dr. Moray’s invention cannot be overstated;
it dwarfs most Nobel prize discoveries in the field of physics. T. Henry Moray
and Nikola Tesla were the greatest electrical engineers in world history.

The same Φ-wave electric effect might explain the excess energy detected by
Dr. P.N. Correa [7], and described by Correa as an anomalous and longitu-
dinal cathode reaction force during pulsed autogenous cyclical abnormal glow
discharges in a cold cathode plasma tube. Correa observed an abnormal glow
discharge in a negative slope current-voltage regime (which also shows the excess
energy) that is similar to the negative slope current-voltage regime of a tunnel-
ing diode. The same ’pre-discharge’ glow has been observed by Podkletnov, just
before the pulse discharge of his gravity impulse device. We explain the ’abnor-
mal glow’ as an effect of tunneled electrons on gas atoms, just before an abrupt
discharge from cathode to anode. The observation of a natural self-pulsed dis-
charge frequency might be explained by the presence of a natural background
Φ-wave with high intensity and with the same frequency. Very similar excess
energy results were achieved by Dr. Chernetsky [6], by means of a self-pulsed
high voltage discharge tube (filled with hydrogen), that generates longitudinal
electronic waves in the electrical circuits attached to the tube, powering several
hundred watt lamps.

5 Conclusions and discussions

The Helmholtz decomposition theorem is essential for a comprehensive treatise
on CED, and its generalization, GCED. We showed that GCED with the Lorentz
premise (a = c) reduces to MCED. Since MCED theory is inconsistent and shows
indeterminate potentials, it is concluded that the Lorentz premise is false, and
that the Coulomb premise (a � c) is fundamentally true. GCED with the
Coulomb premise and the extra condition ∇·J = ∂tρ = 0 reduces to CED. It
is a wide spread mistake that stationary currents always satisfy the condition
∇·J = 0, in stead of the charge continuity equation. GCED with the Coulomb
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premise is a consistent electrodynamics theory, naturally constrained by the
law of charge continuity, which does not show the 4/3 problem either, another
indication of its consistency. Many experimental results are in favour of GCED
and falsify MCED.

GCED is based on classical principles, such as the conservation of momentum
and charge, and flies in the face of modern physics, founded on MCED. The false
Lorentz premise (a = c) is key to understand the second postulate of Special
Relativity (SR) theory, which is a proposition in the following circular argu-
ments: MCED does not predict longitudinal wave modes in vacuum, therefore
vacuum isn’t a physical medium (an aether model always allows for longitudinal
waves), therefore a relative motion of an observer with respect to vacuum isn’t
possible, therefore light speed measurement data agrees only with an absolute
constant value c regardless of the relative motion of light source and observer
(the second SR postulate), therefore the Lorentz transform applies in stead of
the Galilei transform, which further forbids velocities higher than constant c,
such that a = c, and this reduces GCED to MCED, etc ...

The circular arguments of SR theory are based on the false Lorentz premise
(a = c), which is the most fundamental assumption of SR, since it is also
the fundamental assumption underlying Maxwell’s CED. One-way TEM wave
experiments prove the anisotropy of the TEM wave velocity in vacuum [5], and
the recent ’gravity impulse’ speed measurements by E. Podkletnov [32] indicate a
superluminal speed of 64c. These experiments falsify both the Lorentz-Poincaré
SR theory and Hilbert’s general relativity theory. GCED is consistent only
with the Coulomb premise (a� c), so a relativity principle other than Lorentz
invariance has to be found anyway, in order to describe a relativistic GCED.
Heinrich Hertz and Thomas E. Phipps showed how to cast MCED into a Galilei
invariant form by means of a simple replacement of the partial time differential
operator by a total time differential operator [39]. GCED can be cast into a
relativistic Galilei invariant GCED in this way.

The indeterminacy of the quantum wave function, ψ, is tied to the indetermi-
nacy of the MCED potentials, Φ and A. A gauge transform of the relativistic
quantum wave equation is a transformation of the MCED potentials and the
quantum wave function in Φ′, A′ and ψ′, such that the phase of the trans-
formed wave function ψ′ differs a constant with the phase of the function ψ,
and such that the quantum wave function is ”gauge” invariant [20]. This means
that the wave function ψ is also ’unphysical’ and indeterminate, like the MCED
potentials. The indeterminacy of ψ is interpreted as probabilistic behaviour of
elementary particles (the Born rule): the particle velocity is the ψ wave group
velocity, and is not associated with phase velocity. Gauge invariance (also known
as gauge symmetry) is supposed to be the ”guiding principle” of modern physics,
however, gauge freedom is the consequence of a false Lorentz premise (a = c),
which reduces GCED to the inconsistent MCED with indeterminate potentials.

Recent scanning tunneling microscope experiments falsify Heisenberg’s uncer-
tainty relations by close two orders of magnitude [18], which supports the notion
of a deterministic physical quantum wave function that describes a physical elec-
tron charge density distribution of a single electron. The determinate potentials
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of GCED with the Coulomb premise are agreeable with a determinate quantum
wave function with deterministic interpretation, such that the phase of ψ has
physical meaning. The De Broglie-Bohm pilot wave theory comes into mind, in
order to interpret the strange ”quantum entanglement” behaviour as a physical
pilot wave interaction. The unknown physical nature of the pilot wave has been
an objection against the pilot wave theory ever since De Broglie offered his in-
terpretation of Schrödinger’s wave function. Caroline H. Thompson published a
paper on the universal ψ function as the Φ-wave aether [40]. Indeed, the Φ-wave
far field, acting as a particle pilot wave, is a natural suggestion. GCED describes
physical far field Φ-wave that represent energy flow (it is not ”ghost like”). The
Φ-wave energy flow, received by a particular particle, equals the Φ-wave en-
ergy flow that is send by that particle. The quantum ”non locality” and ”non
causality” entanglement can be mistaken for a hyper luminal ’local’ and ’causal’
Φ-wave interaction. So GCED offers a classical foundation for the elementary
particle-wave duality. The transverse- and longitudinal electromagnetic mo-
mentum and the near Φ-potential energy describe the ’particle nature’. The far
Φ-wave field interaction describes the ’quantum entanglement’ behaviour. The
classical electron sphere TEM:LEM momentum ratio of 3:1 probably is wrong,
and this ratio can be different (1:1 for example) for an electron charge density
wave.

Although a consistent and ’determinate function’ foundation is the final des-
tiny of modern physics, it is of greater importance that GCED inspires physi-
cists and electrical engineers to review the electrodynamics experiments from
the past, and perform new ones, which may birth a new era of science and tech-
nology with respect to energy conversion. This may bring ’balance to the force’
on this planet.
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