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Abstract

Paravectors just like integers have a ring structure. By introducing an integrated product we get geometric
properties which make paravectors similar to vectors. The concepts of parallelism, perpendicularity and the angle
are conceptually similar to vector counterparts, known from the Euclidean geometry. Paravectors meet the idea
of parallelogram law, Pythagorean theorem and many other properties well-known to everyone from school.
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This article refers to professor William Baylis’ researches and shows a surprising similarity between
properties of paravectors and vectors in the Euclidean space. It can be confusing at first to get used to a column
notation of paravectors, but this form has proved to be the most adequate. The main advantage of this notation
is a transparency of mathematical transformations. The author hopes that in future paravector formalism will
replace the multivectors formalism in physics as simpler, more intuitive and imaginable. The results presented
in this article justify it fully.

1 Basic definitions

Definition 1.1. The term paravector means a pair consisting of a complex number (α) and a vector (βββ ) belonging
to a three-dimensional complex space.

Γ =:

�

α
βββ

�

=

�

a + i d
b+ i c

�

(1)

The number will be called a scalar. Paravectors will be denoted with capital letters, eg: A, X ,Γ . Greek
letters will mean a complex size, and Roman letters - a real one. A scalar component of paravector Γ will be
denoted with index „S”, and a vector component with „V”, i.e.: ΓS =α and ΓV =βββ .

Definition 1.2. The reversed element of paravector (1) is the paravector

Γ− =:

�

a + i d
−b−i c

�

(2)

Definition 1.3. The conjugated element of paravector (1) is the paravector

Γ ∗ =:

�

a − i d
b−i c

�

(3)

Definition 1.4. of the summation:
�

α1

βββ 1

�

+

�

α2

βββ 2

�

=:

�

α1+α2

βββ 1+βββ 2

�

(4)
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Conclusion 1.1. The neutral element under addition (null element) is the paravector

0=:

�

0
0

�

(5)

Definition 1.5. The opposite element of paravector (1) with respect to the addition is

−Γ =:

�

−α
−βββ

�

(6)

Definition 1.6. of the multiplication:

�

α1

βββ 1

��

α2

βββ 2

�

=:

�

α1α2+βββ 1βββ 2

α2βββ 1+α1βββ 2+ iβββ 1×βββ 2

�

(7)

where βββ 1βββ 2 is a scalar (dot) product of vectors, and βββ 1×βββ 2 is a vector (cross) product.

Conclusion 1.2. The neutral element under multiplication is the paravector

1 :=

�

1
0

�

(8)

Note: There is no difference if we write number α or paravector

�

α
0

�

.

Conclusion 1.3. The operation of multiplication is associative but not commutative, because the vector product
is non-commutative.

Definition 1.7. We call an outcome of multiplication of any paravector Γ by the element conjugate Γ ∗ the vigor
of paravector:

vigΓ := Γ Γ ∗ (9)

Conclusion 1.4. To each paravector we can assign a vigor which is a real paravector and its scalar component is
a positive number.

Proof.

Γ Γ ∗ =

�

α
βββ

��

α∗

β ∗β ∗β ∗

�

=

�

αα∗+ββββββ ∗

αβββ ∗+α∗βββ + iβββ ×βββ ∗

�

=

�

(a + i d )(a − i d ) + (b+ i c)(b− i c)
(a + i d )(b− i c) + (a − i d )(b+ i c) + i (b+ i c)× (b− i c)

�

=

=

�

a 2+ b 2+ c 2+d 2

2(a b+d c+b× c)

�

Definition 1.8. We call an outcome of multiplication of any paravector Γ by the reverse element Γ− the
determinant of a paravector

detΓ := Γ Γ− = Γ−Γ (10)

Conclusion 1.5. Each paravector has a determinant which is a complex number.

Proof.

Γ Γ− =

�

α
βββ

��

α
−βββ

�

=

�

α2−β 2

αβββ −αβββ − iβββ ×βββ

�

=

�

(a + i d )2− (b+ i c)2

−i (b+ i c)× (b+ i c)

�

=

�

a 2− b 2+ c 2−d 2+2i (a d −bc)
0

�

2



Conclusion 1.6. The reversion and conjugation have the following properties:

Reversion of paravector Conjugation of paravector

1 (Γ−)− = Γ (Γ ∗)∗ = Γ
2 (Γ +Ψ)− = Γ−+Ψ− (Γ +Ψ)∗ = Γ ∗+Ψ∗

3 (ΓΨ)− =Ψ−Γ− (ΓΨ)∗ =Ψ∗Γ ∗

4 Γ Γ− ∈C Γ Γ ∗ ∈R+×R 3

5 (Γ−)∗ = (Γ ∗)−

Conclusion 1.7. A set of pravectors together with an operation of summation forms an Abelian group, and with
multiplication forms a semigroup. Therefore, we can conclude that a set of paravectors together with operations
of summation and multiplication gives a ring with multiplicative identity.

Definition 1.9. We call the paravector Γ proper if detΓ ∈R+ \ {0} (the determinant is a positive real number).

Definition 1.10. We call the paravector Γ singular if detΓ = 0.

By definition of the determinant it follows:

Conclusion 1.8. Each proper or singular paravector (1) must fulfill the following condition:

a d = bc (11)

It is advisable to remember the above equation, because it will be used with many proofs on proper paravectors.

