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Abstract 
We critically examine the non-Fermi liquid (NFL) behavior observed in heavy fermion systems located 

close to a magnetic instability and suggest a conceptual advance in physics in order to explain its origin. 

We argue that the treatment of electronic states responsible for magnetism near the Quantum Critical Point 

(QCP), should not be accomplished within the quantum mechanical formalism; instead they should be 

treated semi-classically. The observed NFL behavior can be explained within such a scenario. As a sequel 

we attempt to discuss its consequences for the explanation of high-TC superconductivity observed in 

Cuprates. 
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1. Introduction 
 
NFL behavior is observed in heavy fermion systems when the system is tuned towards a 

magnetic instability known as the QCP [1, 2]. Far away from QCP one observes normal 

Fermi liquid behavior as expected for metals by Landau [3]. Landau’s Fermi liquid 

theory is remarkably successful in explaining the low temperature behavior of 

paramagnetic heavy fermion systems despite the strength of electronic correlations being 

as large as 6-7 eV when described within the Anderson model [4]. A big question is: 

What causes the breakdown of Landau’s Fermi liquid theory close to the QCP while it 

remains valid far away from it. This has been a long standing problem within the 

scientific community and extensive experimental and theoretical investigations have been 

performed in order to shed light on it. Many theoretical progresses have been made in 

order to explain NFL behavior e.g. models based on multichannel Kondo effect, models 
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based on QCP, models based on disorder etc. [1, 2]. Despite the intense study, a 

consensus over the origin of NFL behavior has not been reached yet. 

 

In this paper, we propose a conceptual advance in physics over the treatment of electronic 

states close to the QCP. Our picture is based on certain overlooked issues in quantum 

mechanics which led to improper theoretical treatment of ‘magnetic’ states close to the 

QCP. These issues, when considered, readily explain the observed NFL behavior. 

 

2. Results and Discussion 
 

In order to illustrate our point, we take recourse to the single ion Kondo problem [5]. Let 

us assume a two electron system: a ‘magnetic’ 4f electron and an itinerant valence 

electron. The ground state for the single ion Kondo problem is the non-magnetic Kondo 

singlet state represented by f v f↑ ↓ −↓ ↑⏐ 〉 ⏐ 〉 ⏐ 〉 ⏐ 〉v . This quantum mechanical state describes 

indistinguishable particles as is evident from its exchange symmetry. In this state the 4f 

electronic degrees of freedom have to be included in the Fermi volume and hence the 4f 

electrons are fermions just like the valence electrons. Since this is a singlet state it has no 

net magnetic moment. The 4f electron’s magnetic moment has been compensated by its 

anti-ferromagnetic coupling to the spins of the valence electrons. A question is: How to 

describe the two electron state at higher temperatures. At high temperatures the 4f 

electrons recover their localized magnetic moments and hence a singlet description is 

definitely not appropriate. Within quantum mechanical formalism, the low to high 

temperature transition in single ion Kondo systems can be modeled by a singlet to triplet 

transition wherein the high temperature state is the triplet state which has a magnetic 

moment [6, 7]. Such a treatment might explain the recovery of 4f magnetic moment at 

high temperatures. However within such a treatment the 4f electrons continue to remain 

as ‘fermions’ (indistinguishable particles) even at higher temperatures on account of their 

quantum mechanical spin triplet description thereby participating in the Fermi volume. 

Therefore, within this picture, the Fermi volume does not change with temperature. 
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In case of a Kondo lattice, Kondo phenomenon can be modeled as the coherent screening 

of the periodic 4f electrons by valence electrons creating a coherent Kondo state below 

the coherence temperature, Tcoh [8, 9]. The development of Kondo coherence leads to the 

loss of magnetic moments of the localized 4f electrons at low temperatures. The 

temperature dependent large-small Fermi surface transition in Kondo lattices is a long 

standing problem in the community. It is believed that the Fermi surface in Kondo 

systems should expand below Tcoh in order to incorporate 4f electronic degrees of 

freedom into it as a result of the Kondo coherence [10-12]. At high temperatures the 

Fermi surface remains small since the Kondo coherent state is not yet established and the 

4f electrons are localized; hence they are excluded from the Fermi volume. Experimental 

evidence for such an expansion has been obtained in the de Haas van Alphen experiments 

performed on many Kondo lattices at very low temperatures [13]. These results have 

been successfully interpreted by considering the 4f electronic states as being a part of the 

Fermi volume and hence demonstrate the expanded character of the Fermi surface. The 

question is how the large-small Fermi surface transition should be modeled theoretically? 

