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Abstract

The present work purports to a signal based generation of chaos, thereby offering a radically innovative solution to the
issues of tunability caused in conventional system based chaos generation circuits. Specifically, the Ramanujan Theta
Function is seen to represent the output signal of a coupled nonlinear system with two driving signals. Using this
concept, the iterative map of the Ramanujan Theta Function is developed using the frequency ratio of driving signals as
the control parameter, and the ratio dependent dynamics are studied using the bifurcation plot. The proposed system
is implemented in hardware using FPGA and the presence of chaos is validated qualitatively using phase portraits and
quantitatively using Lyapunov Exponents, whose trend indeed agree with the one observed in the bifurcation plot. The
innovative perspective of signal based chaos proposed using the Ramanujan Theta Function enables easy tunability in
chaotic generation systems and this forms the novelty of the present work.
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1. Introduction

Chaos theory, the hallmark of nonlinear science, pertains to systems that are essentially deterministic and exhibit an
extreme sensitivity to initial conditions, and a distinct signature of chaotic systems are their ornamental and rich patterns
exhibited on long term evolution [1, 2]. Owing to these properties, chaos theory has found extensive applications in
sciences, where most of the patterns found in nature such as Electroencephalograms and Solar illumination flux exhibiting
chaotic dynamics [3, 4, 5, 6, 7, 8, 9, 10], as well as in engineering such as in designing secure communication and encryption
systems [11, 12, 13, 14, 15, 16]. The physical realization of chaotic systems using electronic circuits, traditionally builds
on the Chua diode, the basic nonlinear element, connected to various amplifiers and passive components such as resistors
and capacitors [17, 18, 19, 20, 21]. These circuits are typically op-amp based implementations of coupled nonlinear
differential equations such as the Lorenz and Rossler systems [17]. While such methods unmistakably generate chaotic
signals, they suffer from an issue of concern: the controllability of chaos is typically achieved using variable resistors or
capacitors, which require manual tuning, and this becomes difficult when implemented as Integrated Circuits (IC) level
at high frequencies [22, 23].

The present work attempts to address this issue through a radical approach. The key idea is to use signal based tuning
of driven chaotic systems, rather than conventional system based tuning. Thus it is necessary to generate chaotic output
signals which are sensitive to some parameter (amplitude, frequency, phase or polarity) of the input driving signals. For
this purpose, we turn our attention towards q-analog theory, specifically the Ramanujan Theta Function (RTF) [24, 25].
Introduced by the mathematician Ramanujan in his last days as a generalization of Jacobi Theta Functions, the RTF is
used typically to determine the critical dimensions in Bosonic String Theory and M-Theory [26, 27, 28, 29, 30, 31, 32]. In
the present work, the RTF, a function of two variables a and b is viewed as the output signal from a nonlinearly coupled
system. This is done by setting a and b to two sinusoidal signals, representing the driving signals of the nonlinearly
coupled system. The behavior and dynamics of the system is studied by forming a differential equation and hence an
iterative map using the RTF, and plotting the bifurcation diagram, depicting the output signal as a function of the
control parameter r, which in turn is the frequency ratio between the two driving signals. Following this, the phase
portrait, examining the first and second derivatives of the output signal X as a function of X are plotted. The presence
of chaos, and the dependence of the nature of chaos on the control parameter r is ascertained by computing the largest
Lyapunov Exponent.

The concept of a signal based chaos generation, using Ramanujan Theta Functions, provide a radically fresh per-
spective on the nonlinear dynamics and chaos generation, with the key advantage being easy tunability in physical
realizations, and this forms the novelty of the present work.



T 1(i) = [πf1n(n+ 1)sin(2πf1i)
(n(n+1)/2)−1cos(2πf1i)sin(2πrf1i)

n(n−1)/2] (3)

T 2(i) = [πrf1n(n− 1)sin(2πrf1i)
(n(n−1)/2)−1cos(2πrf1i)sin(2πf1i)

n(n+1)/2] (4)

X(i+ 1) = X(i) +

∞∑

n=−∞

[T 1(i) + T 2(i)] (5)

2. The Ramanujan Theta Function Iterative Map

We start with the general form of the Ramanujan Theta Function, given as follows [28]:

f(a, b) =

∞∑

n=−∞

an(n+1)/2bn(n−1)/2 (1)

where a and b are variables with the specific condition that |ab| ≤ 1. Since the present work pertains to a signal based
chaos, the variables a and b are represented as sinusoidal signals with frequencies f1 and f2=rf1 respectively, where r
represents the ratio of the frequencies r=f2/f1. Consequently, the output f(a, b) is represented as a time varying signal
X(t). Thus, the output signal is given by

