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Abstract

The present work purports to the generation of a signal based chaos based on Ramanujan’s Mock Theta Functions.
Specifically, the variable in these functions is viewed as an additively coupled sum of sinusoidal signals, with competing
frequencies. Thus, by adapting the seven third order mock theta functions into signals, the derivatives are computed
and used to form the corresponding iterative maps, which are studied using phase portraits. It is seen that the phase
portraits of three of the seven forms exhibit rich, ornamental patterns, characteristic of chaos. Using these, the bifurcation
diagrams are plotted, and the chaotic behavior is quantitatively characterized using Lyapunov Exponent and Kolmogorov
Entropy. It is seen that the nature of chaos in the mock theta form based signals indeed depend on the frequency ratio
of the driving signals, thus pertaining to a case of signal based chaos, which has the key advantage of easy tunability,
which forms the novelty of the present work.
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1. Introduction

Apart from quantum physics and the theory of relativity, another significant revolution in physics characterizing
the past century is the rise of Chaos Theory, with diverse applications including biology, astrophysics, mechanics and
information technology [1]-[16]. Characterized by the signatures of determinism and an extreme sensitivity to initial
conditions, the heart of Chaos Theory is the mathematical aspect of nonlinearity, as seen by the various iterative maps,
nonlinear differential equations and bifurcation analyses seen in literature [1, 2]. The physical implementations of chaos
generation, especially in electronics involves the realizations of such nonlinear differential equations using appropriate
combinations of op-amps and resistive/capacitive passive components, a circuit typically called the ‘Chua Oscillator’ [17]-
[21]. The resultant chaos generated is a ‘system’ based chaos, with the initial conditions, and hence control parameters
defined as physical parameters, such as resistance or capacitance [17].

In the present work, however, we choose to deviate from this perception, and attempt to generate ‘signal’ based chaos,
with the control parameters as aspects of a signal such as amplitude and frequency. Such a dependence on signal offers
the obvious advantage of easy tunability, especially in high frequency Integrated Circuit realizations, often along with
simpler realizations exhibiting lesser power dissipation [22, 23]. However, in order to achieve this, sufficient nonlinearity
is required, and for this purpose, we consider the Mock Theta Functions, introduced by the Indian mathematician
Ramanujan in his last living days [24]-[31]. These functions are typically characterized by sum and product series of a
q-analog variable, with the increasing exponential powers signifying the presence of nonlinearity in the same.

In essence, the mock theta functions, represented in general as F (q) are viewed as the output signal emerging
from a nonlinear system with the driving factor q represented as an additive coupling of two sinusoidal signals with
competing frequencies. Specifically, the seven mock theta functions of order three are considered, and for each case, after
representing the function F (q) as an output signal X(t), the time derivative X ′(t) is adopted into a difference equation
yielding the corresponding mock theta function iterative map. By studying the evolutionary behavior using phase
portraits, the nonlinear dynamics are revealed. It is seen that of the seven functions, three exhibit chaotic dynamics, and
for these three, the bifurcation diagrams are plotted, which reveal that the behavior of such systems depend heavily on
the parameter r, which is the frequency ratio between the additively coupled driving sinusoidal signals. The hardware
implementation of these three functions are carried out using FPGA, and the nature of chaos dependent on r is studied
using Lyapunov Exponents and Kolmogorov Entropy. The common feature of all the three chaos generating mock theta
functions is the sensitive dependence on the frequency ratio, and hence the name ‘Frequency Controlled Chaos’, with
the ensuing ease of tunability forming the novelty of the present work.



2. Phase Portraits of the Mock Theta Functions

Ramanujan first mentioned about the mock theta functions in his last letter to Hardy, as 17 functions similar in
appearance to Jacobi Theta functions, with the generalized notation F (q), where |q| < 1, which are in essence q-series
with exponential singularities [24]-[31]. The mathematician classified the 17 mock theta functions into four of the third
order, ten of the fifth order and three of the seventh order, though the precise definition of ‘order’ or ‘mock theta’ has
for a long time been elusive [24]-[31].

In the present work, the following steps are performed to adapt a given mock theta function F (q) into a potential
chaos generator.

1. The variable q is denoted as an additively coupled signal of two sinusoids of frequencies f1 and f2 = rf1, as

q = sin(2πf1t) + sin(2πrf1t) (1)

with r denoting the ratio between the frequencies, and acting as the key control parameter, as seen later.

2. Using these substitutions, f(q) is rewritten as a time-varying signalX(t), and its time derivativeX ′(t) is computed.

3. By discretizing X(t) and X ′(t) into X(i) and X ′(i) respectively, a difference equation of the form X ′(i) = X(i +
1)−X(i) is formed.

4. This difference equation is rearranged to give the expression of ‘next’ sample X(i+1) in terms of ‘current’ samples
X(i), as X(i+ 1) = X(i) +X ′(i), this equation termed the ‘Iterative Map’ due to its recurrence nature.