There are few approaches based on dynamical mean field theory (DMFT) which have 

attempted to model the large-small Fermi surface transition in CeIrIn5 [14, 15]. In this 

paper, we present an elegant conceptual picture to model this Fermi surface transition. 

We provide conditions under which electrons can/cannot be treated as fermions. 

 

Within a quantum mechanical description of the Kondo phenomenon, the Fermi surface 

topology would undergo restructuring merely without any explicit expansion since the 4f 

electrons remain ‘fermions’ at all temperatures and hence their participation in the Fermi 

volume does not vary with temperature; a fact in contrast to experiments which have 

indeed demonstrated the large-small Fermi surface transition in Kondo lattices explicitly. 

Hence such a description of the Kondo phenomenon is inappropriate. Instead we claim 

that the high temperature state in a Kondo model is not a quantum mechanical state. For 

example, within the single ion Kondo model the high temperature state is not a spin 

triplet state but is a non-quantum state like f v↑ ↓⏐ 〉 ⏐ 〉  (or f v↓ ↑⏐ 〉 ⏐ 〉  equivalently since both states 

are degenerate in the absence of a magnetic field). This state does not have the exchange 

symmetry and therefore does not represent a quantum mechanical state describing 

 3



indistinguishable particles. Instead, it is a state describing distinguishable particles 

wherein a particle exchange gives rise to a new state. We infer that 4f electrons are not 

‘fermions’ at high temperatures. Therefore we claim that the transition from the state 

f v↑ ↓⏐ 〉 ⏐ 〉  (or f v↓ ↑⏐ 〉 ⏐ 〉 ) at high temperatures to a state f v f v↑ ↓ −↓ ↑⏐ 〉 ⏐ 〉 ⏐ 〉 ⏐ 〉  at low temperatures should 

be modeled ‘semi-classically’ but not quantum mechanically. Within this picture the 

large-small Fermi surface transition can be explained naturally. The state f v f↑ ↓ −↓ ↑⏐ 〉 ⏐ 〉 ⏐ 〉 ⏐ 〉v  at 

low temperatures describes both 4f and valence electrons as fermions participating in the 

Fermi volume that corresponds to a large Fermi surface while the state f v↑ ↓⏐ 〉 ⏐ 〉  (or f v↓ ↑⏐ 〉 ⏐ 〉 ) 

at high temperatures represents a localized 4f electron which is excluded from the Fermi 

surface ⎯ the Fermi volume contains only the itinerant valence electron and hence the 

Fermi surface is small. 

 

This conceptual picture may be easily visualized by comparing spatial extensions of wave 

functions for the localized 4f and itinerant valence electrons. We argue that in order for 

an electronic system to be considered as a ‘fermionic’ system and treated within the 

Landau’s Fermi liquid formalism, the spatial distribution of the amplitudes of the wave 

functions of all the constituent electrons must be identical to each other. Alternately one 

can state that for a fermionic system the spatial profile of the wave functions of all 

constituent electrons must be identical to each other. On the contrary when a 4f electron 

is localized then it does not lead to such identical profile since the amplitude of 4f 

electronic wave function peaks in the region of localization and becomes negligible far 

away from it whereas the amplitude of valence electronic wave function continues to be 

spatially uniform. Thus there is inconsistency between the spatial profiles of the wave 

functions of 4f and valence electrons giving rise to ‘distinguishability’ between them. 

