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Abstract

A novel kind of chaos dependent on frequency and offering the twin advantages of easy tunability and simplicity of imple-
mentation is proposed, using which, a simple methodology to generate a chaotic signal is designed and implemented in
hardware using FPGA, and the generated chaos is characterized using standard parameters such as Lyapunov Exponents
and Kolmogorov Entropy. This temporal signal is used as the basis acting on a spatial propagation rule to generate
spatiotemporal patterns. The generated patterns and their dependence on the spatial and temporal rules are studied.
The distinguishing features of the obtained spatiotemporal patterns are simplicity of implementation, richness of features
observed and a temporal rather than a spatial basis for generation, leading to implementation without employing mem-
ory consuming neighbourhood rules, which form the highlights of the present work. The generation of spatiotemporal
patterns is seen as a road to tunable evolution and emergence, and finds immense applications such as bar code and
random number generators.
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1. Introduction

As the flagship of Nonlinear Science, Chaos Theory has witnessed an exponential progress in recent years, thanks to
the advancement of computing and storing power in recent years, coupled with the ability to simulate complex systems
and visualize their long-term evolution patterns [1, 2]. The essence of chaos theory is determinism with an extremely
sensitive dependence on initial conditions [3, 4, 5]. Chaos theory has had great success as a platform and tool to model
and study various and diverse systems occurring in nature such as celestial mechanics, biological systems, chemical
reactions, spread of epidemics, weather patterns and so on [4, 3, 6].

In electronics, the introduction of the Chua diode as a nonlinear element has enabled considerable progress in gener-
ating a wide variety of chaotic signals [5]. The generation of chaos electrically finds application in secure communication
systems, showing great resistance to hacking, thanks to the sensitivity property of chaos, with related applications such
as bar code generation and pseudo random number generation [7, 8].

The present work purports to the formulation and the generation of a frequency dependent chaos and the generation
of spatiotemporal patterns using the generated chaotic signal as the basis [4, 6]. The advantages of frequency dependent
chaos are twofold, as follows:

1. It builds on the basic premise that any signal can naturally be decomposed into a set of frequencies [9]. This leads
to easy implementation using a single transistor as the chaotic ‘system’, since the nonlinearity proposed in the
frequency dependant chaos is the natural switching operation of the transistor [9].

2. Having frequency as the control parameter makes it easy to tune the system, which enables a signal based control,
a marked deviation from the system defined control typically seen in chaotic systems [4].

In the present work, an extremely simple method of generating frequency dependent chaos is described and the
implementation is carried out in hardware using FPGA. The generated signal is characterized quantitatively using
parameters such as Lyapunov Exponent, Kolmogorov entropy and Fractal Dimension and the dependence of the nature
of chaos on frequency is studied. The generated ‘temporal’ signal forms the basis for the generation of spatiotemporal
patterns according to a ‘spatial rule’ defined. The spatial patterns generated for different temporal and spatial control
parameters are explored and a feature study is performed. The extremely simple method used for the generation of
spatiotemporal patterns combined with the rich variety of patterns obtained form the principal highlights of the present
work. The spatiotemporal patterns generated act as suitable bases for various applications such as bar code generators
and random number generators.



2. Generation and Characterization of the Temporal Chaotic Signal

The formulation of frequency dependent chaos builds upon three crucial elements - a switching function, a frequency
ratio and the waveform of the driving signal. Owing to the increased ubiquity of chaos in the square wave case, the
driving waveforms in the present work are chosen as square waves. Two square waves given by A(t)=square(f1t) and
B(t)=square(f2t) with frequencies f1 and f2 are the driving signals, with the controlling parameter given by r=f2/f1.
By using a differential function abs(A − B) for the switching nonlinearity, it is possible to represent the three key
components of switch, ratio and waveform ipso facto into a single simple function, given as follows:

C(t) = mod(abs[square(f1t)− square(f2t)], π) (1)

where t denotes the temporal coordinate in samples. The nature of the chaotic signal C(t) generated using the above
relation heavily depends on the driving frequency ratio r=f2/f1. The above mentioned relation forms the basis for the
spatiotemporal pattern generation and is implemented in hardware using the Altera Cyclone II-DE1 FPGA, with a base
clock frequency of 50MHz. The required frequencies for A(t) and B(t) are obtained by dividing the clock frequency
appropriately. The ratio is set to the irrational number π.