5. The dynamics Iterative Map are studied using the Phase Portrait, which is a plot of X ′(i) in terms of X(i)
for a given r, illustrating the phase space dynamics and qualitatively serving as a tool to assess various chaotic
parameters such as sensitivity and ergodicity. Since r denotes the frequency ratio of the driving signals, and since
the fundamental property of chaos is growing evolutions mismatches, an irrational number such as π is set as the
value of r, in order to maximize the frequency and phase mismatches between the driving signals.

6. The detection of ornamental and rich patterns in a phase portrait is a clear indicator of the presence of chaos in
the corresponding mock theta function iterative map. In general, the phase portraits of the seven functions are
classified into one of two categories: peaking singularities without richness, and non-peaking behavior with high
richness. As will be seen, three of the seven third order mock theta functions exhibit the latter behavior.

7. For such chaotic systems, the bifurcation diagram, plotting the output X as a function of r is obtained. This
diagram clearly illustrates for what values of r, the system exhibits chaotic and non-chaotic behavior.

In accordance with the above mentioned procedure, we start with the defined form of the first third order mock theta
function f(q), given as [24]

f(q) =

∞∑

n=0

qn
2

∏n
i=1(1 + qi)2

(2)

By substituting Eq 1 for q, we obtain the corresponding X(t), and the corresponding phase portrait is shown in
Fig. (1), for an r value of π. This phase portrait, as all the others mentioned in this work is obtained from hardware
implementation of the X(t) signals using Altera Cyclone II FPGA. As seen in the plot, this phase portrait consists of a
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Figure 1: Phase Portrait corresponding to f(q) with r = π

single peak, lacking in sufficient richness to exhibit chaotic behavior.
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We now turn towards the second form φ(q) given by [24]

φ(q) =

∞∑

n=0

qn
2

∏n

i=1 1 + q2i
(3)

The corresponding phase portrait is shown in Fig. (2). Unlike the previous case, it is seen that this phase portrait
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Figure 2: Phase Portrait corresponding to φ(q) with r = π

exhibits a very rich and ornamental pattern. Thus, this for φ(q) is indeed a chaos generating form, and the bifurcation
diagram will be plotted in the following section.

The third form ψ(q) is given as follows, with the corresponding phase portrait in Fig. (3) [24]:

ψ(q) =

∞∑

n=1

qn
2

∏n

i=1 1− q2i−1
(4)
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Figure 3: Phase Portrait corresponding to ψ(q) with r = π

This phase portrait too lacks the richness typically characteristic of chaotic systems.
The fourth form χ(q) is given as follows, with the corresponding phase portrait in Fig. (4) [24]:

χ(q) =

∞∑

n=0

qn
2

∏n
i=1 1− qi + q2i

(5)

From the phase portrait, it is seen that similar to φ(q) the χ(x) also exhibits richness characteristic of chaos.
In the same manner, the fifth form ω(q) and sixth form ν(q), given as follows are studied using the phase portraits

as shown in Fig. (5) and (6) [24].

ω(q) =

∞∑

n=0

q2n(n+1)

∏n
i=1(1− q2i+1)2

(6)

ν(q) =

∞∑

n=0

qn(n+1)

∏n

i=1 1 + q2i+1
(7)
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Figure 4: Phase Portrait corresponding to χ(q) with r = π
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Figure 5: Phase Portrait corresponding to ω(q) with r = π
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Figure 6: Phase Portrait corresponding to ν(q) with r = π
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As seen from the phase portraits, neither of these forms exhibit richness pertaining to chaos, since both forms are related
to peaks with singularities.

Finally, the seventh form ρ(q) given as follows is plotted as a phase portrait in Fig. (7) [24].

ρ(q) =
∞∑

n=0

q2n(n+1)

∏n

i=1 1 + q2i+1 + q4i+2
(8)
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Figure 7: Phase Portrait corresponding to ρ(q) with r = π

As seen from the plot, the ρ(q) form is also characterized by an ornamental phase portrait.
Thus, in summary, it is seen that three of the seven third order mock theta functions, namely φ(q), χ(q) and ρ(q)

exhibit ornamental phase portrait behavior, characteristic of chaos generating systems. Thus, these forms are selected
for subsequent bifurcation analysis.

3. Bifurcation Analysis

In this section, the bifurcation analysis for the three chaos generating forms, φ(q), χ(q) and ρ(q) is presented. It
must be noted that, on account of the coupled frequency formation of q as given in Eq. 1, the three third order mock
theta forms do not give rise to bifurcations in the traditional sense; rather they exhibit a quasi-periodic route to chaos,
as typically seen in other coupled phase based chaotic systems such as the standard circle map [32]-[37].