Hence the localized 4f electron cannot be treated as a fermion. This happens in Kondo 

systems at high temperatures when the 4f electron localizes. At low temperatures the 

spatial profile of the 4f electronic wave function is identical to that of the valence 

electronic wave function due to quantum entanglement. Hence they both become 

indistinguishable and the 4f electron is therefore a fermion. A remarkable consequence of 

this idea can be seen when tuning the ground state of Kondo lattices across QCP. When 

the Kondo ground state is formed in case of paramagnetic Kondo lattices the Fermi 
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surface is large due to the occupancy of 4f electrons in the Fermi volume. The valence 

band contains both 4f and itinerant valence electrons and the Fermi liquid theory holds 

for the valence band. On the contrary when the 4f electron is completely localized in the 

magnetically ordered ground state of Kondo lattices then it cannot be treated as a 

fermion. Therefore the Fermi volume contains only the itinerant valence electrons 

excluding the 4f electrons (small Fermi surface) and the Fermi liquid theory still holds 

but only for the itinerant valence electrons which alone constitute the valence band (It is 

to be noted that the applicability of Fermi liquid theory is always in the context of 

valence band in solids since it is the valence electrons which influences the low energy 

excitations in solids. The ‘localized’ electrons do not contribute to the valence band and 

therefore cannot influence the low energy excitations in solids). When the system is tuned 

towards QCP then the degree of 4f electron delocalization is believed to increase until at 

QCP where we get comparable contribution from the 4f electron and the itinerant valence 

electrons in the valence band. Hence the low energy excitations of systems close to QCP 

are influenced jointly by the 4f and itinerant valence electrons. There are two possible 

theoretical scenarios currently believed for explaining the nature of 4f electrons in the 

vicinity of QCP. In one case it is predicted that the 4f magnetic moments are completely 

screened due to Kondo effect at QCP and the magnetic order results within the itinerant 

electron gas [16-18] whereas the other scenario predicts that the 4f electrons remain 

localized even at QCP and the magnetic order results from the localized electrons [19, 

20]. All of these predictions are made by theoretical models within the quantum 

mechanical formalism. Either of these two scenarios have a certain amount of 

experimental support hence the debate over which among these two scenarios prevail is 

still ongoing. We provide a radically new theoretical picture in this regard. We argue that 

since the 4f electron transforms from a fermion in the paramagnetic ground state to a non-

fermion (a distinguishable particle) in the magnetically ordered state through the QCP, 

the corresponding theoretical description for the transformation must be obtained in a 

semi-classical framework and not in a quantum mechanical framework. In this context 

we argue that the 4f electrons maintain their partial localized character even at the QCP 

which forbids their description as ‘fermions’. Consequently the valence electronic system 

close to QCP, containing both the partially localized 4f (non-fermion) and itinerant 
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valence electrons (fermion), cannot be modeled within the Landau’s Fermi liquid 

formalism and hence NFL behavior emerges (For another explanation see Supplementary 

Information Section A). 

 

Furthermore it is observed that the ground state close to QCP in many heavy fermion 

systems is superconducting in which the superconducting pairing mechanism is different 

from conventional phonon mediated. It is commonly believed that the unconventional 

superconducting pairing mechanism is electronic in origin. The question is why such an 

unconventional pairing mechanism is operative only close to QCP and not far away from 

it? We attempt to explain this in the following way. It is well known that every electronic 

system has a tendency to form a bosonic ground state in order to reduce its energy since 

bosons can condense into the same state at low temperatures whereas the fermions cannot 

do so due to Pauli’s exclusion principle. It is due to this tendency that superconducting 

ground states are formed in case of certain metallic systems. However one needs a 

suitable mechanism to form superconducting Cooper pairs (bosons) out of electrons 

(fermions) in order to realize the superconducting ground state. We claim that the 

unconventional pairing mechanism is a consequence of the fact that the valence electrons 

for systems close to QCP are not fermionic in nature. Therefore the tendency to form a 

bosonic ground state in the valence electronic system is supported in such a case and 

superconductivity emerges. Far away from QCP the valence electrons are fermions and 

hence the unconventional pairing mechanism is not supported in such a case. Since Fermi 

liquid theory is not applicable close to QCP, quasi-particles can not be formed and 

therefore it is possible that the itinerant valence electrons find a glue to bind themselves 

together into a Cooper pair. Analogous to the case of phonon mediated superconductors 

where the glue is provided by the electron phonon coupling which causes an effective 

attractive interaction between two electrons giving rise to Cooper pairs [21, 22], the glue 

in case of heavy fermion superconductors seems to be generated by the temperature 

dependent attractive interaction between 4f and itinerant valence electron – Note that 