X(t) =

∞∑

n=−∞

sin(2πf1t)
n(n+1)/2sin(2πrf1t)

n(n−1)/2 (2)

From this relation it is seen that the output signal results from a mixing (multiplication) operation of two nonlinearly
waveshaped (exponents of sinusoids) inputs, both the mathematical terms giving rise to new frequencies, other than f1
and rf1 [22]. In order to understand the evolution and dynamics of the system, an iterative map has to be formed. In
order to do this, the derivative of X(t) is found as d(X(t))/dt. By discretizing X(t) as well as its derivative, the latter
is expressed as the difference equation between successive samples of X(n) as X(i+1)−X(i). By rearranging, X(i+1)
is obtained as a function of its previous sample X(i) and the derivative of X(i) as follows, depicting the dependence of
the current sample on previous samples, and for this reason termed the ‘Iterative Map’ [1, 2].

As seen from the iterative map, the evolution of X depends intricately on r. Thus, a mapping of X as a function of
r, termed the ‘Bifurcation Plot’ is the ideal tool to study the evolution and dynamics of the system represented by the
RTF, and this is plotted in Fig. (1) for values of r from 0 to 4. [1, 2]

Figure 1: Bifurcation Plot of the Ramanujan Theta Function

It is clear from the bifurcation plot that the system represented by the RTF indeed shows an evolutionary behavior
dependent on r, with certain regions, viewed as ‘sparse’ and ‘dense’ corresponding to non-chaotic and chaotic regimes of
operation respectively. It must be noted that this evolutionary behavior is for a nonlinearly coupled frequency controlled
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system, and as with other similar systems in literature, such as the standard circle map, the proposed system follows a
quasiperiodic route to chaos [33, 34, 35, 36, 37, 38].

3. Characterization of the RTF Chaos

The chaotic system specified by Fig. (1) is physically realized at the hardware level by implementing the using
Equation 2 in Altera Cyclone II 2C20 FPGA, with the clock frequency set to 25MHz and a large value (106) used to
approximate the summation limit. The obtained output waveform X is plotted in Fig. (2). It is noteworthy that from a
superficial glance, the output waveform gives the appearance of a quasiperiodic signal, while the specific features of the
waveform, its crests and troughs clearly exhibit chaotic patterns, testifying to the quasiperiodic route to chaos [37, 38].

500 1000 1500 2000 2500 3000 3500 4000

0

2

4

6

8

10

Time (Samples)

A
m

pl
itu

de

Figure 2: Experimentally obtained Output RTF Chaotic Waveform

In order to examine the system dynamics for specific values of r, the phase portrait, a plot of the time derivative of a
signal dX/dt as a function of the signal X illustrating the phase space dynamics, qualitatively serving as a tool to assess
various chaotic parameters such as sensitivity and ergodicity, is used [1, 2]. From Fig. (1), it is seen that a non-integral
r value close to 2, such as 2.0322 corresponds to a dense patch indicative of chaos, and to validate this inference, three
phase portraits of X are plotted in Fig. (3) - (5), using the first and second derivatives of X .
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Figure 3: Signal Phase Portrait of the RTF Output with r = 2.0322

The phase portraits exhibit dense and ornamental patterns of X , qualitatively asserting the presence of chaos.
Moreover, values of r corresponding to two other regions of Fig. (1) are considered - a non-chaotic r = 2, and a
quasiperiodic r = 1.159, and the corresponding phase portraits are plotted in Fig. (6) and Fig. (7) respectively.

The phase portraits indeed confirm the non-chaotic nature of X at r = 2 and the quasiperiodic patterned nature at
r = 1.159 verifying the predictions in accordance with the bifurcation plot.