2.1. Characterization of the Chaotic Signal C(t)

The chaotic nature of the c(t) is established by calculating the largest Lyapunov Exponent (LLE), a measure of a
system’s sensitive dependence on initial conditions [10, 11]. Rosenstein’s algorithm is used to compute the Lyapunov
Exponents λi from the voltage waveform, where the sensitive dependence is characterized by the divergence samples dj(i)
between nearest trajectories represented by j given as follows, Cj being a normalization constant: dj(i) = Cje

λi(iδt).
The Largest Lyapunov exponent thus obtained for the chaotic signal is 8.82, the positive value proving the fact that the
signal is indeed chaotic.

The chaotic/fractal nature of the signal is further confirmed by computing the fractal dimension, using the Minkowski
Bouligand Box Counting Method [12]. In this method, various square ‘boxes’ of different sizes e are formed and for each
size e, the number of boxes N(e) required to cover the entire set is computed [12]. The fractal dimension D is then given

by D = lime→0
log(N(e))
log(e) . For the generated signal, the fractal dimension is obtained as 0.661, indicating the presence of

self-similarity in the generated signal.
Finally, the worthiness of the generated signal as a potential candidate as a carrier of information can be established by

ascertaining the amount of information that can be carried by the signal. This is precisely quantified by the Kolmogorov
Entropy, a statistical measure of the uncertainty of the signal [10, 8, 1]. By assigning each of the N quantifiable states
of the amplitude of the output signal as an event i, the Kolmogorov Entropy K2 obtained depends on their probabilities

pi according to the relation K2 = −

N∑

i=1

pi log pi. The K2 value is obtained as 6.79 bits/symbol, clearly testifying to the

information carrying capacity of the generated chaotic signal.

2.2. Effect of Frequency Ratio on the nature of chaos

In order to ascertain the effect of the driving frequency ratio of the nature of the chaos generated, the values of LLE,
D and K2 are recorded for frequency ratios between 1 and 2 in steps of 0.1 and are tabulated in Table 1.

Table 1: Effect of Driving Signal Frequency on the Generated Chaos

Frequency Ratio r LLE D K2 (bits/sym)
1.1 8.18 0.661 6.67
1.2 8.01 0.67 6.92
1.3 8.84 0.665 6.87
1.4 8.57 0.662 6.81
1.5 8.17 0.661 6.77
1.6 8.21 0.661 6.79
1.7 8.89 0.665 6.88
1.8 8.66 0.662 6.82
1.9 8.12 0.661 6.73

From the Table, it is clearly seen that the driving signal frequency ratio does have a significant effect on the nature
of the chaos generated. On this basis, the frequency ratio used shall be termed the ‘temporal rule’.

2



3. Generation and Characterization of Spatio-Temporal Patterns

The generated temporal chaotic signal C(t) is used as the basis for generating spatiotemporal patterns. Specifically,
an N-celled system is taken and for the i− th cell in the system, a ‘spatial rule’ deriving the cell output C(i) from the
previous cell outputs are defined. The spatial rule used in the present work is given as follows:

C(i) = mod(abs[C(i − 1)− C(i − 1−Nfactor)], π) (2)

where the spatial coordinate i ranges from 3 to N. This relation is not defined for the first two cells (i = 1,2) and thus,
these cells are defined to be the ‘originators’. Thus, two temporal signals are generated and used as the originators. An
interesting property of the ‘spatial rule’ is the Nfactor parameter. As will be seen in the forthcoming discussion, this
Nfactor determines the nature of the spatiotemporal pattern generated. A block diagram illustrating the spatiotemporal
pattern generation combining the temporal and spatial rules is shown in Fig. (1), along with the FPGA implementation
setup and details of the components used in Fig. (2).