Kondo effect is an example of asymptotic freedom [23, 24] in condensed matter in which 

the strength of attractive coupling between 4f and valence electron is temperature 

dependent. The strength of this coupling increases with reducing temperature (see 
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Supplementary Information Section B). This coupling is a result of hybridization between 

4f and valence electron. An effect of such temperature dependent coupling is clearly 

visible in the photoemission spectra as demonstrated in our earlier publication [25]. – 

effectively giving rise to an attractive interaction between two itinerant valence electrons 

binding them into a Cooper pair. 

 

We anticipate that a similar reasoning holds while explaining the unconventional 

superconductivity observed in high TC Cuprate superconductors. Here too the metallic 

system above the superconducting transition temperature manifests anomalous behavior 

and therefore is called as a ‘strange metal’ [26, 27]. It is also believed that a QCP exists 

deep within the superconducting dome. Therefore it is quite likely that the 

unconventional pairing mechanism in Cuprate superconductor results from the fact that 

its valence electronic system is not fermionic in nature similar to the case of heavy 

fermion superconductors and hence unconventional superconductivity is supported in 

such a case. It is likely that the valence holes (electrons) in the hole (electron) doped 

Cuprate superconductors have an attractive temperature dependent coupling (resulting 

from the hybridization between the valence state and the localized magnetic moment) 

with the localized magnetic moment of the Cu ion (in d9 electronic configuration) which 

gives rise to an effective attractive interaction between two valence holes (electrons) 

producing Cooper pairs causing high TC superconductivity ⎯ a similar picture as we 

proposed for explaining heavy fermion superconductivity. 

 

3. Conclusion 
 

In summary, we argue that the high temperature state in the Kondo model cannot be 

treated within the quantum mechanical formalism. Instead we claim that the Kondo 

phenomenon should be modeled semi-classically. The semi-classical picture easily 

explains the experimentally observed large-small Fermi surface transition. The strength 

of our proposal comes from the fact that we highlight certain overlooked issues in 

quantum mechanics which led to inappropriate theoretical treatment of electronic states 

subjected to different degrees of localization. The key conceptual advance provided by 
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this manuscript is the claim that not every electron qualifies to be called as a fermion and 

can be modeled within Landau’s Fermi liquid formalism. Partially localized electrons 

alongside itinerant electrons together cannot be treated as a fermionic system and hence it 

displays NFL behavior in its low energy excitation spectrum. The non-fermionic nature 

of valence electronic system close to QCP supports the tendency of the electronic system 

to form a bosonic superconducting ground state and hence unconventional 

superconductivity is observed at QCP in heavy fermion systems. We project that a similar 

picture possibly holds for the explanation of unconventional superconductivity observed 

in high TC Cuprate superconductors as well. We argue that the Cooper pairing glue in 

case of heavy fermion or Cuprate superconductors results from the existence of an 

attractive temperature dependent coupling between valence states and the localized 

magnetic moment (resulting from the hybridization between the valence state and the 

localized magnetic moment) which can give rise to an effective attractive interaction 

between two valence electrons (or holes) forming Cooper pairs yielding unconventional 

superconductivity. We firmly believe that the qualitative/conceptual discussion presented 

in this manuscript would lay the foundation for the development of quantitative 

theoretical models addressing these issues. 
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A) Origin of Non-Fermi Liquid Behavior in heavy 

fermion systems 
 
Landau’s Fermi liquid theory claims that every many-electron system will possess 
fermionic quasiparticles as its low energy excitations no matter however large is the 
strength of electron correlations amongst them. Hence every electronic system will have 
a Fermi liquid ground state according to Landau. However, recent observations of non-
Fermi liquid (NFL) behavior among many correlated electron systems have generated 
intense enquiry towards sorting out its origin. 
 