Conclusion 1.9. Let Γ1, Γ2 be paravectors, then the following statements are true:

• det(Γ1Γ2) = detΓ1 ·detΓ2

• det(Γ−) = detΓ

• det(Γ ∗) = (detΓ )∗

Definition 1.11. For each non-singular paravector Γ , there exists an inverse element under multiplication:

Γ−1 :=
Γ−

detΓ
(12)

Conclusion 1.10. A set of non-singular paravectors together with multiplication is a non-commutative group.

Conclusion 1.11. A set of proper paravectors together with multiplication is a non-commutative group.

Definition 1.12. For each proper and/or singular paravector we define the module of paravector:

|Γ | :=
p

detΓ (13)

Conclusion 1.12. The module of paravector (proper or singular!) satisfies the following conditions:

1. |s Γ |= |s | |Γ | where s ∈R

2. |Γ1| |Γ2|= |Γ1Γ2|

Definition 1.13. We call the paravector Λ orthogonal if detΛ= 1 , or equivalently:

Λ :=
Γ

p
detΓ

, where Γ is a proper paravector (14)

Directly from the above definition it follows:

Conclusion 1.13. If Λ is an orthogonal paravector, then Λ−1 =Λ−.
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Definition 1.14. We call the paravector Γ special if Γ− = Γ ∗, or equivalently:
�

a
i c

�

, where a ∈R , and c ∈R 3

Definition 1.15. We call the paravector Γ unitar if Γ Γ ∗ = 1

To summarize the current knowledge about paravectors, we can say that very little is missing so that
a set of paravectors with summation and multiplication operations is a field: multiplication of paravectors is
not commutative, and the role of the null element under multiplication is played by singular paravectors.
Multiplying any paravector by singular one, we get a singular paravector. Note that although there are many
null elements under multiplication, only one element is neutral with respect to summation.

Conclusion 1.14. The set of special paravectors together with operations summation and multiplication is
a division ring.

In the diagram (fig. 1) a ring of paravectors with some of its substructures is presented:

Figure 1: The ring of paravectors with some substructures

- A set of proper paravectors together with multiplication is a noncommutative group.

- A set of orthogonal paravectors together with multiplication is a subgroup of proper paravectors group.

The black point means zero, and the blue point is one.

To avoid misunderstandings, we recall the following names which we will use:

• Γ− - The paravector reverse of Γ

• Γ−1 - The paravector inverse of Γ
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2 Integrated product of paravectors

Synge [7] defines the scalar product of complex quaternions as
�

Γ1Γ
−
2 + Γ2Γ

−
1

�

/2, Hestenes [6] as a scalar
part of the product of multivectors Γ1Γ2. Analyzing the expression Γ1Γ

−
2 , we can see that it plays a similar but more

universal role in the paravectors algebra as the dot product in vector space. Properties of its scalar component
are the same as properties of the scalar product of vectors, and its vector part as a cross product of vectors. The
trouble is that there can be two different products which have the same properties (the second one is Γ−1 Γ2), so
we define two integrated products:

Definition 2.1. For any paravectors Γ1 and Γ2, the right integrated product of paravectors Γ1 and Γ2, denoted
(Γ1,Γ2〉, is defined by

(Γ1,Γ2〉 := Γ1Γ
−
2

hence (Γ1,Γ2〉= Γ1Γ−2 =
�

α1

βββ 1

��

α2

−βββ 2

�

=

�

α1α2−βββ 1βββ 2

−α1βββ 2+α2βββ 1− iβββ 1×βββ 2

�

Definition 2.2. For any paravectors Γ1 and Γ2 the left integrated product of paravectors Γ1 and Γ2, denoted 〈Γ1,Γ2),
is defined by

〈Γ1,Γ2) := Γ
−
1 Γ2

or 〈Γ1,Γ2) = Γ−1 Γ2 =

�

α1

−βββ 1

��

α2

βββ 2

�

=

�

α1α2−βββ 1βββ 2

α1βββ 2−α2βββ 1− iβββ 1×βββ 2

�

In both cases, the scalar part is the same, then

Definition 2.3. The scalar component of an integrated product of paravectors Γ1 and Γ2, is called a scalar product
of paravectors. The scalar product will be denoted

〈Γ1,Γ2〉 := (Γ1,Γ2〉S = 〈Γ1,Γ2)S .

Definition 2.4. The vector component of an integrated product we call a vector product of paravectors.

(Γ1,Γ2} := (Γ1,Γ2〉V =−〈Γ1,Γ2)
∗
V

It is necessary to distinguish the orientation of a vector product, the same as at integrated product case.
Therefore, we denote the right vector product (Γ1,Γ2}, and the left vector product: {Γ1,Γ2)

For further consideration it does not matter much if a product is right or left, so talking about an integrated
product we will mean the right product. As well, this may be the left product, but it is important to use only one
product constantly. Hence the integrated product can be denoted as follow:

(Γ1,Γ2〉=
�

〈Γ1,Γ2〉
(Γ1,Γ2}

�

=

�

(Γ1,Γ2〉S
(Γ1,Γ2〉V

�

(15)

and
det(Γ1,Γ2〉= 〈Γ1,Γ2〉2− (Γ1,Γ2}2 = (Γ1,Γ2〉2S − (Γ1,Γ2〉2V = detΓ1detΓ2 (16)

Theorem 2.1. An integrated product of paravectors has the following properties:

Right integrated product Left integrated product

1 Integrated product is a paravector
2 (Γ1+ Γ2,Γ3〉= (Γ1,Γ3〉+ (Γ2,Γ3〉 〈Γ1+ Γ2,Γ3) = 〈Γ1,Γ3)+ 〈Γ2,Γ3)
3 (αΓ1,Γ2〉=α (Γ1,Γ2〉= (Γ1,αΓ2〉 〈αΓ1,Γ2) =α 〈Γ1,Γ2) = 〈Γ1,αΓ2)
4 (Γ1,Γ2〉− = (Γ2,Γ1〉 〈Γ1,Γ2)

− = 〈Γ2,Γ1)
5 (Γ ,Γ 〉= 〈Γ ,Γ ) = detΓ ∈C
6 det (Γ1,Γ2〉= det 〈Γ1,Γ2) = detΓ1 detΓ2
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Conclusion 2.1. Let Γ1,Γ2 and Γ3 be any paravectors, then the following table shows the properties of the scalar
product of paravectors compared to the properties of the scalar product of vectors in Euclidean space:

Scalar product of paravectors Scalar product of vectors

1 〈Γ1,Γ2〉 ∈C 〈x1, x2〉 ∈R
2 〈Γ1+ Γ2,Γ3〉= 〈Γ1,Γ3〉+ 〈Γ2,Γ3〉 same
3 〈αΓ1,Γ2〉=α 〈Γ1,Γ2〉= 〈Γ1,αΓ2〉 same
4 〈Γ1,Γ2〉= 〈Γ2,Γ1〉 same
5 〈Γ ,Γ 〉 ∈C 〈x, x〉 ∈R+
6 If 〈Γ ,Γ 〉= 0, then Γ is singular If 〈x, x〉= 0, then x= 0

3 Geometrical properties of paravectors

By checking up an integrated product of paravectors, anyone can see a deep similarity between
paravectors and vectors in Euclidean space. Using the integrated product we introduce geometric concepts
into the algebra of paravectors, which contributes to its intuitive understanding.

3.1 Parallelism and perpendicularity relations.

Definition 3.1. Non-singular paravectors Γ1 and Γ2 are parallel (Γ1 ‖ Γ2) if the vector product (Γ1,Γ2}= 0.

Theorem 3.1. Two non-singular paravectors Γ1 and Γ2 are parallel if and only if there exists a number λ 6= 0 that
Γ1 =λΓ2.

Proof.

Parallelism means that Γ1Γ
−
2 =α, where α is a complex number. We multiply this equation on the right by

paravector Γ2

Γ1(Γ−2 Γ2) =αΓ2

Since Γ2 is non-singular then Γ−2 Γ2 =β is a non-zero complex number. Hence we get Γ1 =λΓ2, where λ=α/β .

The above theorem shows that

Conclusion 3.1. The parallelism satisfies the conditions of equivalence relation.

Definition 3.2. Two non-singular paravectors Γ1 and Γ2 are perpendicular (Γ1 ⊥ Γ2) if the scalar product 〈Γ1,Γ2〉= 0.

The perpendicularity of paravectors has the same properties as the perpendicularity of vectors in
Euclidean space.

Theorem 3.2. For each non-singular paravector:

1. ö (Γ ⊥ Γ )

2. If Γ1 ⊥ Γ2 then Γ2 ⊥ Γ1

3. If Γ1 ⊥ Γ2 and Γ2 ‖ Γ3 then Γ1 ⊥ Γ3

Proof.

1. It follows by definition of perpendicularity.
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2. It follows by the fact that the scalar product is symmetrical: 〈Γ1,Γ2〉= 〈Γ2,Γ1〉 and 〈Γ1,Γ2〉= 0

3. Γ1 ⊥ Γ2 ⇐⇒ (Γ1,Γ2〉=
�

0
ωωω

�

Γ2 ‖ Γ3 ⇐⇒ (Γ2,Γ3〉=λ hence (Γ1,Γ3〉= Γ1Γ−3 = Γ1Γ
−1
2 Γ2Γ

−
3 =

λ
detΓ2
Γ1Γ

−
2 =

�

0
λωωω

detΓ2

�

Conclusion 3.2. .

1. The paravector is perpendicular to itself if and only if it is singular.

2. Paravectors mutually reversed (inversed) not to be parallel.

3. Orthogonal paravectors are parallel if and only if they are equal or opposite.

Proof.

1. It follows by assumption and definition of the singular paravector.

2. (Γ ,Γ−〉= Γ Γ =
�

α
βββ

��

α
βββ

�

=

�

α2+β 2

2αβββ

�

3. Parallelism means that Λ1Λ
−
2 = λ, hence detΛ1detΛ2 = λ2. Paravectors are orthogonal hence λ = ±1. First

equality gives that Λ1 =Λ2 or Λ1 =−Λ2.

Theorem 3.3. For any non-singular paravectors Γ1 and Γ2 it occurs that:

1. If Γ1 ⊥ Γ2 then Γ ∗1 ⊥ Γ
∗
2

2. If Γ1 ‖ Γ2 then Γ ∗1 ‖ Γ
∗
2

3. If Γ1 ‖ Γ2 then vigΓ1 ‖ vigΓ2

Proof.