Firstly, the φ(q) form is considered, where, by substituting q from Eq. 1, one gets the output signal X(t), and from
its time derivative, one obtains the following ‘φ(q) Iterative Map’:

X(i+ 1) = X(i) +X ′

a(i) +X ′

b(i) (9)

X ′

a(i) =
2n2qn

2
−1q′

QP [−1, q2, n+ 1]
(10)

X ′

b(i) =
4qn

2

qq′

QP [−1, q2, n+ 1]
(11)

where QP [a, q, n] representing the q-Pochhammer symbol (a; q)n = (a; q)∞/(aq
n; q)∞, given as [24]

(aqn; q)∞ =

∞∏

k=0

1− aqk (12)

The bifurcation diagram corresponding to the φ(q) Iterative Map is plotted in Fig. (9). As seen from the plot, the
control parameter of the nonlinear behavior is r, and for certain ratios such as 0.6 and 1.4, dense and grassy patches are
seen corresponding to highly chaotic behavior, whereas for certain other values such as 1, quasiperiodic to lowly chaotic
behavior is seen. As an example for a non-chaotic ratio, the phase portrait for r = 1 in the φ(q) Iterative Map is plotted
in Fig (8).

In a similar fashion, the iterative maps of χ(q) and ρ(q) are computed and corresponding bifurcation diagrams are
plotted in Fig. (10) and Fig. (11) respectively. It is seen that, similar to φ(q) form, the control parameter influencing
the transitions from chaotic to non-chaotic regions and vice versa is the frequency ratio r. However, the chaotic and
non-chaotic regions in the three bifurcation plots vary.
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Figure 8: Phase Portrait corresponding to φ(q) with r = 1

Figure 9: Bifurcation Plot of the φ(q) Iterative Map

Figure 10: Bifurcation Plot of the χ(q) Iterative Map
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Figure 11: Bifurcation Plot of the ρ(q) Iterative Map

4. Chaotic Characterization of the φ(q), χ(q) and ρ(q) forms

In order to understand the dependence of the chaotic nature in the generated signals on r, two well-established
chaotic characterization techniques are used:

1. The Largest Lyapunov Exponent (LLE), quantifying the systems sensitive dependence on initial conditions. The
Rosensteins algorithm is used to compute the Lyapunov Exponents λi from the signal, where the sensitive de-
pendence is characterized by the divergence samples dj(i) between nearest trajectories represented by j given as
dj(i) = Cje

λi(iδt), Cj being a normalization constant [38, 39].

2. Kolmogorov Entropy, a statistical measure of the uncertainty of the signal. By assigning each of the R quantifiable
states of the amplitude of the output signal as an event i, the Kolmogorov Entropy K obtained depends on their

probabilities pi according to the relation as K = −
N∑
i=1

pi log pi, and is measured in units of nats/symbol [38].

The values of K and LLE are computed for various values of r ranging from 1 to 2, and are tabulated in Table 1, for
the three forms of φ(q), χ(q) and ρ(q).

Table 1: Effect of r on the nature of output chaos

Form φ(q) φ(q) χ(q) χ(q) ρ(q) ρ(q)
Ratio r LLE K LLE K LLE K
1.0 -0.45 0.67 -0.11 0.87 -0.85 0.54
1.1 0.42 0.69 0.09 0.92 0.79 0.55
1.2 0.48 0.72 0.16 0.94 0.85 0.57
1.3 0.55 0.76 0.26 0.95 0.93 0.59
1.4 1.22 0.82 1.38 0.97 1.12 0.69
1.5 0.75 0.79 0.53 0.93 0.95 0.63
1.6 1.42 0.91 1.36 0.95 0.97 0.67
1.7 1.38 0.86 1.32 0.93 0.96 0.63
1.8 1.35 0.84 1.31 0.91 0.95 0.61
1.9 1.28 0.81 1.27 0.90 0.91 0.59

From the values of K and LLE in the table, it is seen that while the trends of K and LLE both are in accordance
with the corresponding bifurcation diagrams, the overall ranges for LLE (-0.85 to 1.42) is much higher than K (0.54 to
0.97), probably owing to the sensitivity aspects of the generated signals.

5. Conclusion

Considering the tunability issues in system based chaos generation circuits such as the Chua Diode, the present
work proposes a radically fresh perspective using signal based chaos, and to achieve this, the Ramanujan’s Mock Theta
Function is considered. Specifically, the seven mock theta functions are adapted into signals by substituting the variable q
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as an additively coupled sinusoidal signal,viewing the output as a representative of a nonlinear coupled system. Following
this, the derivative of the output is computed and used to form a difference equation, which yields the iterative map of
the proposed system. This iterative map is studied using phase portraits, where it is seen that of the seven functions,
only φ(q), χ(q) and ρ(q) exhibit rich ornamental phase portrait patterns characteristic of chaotic systems. Hence, the
bifurcation analysis of these three forms are presented following which the dependence of chaotic nature on the frequency
ratio r is studied using Lyapunov Exponents and Kolmogorov Entropy.

Finally, it is noteworthy that since the behavior of the output signal depends on frequency ratio r, this ratio serves as
a secure ‘key’, enabling the use of the Mock Theta Function based Frequency Controlled Chaos in secure communication
and encryption systems. The signal oriented approach to generating chaos from mathematical functions, coupled with
the easy tunability hence obtained form the novelty of the present work.
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