In this manuscript, we argue that Landau overlooked a fundamental issue in quantum 
mechanics that an electronic system must possess identical spatial profile of wave 
function of every constituent electron in order to model the electronic system within the 
Fermi liquid theory. Such an identical profile ensures ‘indistinguishability’ amongst all 
the constituent electrons which is a necessary condition for them to be treated as 
‘fermions’ obeying Fermi liquid theory. Such ‘indistinguishability’ can be realized in 
itinerant electron systems. These ‘fermions’ then give rise to the Fermi liquid ground 
state, regardless of the strength of correlations (e.g. as in paramagnetic heavy fermion 
systems). In the context of condensed matter systems, this means that the Fermi liquid 
theory is applicable for the itinerant ‘valence’ electrons but not for the localized 
electrons. In other words, itinerant ‘valence’ electrons are ‘fermions’. Localized 
electrons are not ‘fermions’. 
 
In the context of Kondo lattices, this idea gives rise to remarkable consequences: It is 
known that the ground state of a Kondo lattice possessing stable local magnetic moments 
is long range magnetically ordered. Here, only the itinerant valence electrons are 
fermions which alone constitute the valence band giving rise to Fermi liquid behavior. 
Localized ‘magnetic’ electrons are not fermions and do not participate in the valence 
band. On the other hand the Kondo screened ground state of a Kondo lattice is 
paramagnetic with all the localized ‘magnetic’ electrons becoming itinerant due to their 
quantum entanglement with the itinerant valence electrons. In this case, both the itinerant 
valence electrons and ‘magnetic’ electrons are fermions participating in the valence band. 
When we tune the ground state of a Kondo lattice towards the quantum critical point 
(QCP) from the magnetically ordered state (via variation of a control parameter like 
chemical/physical pressure, magnetic field etc.), we gradually introduce itinerancy in the 
localized ‘magnetic’ electrons. Consequently they start contributing to the valence band 
and affecting low energy physical properties of compounds close to QCP. However we 
claim that at QCP the Kondo screening process is not yet complete. Hence the ‘magnetic’ 
electrons possess partial localized character even at QCP which disqualifies them to be 
called as fermions. Consequently the valence band (containing both itinerant ‘valence’ 
electrons and partially localized ‘magnetic’ electrons) cannot be modeled within Fermi 
liquid theory and hence NFL behavior emerges at QCP. 
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B) Temperature dependence of the Kondo coupling 
 
 
The Hamiltonian for an impurity local magnetic moment S  coupled to the conduction 
electron   within the Kondo model is: s
 

† .k k k
k

H c c J S sσ σ
σ

ε= −∑  

 
where 

 
†

, ,
, , ,

1
k k

k k
s c c

N σ σ σ σ
σ σ

σ ′ ′ ′
′ ′

= ∑  is the conduction electron spin at the impurity site 

(σ  are the Pauli matrices; N is the number of sites) 
 

kε  → conduction electron dispersion 
† ,k kc cσ σ  → creation and annihilation operator for an electron with wavevector k 

and spin σ, respectively 
J   → Kondo exchange coupling constant (J < 0 for antiferromagnetic Kondo 

coupling between the local moment and the conduction electron spin) 
 
{Note: Although the Kondo effect is known to be a many-body problem involving many 
electrons (~1022 electrons/cm3 - typical electron densities in metals) we attempt to 
illustrate the details about the Kondo coupling using an example of a two electron system 
(consisting of a localized magnetic electron and a conduction electron) under the 
justification that such details can be studied qualitatively using the two electron system. 
The effect of remaining electrons will only (at maximum) be to renormalize the value of 
the Kondo coupling J and will not change the qualitative characteristics of J like, e.g. its 
temperature dependence. As a matter of fact the exchange interaction among 
electrons is by definition between two electrons. Hence our use of such two electron 
system is well justified and is very helpful for illustrational simplicity.} 
 