1. 〈Γ1,Γ2〉= 0 =⇒ 〈Γ2,Γ1〉= 0, so



Γ ∗1 ,Γ ∗2
�

= 〈Γ2,Γ1〉∗ = 0

2. (

�

α1

βββ 1

��

α2

−βββ 2

�

)V =−α1βββ 2+α2βββ 1− iβββ 1×βββ 2 = 0

Since complex vectors are governed by the same laws as real ones, so it must be:

α2βββ 1−α1βββ 2 =000 and iβββ 1×βββ 2 = 0

On the other hand, we have
�

Γ ∗1 ,Γ ∗2
�

= 〈Γ2,Γ1)
∗ = (

�

α2

−βββ 2

��

α1

βββ 1

�

)∗,

hence under the assumption

(

�

α2

−βββ 2

��

α1

βββ 1

�

)V =α2βββ 1−α1βββ 2− iβββ 2×βββ 1 = 0

3.
�

Γ1Γ
∗
1 ,Γ2Γ

∗
2

�

= Γ1Γ ∗1 (Γ2Γ
∗
2 )
− = Γ1Γ ∗1 Γ

∗−
2 Γ

−
2 = Γ1(Γ

−
2 Γ1)

∗Γ−2

Under the assumption, the product in parentheses is a number, so we can move it in front of the product

λ∗ (Γ1,Γ2〉=λ∗λ

7



Theorem 3.4. For any paravectors Γ1 and Γ2 polarization identity occurs:

det(Γ1+ Γ2) = detΓ1+2 〈Γ1,Γ2〉+detΓ2 (17)

Proof.

det(Γ1+ Γ2) = (Γ1+ Γ2)(Γ1+ Γ2)− = Γ1Γ−1 + Γ1Γ
−
2 + Γ2Γ

−
1 + Γ2Γ

−
2 =

= detΓ1+ (Γ1,Γ2〉+ (Γ2,Γ1〉+detΓ2 = detΓ1+2 〈Γ1,Γ2〉+detΓ2

Conclusion 3.3. Let paravectors Γ1 and Γ2 be perpendicular, then the determinant of these paravectors equals
the sum of their determinants:

det(Γ1+ Γ2) = detΓ1+detΓ2 (18)

This conclusion complies with the Pythagorean theorem in Euclidean geometry.

Theorem 3.4 shows that paravectors meet the parallelogram law, which gives the structure constructed
by us some of the characteristics of metric space.

Conclusion 3.4. For any paravectors Γ1 and Γ2 the parallelogram law occurs:

det (Γ1+ Γ2) +det (Γ1− Γ2) = 2detΓ1+2detΓ2

Definition 3.3. Two paravectors

�

α1

βββ 1

�

and

�

α2

βββ 2

�

are spatially parallel if βββ 1×βββ 2 = 0

Theorem 3.5. If two non-singular paravectors are parallel, they are also spatially parallel.

Proof.

Γ1 ‖ Γ2 ⇐⇒ α1βββ 2−α2βββ 1− iβββ 1×βββ 2 = 0

First we multiply the above equation by α1βββ 2, and then by α2βββ 1. Hence we get two equations:
�

α1βββ 2

�2−α1α2βββ 1βββ 2 = 0

α1α2βββ 1βββ 2−
�

α2βββ 1

�2
= 0

The difference of the above equations yields
�

α1βββ 2−α2βββ 1

�2
= 0, which is true when α1βββ 2 =α2βββ 1.

Hence it follows that βββ 1×βββ 2 = 0

As a consequence, we can say that

Conclusion 3.5. Spatial parallelism is an equivalence relation.

Conclusion 3.6. The spatial parallelism of paravectors is weaker than parallelism, ie.: If two paravectors are
parallel, they must be spatially parallel, too, but in the opposite direction, implication no longer must occur.

Definition 3.4. We call two singular paravectors Γ1 and Γ2 singularly parallel if (Γ1,Γ2〉= 0

Conclusion 3.7. The following conclusions are easy to prove:

1. If two paravectors are singularly parallel, then they are singular.

2. Singular parallelism is an equivalence relation.
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3.2 Angles

Definition 3.5. The right angle between two proper paravectors, denoted by ∠(Γ1,Γ2〉, we call the paravector:

Φ=∠(Γ1,Γ2〉=
�

cosiΦ
dexΦ

�

:=
(Γ1,Γ2〉
|Γ1| |Γ2|

, (19)

where we call the scalar component cosinis, and the vector component – dextis of angle Φ.

Definition 3.6. The left angle between two proper paravectors we call the paravector:

Φ=∠〈Γ1,Γ2) =

�

cosiΦ
siniΦ

�

:=
〈Γ1,Γ2)
|Γ1| |Γ2|

, (20)

where we call the scalar component cosinis, and the vector component – sinis of angle Φ.

Note - Please note that the components are not trigonometric (hyperbolic) functions - these are just
names, given because angle components have the same properties as well-known trigonometric functions,
making them easier to imagine and to remember.

These names are derived from Latin. Sinistram means left, and dextram means right.

In paravector space (which is not defined yet!) as well as in Euclidean space, we should identify a positive
orientation. We don’t do this in this paper, not to impose any restrictions. It seems that it will be necessary sooner
or later, but not now.

Definition 3.7. We call an angle Φ=Φ1Φ2 the composition of (left) angles Φ1 and Φ2.