Figure 1: Block Diagram of the proposed spatiotemporal pattern generator illustrating the spatial and temporal ‘rules’.

Figure 2: Left: Experimental setup for spatiotemporal pattern generation using FPGA. Right: Details of the components used.

The inclusion of two temporal signals, one each at C(1) and C(2) imply that two frequency ratios act as temporal
rules and the Nfactor acts as the spatial rule, along with setting the temporal ratios as rC(1) = 16.7MHz/12.5MHz
and rC(2) = 16.7MHz/10MHz.

The generated spatiotemporal patterns are illustrated for various temporal and spatial rules in Fig. (3). A study
into the features exhibited by the spatiotemporal patterns reveal the following points:

1. Unlike conventional spatiotemporal pattern generations such as cellular automata, the proposed spatiotemporal
patterns originate from a temporal basis rather than a spatial ‘neighbourhood rule’ [13]. This implies that the
implementation is made extremely simple with no necessity of memory or lookup table required to store rules.

2. It is noted that as time progresses, the signal also spatially ‘propagates’ across various cells, truly testifying to the
phrase ‘spatio-temporal’.
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3. On a similar note, it is also observed that at the i− th cell, signal generation starts only when the Chaotic Signal
originated from the first stages ‘reaches’ the i− th stage. This is a highlight of the principle of causality.

4. On examination of the spatiotemporal patterns, one encounters multiple alternating regions of ‘dark’ and ‘bright’,
with the bright signifying an absence of rich variations and dark signifying their presence. Thus, in essence, the
‘bright’ stages represent a subdued state of information, only to be conspicuously visible in later cells/time as a
‘dark’ pattern.

5. It is seen that, every time a ‘dark’ pattern arises out of the ‘bright’ subdued stage, it appears more diffused and
spatially rich than the previous dark stage. This gives a clear insight into the pattern taken by the information in
‘spreading’.

6. One observes that along any row or column, the patterns generated seldom repeat. This is a direct consequence of
the ergodicity property of chaos.

Figure 3: Spatiotemporal patterns generated for temporal ratios rC(1) = 16.7MHz/12.5MHz and rC(2) = 16.7MHz/10MHz and various
Nfactor values ranging from 3 to 14.

In the appendix/supplementary material, the time domain waveforms of all the 200 cells are plotted for a Nfactor
value of 5. From these waveforms the following conclusions can be obtained:

1. The initial ‘bright’ region of the spatiotemporal pattern correspond to the first 25-30 cells where nearly no significant
features are observed.

2. Between the cell values of 30 and 45, we observe the formation of patterns. Of specific mention are the pulses
being formed, comparable in principle to the creation of peregrine solitons and rogue waves [14].

3. From cells 45 to 55, it is observed that the pulses gain prominence, forming a specific repetitive ‘2 big + 1 small’
pattern, reminiscent of the ‘Three Sisters’ formation.

4. In cells 55 to 100, one encounters a second ‘bright’ stage, where the features gradually decay into oblivion.

5. The cells from 100 to 115 show the regeneration of patterns, specifically in the form of dark pulses. The pulses
become more pronounced in farther spatial cells.

6. One encounters an interesting wave-shaping activity between cells 115 to 150. Specifically, the crests of the dark
pulses get narrower and troughs get wider, slowly transforming into bright pulses. Of noteworthy interest are the
pulse compression of the bright pulses seen from cell 124 to cell 150.
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7. The cells 150 to 200 give the impression of an anti-climactic extension to the interesting activity observed in the
earlier cells. Specifically, the generated pulses slowly decay, pulses of much smaller amplitude are formed, and
clumping of these pulses into another albeit much smaller ‘three sisters’ formation is observed [15].