The prevalent view within the scientific community assumes J to be constant with 
temperature. However, we argue that the value of J increases with decreasing temperature 
corresponding to the increase in the Kondo coupling strength at lower temperatures. This 
can be understood qualitatively in the following way. It should be noted that J is 
proportional to the exchange integral (Jex) between the two electrons which is a function 
of their wavefunctions’ spatial distribution as well as their mutual spatial separation (ref. 
http://en.wikipedia.org/wiki/Exchange_interaction). Specifically Jex is inversely 
proportional to the magnitude of their mutual spatial separation. As the temperature is 
lowered, due to the strong attractive interaction between the local moment and the 
conduction electron, there is a tendency for both of them to stay close to each other in 
space thus reducing their mutual spatial separation and thereby increasing the exchange 
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integral Jex between the two electrons. Consequently the value of the Kondo exchange 
coupling J increases too, at lower temperatures. 
 
Origin of an attractive interaction between a localized electron (undergoing finite 
hybridization with conduction electrons) and a conduction electron at low 
temperatures: 
 
The attractive nature of the exchange interaction J can be qualitatively understood if one 
studies the physics of Hydrogen (H2) molecule. In a H2 molecule it is known that the 
bonding and anti-bonding states are formed due to the hybridization phenomenon 
between the two atomic H 1s orbitals. The bonding states involve anti-parallel orientation 
of both the spins while the anti-bonding states involve their parallel orientation. The 
bonding states correspond to the two electrons being close to each other in space while 
the opposite is true for the anti-bonding states (due to Pauli repulsion between both the 
electrons). The ground state is the bonding state which leads to the formation of the H2 
molecule while the anti-bonding state is an excited state which leads to the dissociation of 
the H2 molecule. A similar situation exists between a localized electron and a conduction 
electron when we switch on the hybridization between them. Hybrid orbitals are formed 
as a consequence which share similar properties as those of the H2 molecule. The 
resulting Kondo effect leads to the anti-ferromagnetic coupling between the two electrons 
at low temperatures leading to the formation of the Kondo singlet state at 0 K akin to 
antiparallel arrangement of the two electrons inside the bonding state of the H2 molecule. 
Thus the localized electrons indeed contribute to the chemical bonding at low 
temperatures. In this state the electrons are very close in space. As we increase the 
temperature the anti-bonding states start getting populated thus reducing the occupancy 
of the bonding state.  
 
Thus the net effect of lowering temperature is the increase of the occupancy of the 
bonding state (with an antiferromagnetic interaction between the two electrons) causing 
a gradual reduction in the mutual spatial separation between both the electrons akin to 
the existence of an attractive interaction between both of them. Then following the 
formula for Jex from ref. http://en.wikipedia.org/wiki/Exchange_interaction, one can 
conclude that J increases with lowering of temperature due to such reduction. This J is 
responsible for generating the attractive force between both the electrons acting like glue 
for the formation of Cooper pairs in heavy fermion and Cuprate superconductors. Such is 
the microscopic origin of the attractive interaction between the localized electron and the 
conduction electrons at low temperatures. 
 
{Please note that the exchange coupling J arises from the Coulomb interaction between 
both the electrons after applying quantum mechanical constraints on it and therefore does 
not represent a new fundamental force (unlike the electromagnetic force, gravitational 
force, strong nuclear force or weak nuclear force) in nature. Instead the exact effects of 
the Coulomb interaction among electrons were not fully taken into consideration so far 
and our aforementioned discussion merely fulfills this deficiency.} 
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We argue that J→0 as T→∞ and J→-∞ as T→0 (J < 0 always for antiferromagnetic 
Kondo coupling). J(T) is a monotonic function of temperature. 
 