Φ1Φ2 =

�

cosiΦ1

siniΦ1

��

cosiΦ2

siniΦ2

�

=

=

�

cosiΦ1cosiΦ2+ siniΦ1siniΦ2

cosiΦ1siniΦ2+ cosiΦ2siniΦ1+ i siniΦ1× siniΦ2

�

=

=

�

cosi(Φ1Φ2)
sini(Φ1Φ2)

�

=

�

cosiΦ
siniΦ

�

=Φ

We can write an analogous composition for the right angles.

As a consequence, we can see further analogy with Euclidean trigonometry:

Conclusion 3.8. The explement of an angle is:

∠〈Γ1,Γ2)
− =∠〈Γ2,Γ1) for the left angle

or ∠(Γ1,Γ2〉− =∠(Γ2,Γ1〉 for the right angle, (21)

which gives

• cosiΦ− = cosiΦ

• siniΦ− = −siniΦ

• dexΦ− = −dexΦ

The left and right angles have an opposite orientation in space - they are not explementary.

∠〈Φ,Γ ) = Φ−Γ
|Φ||Γ | , ∠(Φ,Γ 〉= ΦΓ−

|Φ||Γ | , hence the composition of this angles is:

∠〈Φ,Γ )∠(Φ,Γ 〉=
Φ−ΓΦΓ−

det(ΦΓ )
6= 1

9



The explement of the left angle ∠〈Φ,Γ ) is the left angle ∠〈Γ ,Φ), and the same occurs for the right angle.

In Table 3.1 are shown the properties of left angle components to simply and intuitively justify the names
chosen for them. The right angle has analogous formulas.

Tab. 3.1 General recurrence formulas for components of the left angle.

Φ - Orthogonal paravector cosiΦ ∈C and siniΦ ∈C 3

Determinant of Φ cosi2Φ - sini2Φ= 1
Doubling cosi(Φ2) = cosi2Φ + sini2Φ
the angle sini(Φ2) = 2cosiΦsiniΦ
Angles cosi(Φ1Φ2) = cosiΦ1cosiΦ2+ siniΦ1siniΦ2

composition sini(Φ1Φ2) = cosiΦ1siniΦ2+ cosiΦ2siniΦ1+ i siniΦ1× siniΦ2

Angle explement
cosiΦ− = cosiΦ
siniΦ− = −siniΦ

Conclusion 3.9. If I m (cosiΦ) = 0 and I m (siniΦ) = 0, then the nature of the angleΦ is hyperbolic. If I m (cosiΦ) = 0
and R e (siniΦ) = 0, then the nature of the angle is trigonometric, which is shown by the determinant of this angle.

3.3 Similarity and rotation

Definition 3.8. Two paravectors Γ1 and Γ2 are similar if there exists a non-singular paravector Φ, that ΦΓ1 = Γ2Φ.
We call the paravector Φ axis of similarity.

Similarity can be shown in any other way Γ ′ = Φ−1ΓΦ, which is like many authors define the rotation. We
would like to associate the rotation with the angle between the rotated paravector and its image after the turning
unequivocally. If the paravector Φ is improper, then it’s impossible to determine this angle. For this reason, it
was necessary to clarify the definition of rotation.

Definition 3.9. A similarity whose axis is a proper paravector is called the rotation.

We need to orient the rotation in accordance with the angles, therefore we will distinguish left and right
rotations. The left rotation will take the form Γ ′ = Φ−1ΓΦ, and the right: Γ ′ = ΦΓΦ−1. Since the paravector Φ is
proper, then the module |Φ| exists. So, we can exhibit the rotation in the form:

Γ ′ =Λ−ΓΛ (22)

where paravector Λ = Φ
|Φ| is the axis of rotation and also determines the value of rotation. The axis of rotation in

space is determined by the spatial component of paravector Λ.

The properties of rotations on the space built by us are so general that we cannot restrict them to the
rotation in Euclidean sense only. In cases where cosiΛ is a real number, and siniΛ is an imaginary vector (or an

angle Λ is a special paravector), we deal with an Euclidean rotation. For the paravector Λ =

�

cosϕ
i n sinϕ

�

we have

spatial rotation by the angle 2ϕ about the axis defined by vector n. Hereϕ is a traditional angle, and sine/cosine
are trigonometric functions. The fact that the paravector angle (despite the similarities) is something other than
the Euclidean angle we can see by examining the right angle between Γ and its rotated image Γ ′ = Λ−ΓΛ. The
right angle between paravectors Γ and Γ ′ can be written

∠(Γ ,Γ ′〉=
Γ (Λ−ΓΛ)−

detΓ
=
(ΓΛ−)(Γ−Λ)

detΓ
=∠(Γ ,Λ〉∠〈Γ ,Λ) (23)

Conclusion 3.10. In the space the angle between a paravector and its image after turning, is a combination of
the right and left angles between these paravectors and the axis of rotation.
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In the case when the axis of rotation is a real paravector, W. Baylis says that such a rotation is a Lorentz
transformation of the electric field.

Below we show the obvious properties of similarity:

Theorem 3.6. For each similar paravector:

1. Similar paravectors must have the same scalar components. In other words, similarity is a spatial
relationship.

2. If any paravectors are spatially parallel to the axis of similarity and they are similar, then they are identical.

3. Parallel axes represent the same similarity.

4. Similarity is an equivalence relation.

Proof.