In order to study the effect of Nfactor on the spatiotemporal patterns, patterns obtained using the temporal ratios
rC(1) = 16.7MHz/12.5MHz and rC(2) = 16.7MHz/10MHz and various Nfactor values ranging from 3 to 14 are
plotted in Fig. (3). The main inferences obtained from the figure are as follows:

1. As the value of Nfactor increases the lengths of the ‘dark’ and ‘bright’ stages decrease, with the number of such
dark and bright stages on the increase.

2. The initial ‘bright’ stage and subsequent ‘regeneration’ of the patterns become more pronounces at higher Nfactor
values.

3. The protrusions from the ‘dark’ stages to the bright ones are in the time domain, compressed pulses that carry the
information of the patterns. This is reminiscent of the biological ‘cocoon’ stage of a larva where, all the necessary
information and nutrition are compactly contained in a ‘capsule’ waiting for the metamorphic evolution into a
full-fledged adult butterfly [16].

Finally, the effect of frequency on the formation of spatiotemporal patterns are investigated. Fig. (4) shows the
spatiotemporal patterns obtained for various frequency ratios, maintaining a constant Nfactor value of 5. The following
points are inferred:

1. For a non-chaotic case, where rC(1) and rC(2) are set to 1, the significant lack of features and patterns are observed.

2. Since the Nfactor is maintained constant, the spatial trend of the patterns with respect to the ‘bright’ and ‘dark’
stages remain the same.

3. However, there is a marked difference in the temporal characteristics of the spatiotemporal patterns generated,
with the ‘bunching’ of features in the dark stages varying according to the frequency ratios chosen.

Figure 4: Spatiotemporal patterns generated for Nfactor value of 5 and various temporal ratios.

At this juncture, it is noteworthy that tone observes the above mentioned features in the spatiotemporal patterns
which are themselves generated by allowing the chaotic system described by the spatial and temporal rules to evolve
naturally in a frequency dependent scenario. The extreme simplicity of the spatiotemporal pattern generator, combined
with the rich variety of features observed form the pieces de resistance of the present work.
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4. Conclusion

A novel kind of chaos - frequency dependant chaos is formulated and characterized using the iterative map, bifurcation
diagrams and cobweb plots. It is seen that the proposal of a frequency dependant rather than amplitude dependant
chaos promises two crucial advantages - easy tunability, thanks to the driving signals and simplicity of implementation.
Experimental implementation of the generation of a temporal chaotic signal using the chaos formulation is carried out
using FPGA and characterized using standard parameters such as Kolmogorov Entropy, Lyapunov Exponent and Fractal
Dimension, following which the dependence of the nature of chaos into the driving frequency is studied. Based on these
results, and the formulation of a spatial rule, the spatial propagation of the temporal signal generating spatiotemporal
patterns are obtained. A feature study of the observed patterns is performed and the dependence of the generated
patterns on the spatial and temporal ‘rules’ are investigated. The principal highlights of the spatiotemporal pattern
generation are the richness of features obtained and the extreme simplicity with which these patterns are generated.

The generated spatiotemporal patterns find immense applications such as in 1D and 2D bar code generation and
random number generation, which in turn are used in various secure communications and ciphering applications. The
study into the features exhibited by such patterns facilitate a clear understanding into the nature of information creation
and propagation in such media, and intelligent utilization of such knowledge could lead to secure compression of data
with high compression ratios. Thus, the novel concept of frequency dependence and the richness of the spatiotemporal
patterns generated using simple designs pave the way for affordable Big Data - a true testimony to the principle of
‘Transformation through Information’.
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5. Appendix

The following illustrate the temporal waveforms of a selection of the 200 spatial cells. The Nfactor used is 5, and
the frequency ratios for the first two cells are set as rC(1)=16.7MHz/12.5MHz and rC(1)=16.7MHz/10MHz.
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Figure 5: Temporal waveforms obtained for spatial cells - part 4.

Figure 6: Temporal waveforms obtained for spatial cells - part 5.
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