Exchange Interaction and Fermionic behavior: 
 
Assume the two electron system to represent a localized magnetic 4f electron interacting 
with an itinerant valence electron by the Kondo interaction. At 0 K the system forms a 
stable non-magnetic Kondo singlet state denoted by: f v f v↑ ↓ −↓ ↑⏐ 〉 ⏐ 〉 ⏐ 〉 ⏐ 〉 . This state actually 
corresponds to J→-∞ wherein full exchange between both the electrons is realized. As a 
result we have full indistinguishability between them (their wave function being 
exchange invariant upto an overall phase factor). As the magnitude of J decreases with 
increasing temperature, the exchange interaction between both the electrons becomes 
weaker concomitantly. As a result we do not have full exchange between both the 
electrons instead only a partial exchange is realized between the two at non-zero finite 
temperatures. Consequently they are not fully indistinguishable between themselves but 
instead they should be considered as partially indistinguishable (what we mean by a 
partial exchange between the two electrons will be clear in the subsequent discussions). 
Thus we have a scenario in which the exchange interaction between the two electrons is 
temperature dependent. The J→0 state at T→∞ corresponds to the local moment state in 
which both the electrons become completely distinguishable. The question is how to 
express the two electron state at intermediate temperatures? We claim that an arbitrary 
temperature state could in general be written as: i

f v fe θ
v↑ ↓ − ↓ ↑⏐ 〉 ⏐ 〉 ⏐ 〉 ⏐ 〉 , wherein the second term 

in the expression has acquired a phase factor θ different from that of the first term. Thus 
the weight of the second term which exchange interacts with the first term has reduced by 
a factor of cosθ as against the Kondo singlet state in which the second term exchange 
interacts with the first term completely. Such a situation amounts to a partial exchange 
between both the electrons giving rise to partial indistinguishability between them. Such 
a scenario cannot be captured within the quantum mechanical formalism and requires a 
semi-classical approach for its explanation. Note that θ should be expressed as θ = 
(π/2)∗α where 0≤α≤1 and α depends on temperature via J(T). Thus α = α(J(T)) and 
α→0 as T→0 and α→1 as T→∞. α=0 corresponds to the Kondo singlet state while α=1 
is the high temperature state where full local moment is obtained and which is devoid of 
antisymmetry (with respect to a particle exchange). Note that α should be monotonic 
function of temperature.  
 
The fermionic behavior that we encounter in physics is a result of indistinguishability of 
the electrons. At any moment the Fermi surface (FS) volume of an electronic system will 
be proportional to the weight of the part of its wavefunction which obeys the 
antisymmetry (corresponding to indistinguishable electrons). Thus for the Kondo singlet 
state f v f↑ ↓ −↓ ↑⏐ 〉 ⏐ 〉 ⏐ 〉 ⏐ 〉v , due to its full indistinguishability, we must count the f-electron 
wholly inside the FS. Thus the FS contains the valence electron (by default) and also the 
f-electron wholly {Please note that in the context of Kondo systems, the valence electrons 
are by default considered to be itinerant and participating in the FS volume. The open 
issues in Kondo systems concern the participation of the localized 4f electron within the 
FS volume with varying temperature and/or non-thermal ‘control’ parameter}. The FS 
volume corresponds to two electrons in that case. Now let us take an arbitrary 
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temperature state i.e. i
f v fe θ↑ ↓ − ↓ ↑⏐ 〉 ⏐ 〉 ⏐ 〉 ⏐ 〉v . We have already argued that this state does not 

correspond to full indistinguishability between both the electrons due to the absence of 
full antisymmetry (with respect to a particle exchange) for this state. However when we 
rewrite the above state as cos ) cos ( ) sinf v f v f v iθ θ θ f v↑ ↓ + ↑ ↓ −↓ ↑ − ↓ ↑(1− ⏐ 〉 ⏐ 〉 ⏐ 〉 ⏐ 〉 ⏐ 〉 ⏐ 〉 ⏐ 〉 ⏐ 〉 , one can see that 
a part of this state (i.e. the middle term) obeys the antisymmetry while the rest (i.e. the 
remaining terms) does not. It is here we claim that the state i