The nature of chaos in X is assertively established by calculating the largest Lyapunov Exponent (LLE), quantifying
the systems sensitive dependence on initial conditions [39]. The Rosensteins algorithm is used to compute the Lyapunov
Exponents λi from the time series of Fig. (2), where the sensitive dependence is characterized by the divergence samples
dj(i) between nearest trajectories represented by j given as dj(i) = Cje

λi(iδt), Cj being a normalization constant [40].
It is seen that the LLE corresponding to the chaotic r value of 2.0322 is obtained as 3.36, whereas the LLE values of

r = 2 and r = 1.159 are obtained as -0.03 and 1.12 respectively, thereby ascertaining the presence of chaos and validating
the ratio dependent trends observed in the bifurcation plot and phase portraits.
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Figure 4: Derivative Phase Portrait of the RTF Output with r = 2.0322
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Figure 5: Transderivative Phase Portrait of the RTF Output with r = 2.0322
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Figure 6: Signal Phase Portrait of the RTF Output with r = 2
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Figure 7: Signal Phase Portrait of the RTF Output with r = 1.159
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The worthiness of the generated signal as a potential telecommunication carrier can be established by ascertaining
the amount of information that can be carried by the signal. This is precisely quantified by the Kolmogorov Entropy, a
statistical measure of the uncertainty of the signal [39]. By assigning each of the R quantifiable states of the amplitude
of the output signal as an event i, the Kolmogorov Entropy K obtained depends on their probabilities pi according to

the relation as K = −
N∑
i=1

pi log pi. Based on this relation, the values of K are computed and tabulated for selected values

of r, along with their corresponding LLE Values in Table 1.

Table 1: Effect of r on the nature of output chaos

Ratio r LLE K (nats/sym)
1.0 -0.45 0.67
1.1 2.85 2.92
1.2 1.08 2.23
1.3 2.76 2.54
1.4 1.57 2.18
1.5 2.66 2.77
1.6 2.91 3.01
1.7 -0.02 0.93
1.8 0.87 2.28
1.9 2.95 3.23
1.8 9.66 6.82

4. Conclusion

Considering the tunability issues in system based chaos generation circuits such as the Chua Diode, the present work
proposes a radically fresh perspective using signal based chaos, and to achieve this, the Ramanujan Theta Function
is considered. It is see that this function depicts nonlinear coupling of two variables, and by assigning these variables
as sinusoidal signals, the RTF is adapted as an output signal. Deriving the Iterative map and plotting the bifurcation
diagram, it is seen that the dynamics of the RTF based chaotic system is indeed dependent on the the ratio of the driving
signal frequencies, and for certain values of the ratio, chaotic behavior is observed. The presence of chaos is validate
qualitatively using the phase portrait and quantitatively using the Lyapunov Exponent.

Finally, it is noteworthy that since the behavior of the output signal depends on frequency ratio r, this ratio serves
as a secure ‘key’, enabling the use of the Ramanujan Theta Function based Frequency Controlled Chaos in secure
communication and encryption systems. The signal oriented approach to generating chaos from mathematical functions,
coupled with the easy tunability hence obtained form the novelty of the present work.

References

[1] M. Ausloos, M. Dirickx, The Logistic Map and the Route to Chaos: From the Beginnings to Modern Applications, (Springer, US, 2006).
[2] S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering ,(Westview Press,

Cambridge, 2008).
[3] F. Cramer, Chaos and Order the Complex Structure of Living Systems. (Springer, 1993).
[4] D. S. Coffey, Self-organization, complexity and chaos: the new biology for medicine. Nature medicine 4, 882-885 (1998).
[5] G. Contopoulos, Order and chaos in dynamical astronomy, (Springer Science and Business Media, 2002).
[6] J. Laskar, Large-scale chaos in the solar system, Astronomy and Astrophysics 287, L9-L12 (1994).
[7] A. B. Cambel, Applied chaos theory-A paradigm for complexity. (Academic Press, Inc., 1993).
[8] K. Aihara, Chaos engineering and its application to parallel distributed processing with chaotic neural networks. Proceedings of the

IEEE, 90 919-930 (2002).
[9] G. Chen, Controlling chaos and bifurcations in engineering systems. (CRC press, 1999).

[10] R. B. Stull, An introduction to boundary layer meteorology. (Springer Science and Business Media, 1988).
[11] M. F. Barnsley, A. D. Sloan, Chaotic Compression, Computer Graphics World, 3 (1987).
[12] K. E. Barner G. R. Arce, Nonlinear Signal and Image Processing: Theory, Methods, and Applications, (CRC Press, U.S, 2003).
[13] S. Saini, J. S. Saini. Secure communication using memristor based chaotic circuit. Parallel, Distributed and Grid Computing (PDGC),

2014 International Conference on. IEEE, (2014).
[14] S. Shaerbaf, S. A. Seyedin. Nonlinear Multiuser Receiver for Optimized Chaos-Based DS-CDMA Systems., Iranian Journal of Electrical

andElectronic Engineering 7, 149 (2011): 149.
[15] L. Kocarev, From chaotic maps to encryption schemes. Circuits and Systems, (1998).
[16] G. Jakimoski, L. Kocarev. Chaos and cryptography: block encryption ciphers based on chaotic maps. IEEE Transactions on Circuits and

Systems I: Fundamental Theory and Applications 48 163-169 (2001).