1. Φ−1ΓΦ= 1
α2−β 2

�

α
βββ

��

τ
$$$

��

α
−βββ

�

= 1
α2−β 2

� �

α2−β 2
�

τ
�

α2−β 2
�

$−$−$−2
�

iβββ ×$$$+βββ ×
�

βββ ×$$$
��

�

2. It follows from the previous property and βββ ×$$$= 0

3. Let Φ1 =λΦ2

1
detΦ1

Φ−1 ΓΦ1 =
1

λ2 detΦ2
λ2Φ−2 ΓΦ2 =

1
detΦ2

Φ−2 ΓΦ2

4. The proof is simple, so we leave it to the reader.

By the theorem 3.6 we draw the following conclusions for rotations:

Conclusion 3.11. For each rotated paravector:

1. Rotation does not change the scalar component. In other words, rotation is a spatial relationship.

2. Rotation does not change the paravector which is spatially parallel to the axis of this rotation.

3. Parallel axes represent the same rotation.

Using paravectors, we can easily introduce Euler angles, or the composition of angles on the planes with normal
n1 and n2

�

cosϕ
i n sinϕ

�

=

�

cosϕ1

i n1 sinϕ1

��

cosϕ2

i n2 sinϕ2

�

(|ni |= 1) (24)

Please note that the above angles ϕ and functions have a trigonometric sense in real Euclidean space!

Any vector in the space can be written as a paravector

�

0
i w

�

(imaginary vector, because if it were real, then

the paravector would not have a module). The angle between two vectors w1 and w2, is

1

|w1|

�

0
i w1

�

1

|w2|

�

0
−i w2

�

=

� w1w2
|w1 ||w2 |

i w1×w2
|w1 ||w2 |

�

=

�

cos x
i n sin x

�

(25)

Definition 3.10. Mirror symmetry with respect to the plane of normal n is called conversion such that:
�

0
i w′

�

=

�

0
i n

��

0
i w

��

0
i n

�

(26)

11



Let n be a vector normal to the plane N. Take any non-zero vector w. This vector can be decomposed into
a vector parallel to n and perpendicular (orthogonal projection of vector w on the plane N), respectively:

n (wn) and w−n (wn) =n2w−n (wn) = (n×w)×n,

hence vector w=n (wn)+ (n×w)×n.

Mirror symmetry changes the sign of the component perpendicular to the plane of symmetry (parallel to
n), but when we take a non-zero scalar, we get:

�

0
i n

��

a
w

��

0
i n

�

=

�

−a
−n (wn)+ (n×w)×n

�

Hence we see that mirror symmetry is not similarity in the meaning of definition 3.8, because it changes
the sign of a scalar.

Mirror symmetry can be generalized to complex paravectors:

1

−ω2

�

0
ωωω

��

α
βββ

��

0
ωωω

�

=

�

−α
ω−2[−ωωω

�

βωβωβω
�

+
�

ωωω×βββ
�

×ω]ω]ω]

�

(27)

As was to be expected, rotation can be presented in the form of a composition of two mirror symmetries.
The paravector parallel to the both planes of symmetry sets the axis of rotation.

1

ω2
1ω

2
2

�

0
ωωω2

��

0
ωωω1

��

α
βββ

��

0
ωωω1

��

0
ωωω2

�

=
1

(ωωω1ωωω2)
2+ (ωωω1×ωωω2)

2

�

ωωω1ωωω2

−iωωω1×ωωω2

��

α
βββ

��

ωωω1ωωω2

iωωω1×ωωω2

�

Axial symmetry is nothing else but a straight angle rotation around the vectorωωω

1

ω2

�

0
−iωωω

��

α
βββ

��

0
iωωω

�

=

�

α
ω−2[ωωω

�

βωβωβω
�

−
�

ωωω×βββ
�

×ω]ω]ω]

�

(28)

From the above discussion we can see that paravectors, even though are of complex construction and
have no vector metric, have geometrical features of vectors so that they become imaginable.

4 Matrix representation of paravectors

Based on the definition of paravectors multiplication (1.6), the equation

X2 = ΓX1 =

�

α2

βββ 2

�

=

�

α
βββ

��

α1

βββ 1

�

(29)

we can denote
�

α2

βββ 2

�

=

�

αα1+ββββββ 1

αβββ 1+α1βββ + iβββ ×βββ 1

�

(30)

The above equation is a system of linear equations, which can be exhibit in matrix form







α2

β2x

β2y

β2z






=







α βx βy βz

βx α −iβz iβy

βy iβz α −iβx

βz −iβy iβx α













α1

β1x

β1y

β1z






(31)
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Anyone can see that above equation is equivalent to







α2 β2x β2y β2z

β2x α2 −iβ2z iβ2y

β2y iβ2z α2 −iβ2x

β2z −iβ2y iβ2x α2






=







α βx βy βz

βx α −iβz iβy

βy iβz α −iβx

βz −iβy iβx α













α1 β1x β1y β1z

β1x α1 −iβ1z iβ1y

β1y iβ1z α1 −iβ1x

β1z −iβ1y iβ1x α1






(32)

Therefore, each paravector Γ =

�

α
βββ

�

is equivalent to a matrix







α βx βy βz

βx α −iβz iβy

βy iβz α −iβx

βz −iβy iβx α






(33)

The determinant of the above matrix is
�

α2−β 2
�2
= (Γ Γ−)2 = (detΓ )2 , hence paravector Γ−1 = Γ−

detΓ
corresponds to the matrix inverse of the above one.