f v fe θ
v↑ ↓ − ↓ ↑⏐ 〉 ⏐ 〉 ⏐ 〉 ⏐ 〉 actually 

manifests partial indistinguishability (due to the existence of exchange interaction 
between a part of the 4f electron, i.e. cosθ fraction of the 4f electron, with the valence 
electron) between the two electrons.  Only the part of the wavefunction which obeys the 
antisymmetry contributes to the FS volume while the rest does not contribute so and 
therefore it corresponds to the distinguishable electronic weight→ non-fermions {Please 
note that the distinguishability/indistinguishability of an electron is always defined in 
relation to some other electron. It is not obviously clear how this will affect the FS 
volume. Here we argue that typically in Kondo systems the valence electrons are 
considered as ‘benchmark’ for the electrons contributing to the FS volume. Therefore any 
other electron (e.g. 4f electron in Kondo systems) becoming indistinguishable with the 
valence electron must be counted in the FS volume and vice versa. The intermediate case 
of partial indistinguishability between them would naturally lead to a partial contribution 
of the 4f electron to the FS volume}. Thus in this case the total FS volume would contain 
the valence electron (by default) and cosθ fraction of one f-electron. Then the FS volume 
will be (1+cosθ). Thus one can see that with increasing temperature the FS volume 
reduces from 2 (at T = 0K) to 1 (at T = ∞K) following the expression (1+cosθ) = 
(1+cos((π/2)∗α) which depends on the temperature through J(T). The exact functional 
form of J(T) is unknown and is an open and complex issue.  
 
This was the illustration done for a simple two electron system highlighting the 
intricacies of the two electron exchange interaction as a function of temperature. Of 
course for real many-electron systems there might arise additional degrees of complexity 
and the exact FS evolution with temperature might need certain renormalization of the 
parameters presented here. However, the basic idea presented in this section (regarding 
the two electron exchange interaction) needs to be utilized in any realistic theory 
simulating the temperature dependent FS evolution in Kondo lattices.                                                 
 
 
Non-fermi liquid (NFL) behavior at the quantum critical point (QCP): 
 
Instead of varying the temperature for tuning the value of J, one can also tune it by 
changing a non-thermal ‘control’ parameter (ρ) like physical/chemical pressure, applied 
magnetic field etc. Such a control parameter tuning has led to the discovery of QCP’s in 
the heavy fermion systems which are a very active field of research currently. An 
interesting observation of NFL behavior close to QCP’s has turned into a big open 
problem in contemporary condensed matter research. 
 
We argue that our treatment about the state of the two electron system as described above 
is maintained even in the present case when we tune the ground state of the heavy 
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fermion system by varying ρ. Along the ρ axis, (in case of the two electron system 
involving an interaction of the 4f electron with an effective field simulating the effect of 
other 4f sites of the Kondo lattice on the 4f electron → simulating the RKKY interaction 
(this is an approximation for the real situation in a Kondo lattice but it is quite helpful for 
highlighting our ideas over the variation of the two electron exchange interaction with ρ)) 
if ρ→∞ corresponds to J(ρ)→-∞ (Kondo singlet ground state, f v f v↑ ↓ −↓ ↑⏐ 〉 ⏐ 〉 ⏐ 〉 ⏐ 〉 ) and ρ→0 
corresponds to J(ρ)→0 (local magnetic moment ground state) then any ground state for a 
finite ρ will in general be represented by if v e f vθ↑ ↓ − ↓ ↑⏐ 〉 ⏐ 〉 ⏐ 〉 ⏐ 〉  , 
where θ = (π/2)∗α ; 0≤α≤1 and α depends on ρ via J(ρ). Close to the critical value of ρ, 
i.e. ρC where the QCP is believed to exist, the induced itinerancy into the f-electron (by 
increasing the magnitude of J(ρ)) is large enough for it to influence the physical 
properties of the systems although ρC<∞. Thus the f-electron becomes a part of the 
valence band although it has not fully matured into a fermion yet. This leads the valence 
band to display NFL excitations.  
 
In case of a Kondo lattice, the real situation is far more complex due to the RKKY 
interaction but the basic details about the two electron exchange interaction presented 
here must be utilized for a realistic simulation of the variation of the ground state of 
heavy fermion systems with ρ. This holds as well for the study of the variation of the FS 
volume with ρ, in which case we admit that a large amount of conflicting experimental 
evidence is available as far as the exact location of large-small FS transition with respect 
to the QCP is concerned. However our approach of treating the two electron exchange 
interaction within a semi-classical theory, we believe, would allow a large degree of 
flexibility for accommodating a wide variety of ground states within its predictions. 
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