5



[17] E.Bilotta and P.Pantano, A gallery of Chua attractors, (World Scientific, Singapore, 2008).
[18] L. Chua, A universal circuit for studying and generating chaos. I. Routes to chaos. Circuits and Systems I: Fundamental Theory and

Applications, IEEE Transactions on 40732-744 (1993).
[19] G. Kolumban, M. P. Kennedy, L. O. Chua. The role of synchronization in digital communications using chaos. II. Chaotic modulation

and chaotic synchronization, Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on 45, 1129-1140 (1998).
[20] L. Chua, Chaos synchronization in Chua’s circuit, Journal of Circuits, Systems, and Computers 3, 93-108 (1993).
[21] L. Chua, Experimental chaos synchronization in Chua’s circuit. International Journal of Bifurcation and Chaos 2, 705-708 (1992).
[22] B. Razavi, RF Microelectronics, (Prentice Hall, US, 2011).
[23] M.Chan, K.Hui, C.Hu, P.K.Ko, A robust and physical BSIM3 non quasi static transient and AC small signal model for circuit simulation,

IEEE Transactions on Electron Devices. 45, 834 (1998).
[24] G. Lusztig, George, Singularities, character formulas, and a q-analog of weight multiplicities Astrisque 101, 208 (1983).
[25] S. H. Chan, Z. G. Liu. ”On a new circular summation of theta functions, Journal of Number Theory 130, 1190 (2010).
[26] J. Yi, Y. Lee, D. H. Paek, The explicit formulas and evaluations of Ramanujan’s theta-function , Journal of mathematical analysis and

applications 321, 157 (2006).
[27] K. Ono, On the circular summation of the eleventh powers of Ramanujan’s theta function, Journal of Number Theory 76, 62 (1999).
[28] B. C. Berndt, Ramanujans notebooks Springer Science and Business Media, 2012.
[29] W. N. Bailey, Generalized Hypergeometric Series, Cambridge Tracts in Mathematics and Mathematical Physics (1935).
[30] M. Hazewinkel, Ramanujan function, Encyclopedia of Mathematics, Springer (2001).
[31] B. C. Berndt, S. S. Huang, J. Sohn, S. H. Son, Some Theorems on the Rogers-Ramanujan Continued Fraction in Ramanujan’s Lost

Notebook, Trans. Amer. Math. Soc. 352, 2157 (2000).
[32] M. Kaku, Hyperspace: A Scientific Odyssey Through Parallel Universes, Time Warps, and the Tenth Dimension, Oxford University

Press (1994).
[33] A. Kudrolli, A, J. P. Gollub. Patterns and spatiotemporal chaos in parametrically forced surface waves: a systematic survey at large

aspect ratio. Physica D: Nonlinear Phenomena 97, 133-154 (1996).
[34] J. Briggs, Fractals: The patterns of chaos: A new aesthetic of art, science, and nature. (Simon and Schuster, 1992).
[35] M. Lakshmanan, S. Rajaseekar, Nonlinear dynamics: integrability, chaos and patterns. (Springer Science and Business Media, 2012).
[36] I R. Epstein, K. Showalter. Nonlinear chemical dynamics: oscillations, patterns, and chaos. The Journal of Physical Chemistry 100

13132-13147 (1996).
[37] R. Gilmore, M. Lefranc, The Topology of Chaos, (Wiley,US, [2002]).
[38] J. M. T. Thompson, H. B. Stewart, Nonlinear Dynamics and Chaos (Wiley,UK, [2002]).
[39] R. G. James, K. Burke, J. P. Crutchfield, Chaos forgets and remembers: Measuring information creation, destruction, and storage, Int.

J Bifurcation Chaos. 378, 2124 (2014).
[40] M. T. Rosenstein, J. J. Collins, C. J. De Luca, A practical method for calculating largest Lyapunov exponents from small data sets,

Physica D, 65, 117, (1993).

6