Since the inverse paravector should correspond to the transposed matrix, then we were considering
naming it a transposed paravector. But this transposition is not complete because the first row and first column
are not subject to transposition:

Γ ←→







α βx βy βz

βx α −iβz iβy

βy iβz α −iβx

βz −iβy iβx α






Γ−←→







α −βx −βy −βz

−βx α iβz −iβy

−βy −iβz α iβx

−βz iβy −iβx α






(34)

The geometric meaning of this paravector corresponds to the reverse direction in space, so it was decided
to leave the name: reverse paravector.

Conclusion 4.1. Some of the matrices counterparts:

1. The singular paravector corresponds to the singular matrix.

2. The conjugate paravector corresponds to the Hermitian conjugate matrix.

Proof. of the 2nd point.

�

α
βββ

�∗

←→









α∗ β ∗x β ∗y β ∗z
β ∗x α∗ −iβ ∗z iβ ∗y
β ∗y iβ ∗z α∗ −iβ ∗x
β ∗z −iβ ∗y iβ ∗x α∗









=







a − i d bx − i cx by − i cy bz − i cz

bx − i cx a − i d −i bz − cz i by + cy

by − i cy i bz + cz a − i d −i bx − cx

bz − i cz −i by − cy i bx + cx a − i d






=

=







a + i d bx + i cx by + i cy bz + i cz

bx + i cx a + i d i bz − cz −i by + cy

by + i cy −i bz + cz a + i d i bx − cx

bz + i cz i by − cy −i bx + cx a + i d







∗

=

=







a + i d bx + i cx by + i cy bz + i cz

bx + i cx a + i d i (bz + i cz ) −i (by + i cy )
by + i cy −i (bz + i cz ) a + i d i (bx + i cx )
bz + i cz i (by + i cy ) −i (bx + i cx ) a + i d







∗

=







α βx βy βz

βx α −iβz iβy

βy iβz α −iβx

βz −iβy iβx α







∗T
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5 Orthogonal transformations

Definition 5.1. Linear transformation represented by a paravector will be called a paravector transformation.

Definition 5.2. A paravector transformation is called orthogonal if it preserves the scalar product of paravectors.

Or equivalently: A paravector transformation is called orthogonal if its determinant is equal to 1.

From the condition of orthogonal transformation it can be seen that its paravector must be proper
(def.1.9), and thus it has a module (def.1.12).

Conclusion 5.1. An orthogonal transformation is represented by paravector:

Λ=
1

p

α2−β 2

�

α
βββ

�

=
1

p
a 2− b 2+ c 2−d 2

�

a + i d
b+i c

�

(35)

such that a d = bc

Definition 5.3. A transformation which preserves determinants is called an isometric transformation.

Conclusion 5.2. An orthogonal transformation is isometric.

Example 5.1. Invariance of the sphere under orthogonal transformation.

An equation of the sphere of radius r can be written:

r 2− x 2 =

�

r
x

��

r
−x

�

=

�

r
x

��

r
x

�−

= 0 (36)

Since the sphere equation is the determinant of a singular paravector

�

r
x

�

, so based on conclusion 5.2 we can see

that in the complex space the spherical shape must be invariant with respect to the discussed transformation.

Theorem 5.1. If paravectors Γ1 and Γ2 are parallel, and Γ ′ =ΛΓ or Γ ′ = ΓΛ (where detΛ= 1), then paravectors vigΓ ′1
and vigΓ ′2 are parallel, too.

So, a paravector transformation preserves the parallelism of vigors of these paravectors.

Theorem 5.2. Let Λ be a orthogonal paravector, then

1. Transformation Γ ′ = ΓΛ preserves a scalar product of the products Γ ∗Γ ,

2. Transformation Γ ′ =ΛΓ preserves a scalar product of the vigors Γ Γ ∗.

Proof.

1. Let Γ ′ = ΓΛ and detΛ= 1

Γ ′∗1 Γ
′
1(Γ
′∗
2 Γ
′
2)
− = (Γ1Λ)∗Γ1Λ[(Γ2Λ)∗Γ2Λ]− =

=Λ∗Γ ∗1 Γ1ΛΛ
−Γ−2 Γ

∗−
2 Λ

∗− =

=Λ∗(Γ ∗1 Γ1)(Γ
∗
2 Γ2)

−Λ∗−

which completes the proof, since from the conclusion 3.11.1, a rotation does not change the scalar.

2. Proof runs the same way as above. Let change the transformation Γ ′ =ΛΓ

Γ ′1Γ
′∗
1 (Γ

′
2Γ
′∗
2 )
− =ΛΓ1(ΛΓ1)∗[ΛΓ2(ΛΓ2)∗]− =

=ΛΓ1Γ ∗1Λ
∗Λ∗−Γ ∗−2 Γ

−
2 Λ
− =

=Λ(Γ1Γ ∗1 )(Γ2Γ
∗
2 )
−Λ−
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6 Summary

In school courses physical sizes are always divided into scalars or vectors. Their natural generalization
are paravectors which have both characteristics of integers, as well as the geometric properties of vectors. We
have tried to present paravectors in order to show their similarity to vectors in Euclidean space.

By exploring various properties of paravectors we have found that different groups of them have different
properties, in spite of the same construction. Some of them act as vectors, and other as matrices, therefore:

• Additive paravectors (i.e. coordinates or field functions), denoted as bellow, are called four-vectors
traditionally.

X :=

�

∆t
∆x

�

(37)

• Paravectors which are not additive (transformation parameters i.e. speed or rotation) are denoted in square
brackets:

Γ :=

�

α
β

�

=

�

a + i d
b+ i c

�

(38)

Interesting and surprising results of applications of the presented paravectors in field theory will be shown in
a series of next articles. We hope that the notation proposed by us will replace in future the currently applied
formalisms in algebra of physical space (APS) and will give a new perspective to look at the space-time.

Appendix: Reference to the existing formalisms

In Clifford Algebra both the formalism and the terminology used by different authors are very diverse.
The formalism based on Grassmann algebra, promoted by leading contemporary researchers is dominant now.
We based on the matrix algebra due to:

• reputation of the matrix calculus. Grassmann algebra, although belongs to the mathematical classics, is
skillfully used by a relatively small and tight group of researchers, while the matrix algebra is a commonly
used mathematical tool.

• accounting transparency. Implementation of the activities in which three or more paravectors are
multiplying using the concepts of multivector is very complicated.

Paravectors and complex quaternions have the same construction but operations of multiplication are
defined differently for them. In quaternion multiplication there is no imaginary one at the cross product. It gives
that the multiplication of complex quaternions is not associative unlike the multiplication of paravectors. Forty
years ago the notation similar to ours was used by Aharonow, Farach and Poole [1] - [3], and recently W.E.Baylis
[4]. We differ from them in the fact that the pair scalar-vector in the said articles is written in a row, and we
have a column. The row notation is more practical for edition, while the column notation seems favorable for
calculation, because it creates separation transparency into the scalar and vector portions and provides it a quick
and easy way to transition to the matrix representation.

For the reader familiar with the classic paravectors, it can be important to compare our formalism with
a classic one. Since the closest to our notation seems the notation applied by prof. William Baylis and we often
refer to his works, we give a concise relationship between our and his definitions. (Wiki)
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W.E.Baylis This article

paravector q = a + i d +b+ i c paravector Γ =

�

a + i d
b+ i c

�

bar conjugation ∗) q = a + i d −b− i c reversion Γ− =

�

a + i d
−b− i c

�

Hermitean conjugation q † = a − i d +b− i c conjugation Γ ∗ =

�

a − i d
b− i c

�

gradient operator
∂ = ∂ /∂ t −∇ reversed

∂ − =

�

∂ /∂ t
−∇

�

(or paragradient) gradient operator
spatially reversed

∂ = ∂ /∂ t +∇ gradient operator ∂ =

�

∂ /∂ t
∇

�

gradient operator
determinant det Γ = Γ Γ−

module ∗∗) |Γ |=
p

detΓ
norm





q




=
p

a 2+ b 2+ c 2+d 2

vigor vigΓ = Γ Γ ∗

∗)or Clifford conjugation ∗∗) it exists on the set of proper or singular paravectors only!

For readers familiar with multivector algebra (Geometric Algebra) the following explanations are valid.
Scalar and trivector are called a complex scalar and are denoted α = a + i d , where i = a123 is a unity trivector.
Vector and bivector are called a real and imaginary vector respectively, and their sum is a complex vector.

In the next table we compare our notation with the multivector notation used by D. Hestenes in the work
[6].

Multivectors Paravectors

multivector q =
�

q
�

0
+
�

q
�

1
+
�

q
�

2
+
�

q
�

3
paravector Γ =

�

a + i d
b+ i c

�

scalar a =
�

q
�

0
real scalar a

vector b=
�

q
�

1
real vector b

bivector C=
�

q
�

2
imaginary vector i c

trivector D = d e123 =
�

q
�

3
imaginary scalar i d

conjugation q reversion∗) Γ−

reversion q ∗ conjugation ∗) Γ ∗

involution bq (Γ−)∗

bivector coordinates C 23e23, C 31e31, C 12e12 i c 1e1, i c 2e2, i c 3e3,
trivector coordinates d e123 i d

b1 ·b2 b1b2

b1 ·C2 =−C2 ·b1 −b1× c2

inner products C1 ·C2 =C2 ·C1 −c1c2

D1 ·b2 i d1b2
D1 ·C2 −d1c2

exterior products
b1 ∧b2 i b1×b2

b1 ∧C2 =C2 ∧b1 i b1c2

vector product C1×C2 =−C2×C1 −i c1× c2

*) Change of meaning between the conjugation and reversion was justified in section 4.

In matrix representation we can exhibit unit multivectors:

scalar







1 0
1

1
0 1






vector







0 rx ry rz

rx 0 −i rz i ry

ry i rz 0 −i rx

rz −i ry i rx 0






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bivector







0 i rx i ry i rz

i rx 0 rz −ry

i ry −rz 0 rx

i rz ry i rx 0






trivector







i 0
i

i
0 i







where |r|= 1.

Paravectors in Pauli matrices basis.

Pauli matrices form the basis of complex 2x2 matrices in real space

σx =

�

0 1
1 0

�

σy =

�

0 −i
i 0

�

σz =

�

1 0
0 −1

�

The basis in 4-dimensional space is obtained after adding matrix: σ0 =

�

1 0
0 1

�

With the help of these matrices, we can show any paravector:

α= (a + i d )σ0

βββ = [(bx + i cx )σx , (by + i cy )σy , (bz + i cz )σz ]

More information on the relationship between formalisms applied in physics of space-time can be found
in the article Imaginary Numbers are not Real. The Geometric Algebra of Spacetime Gull S., Lasenby A., Dorn
Ch.
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