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Abstract

In the new approach to the diffusion problem conventional statis-
tical derivation is reconsidered deterministically using the partition
function for thermal velocities. The resulting relation for time evolu-
tion of particle distribution is an integro-differential equation. Its first
approximation provides the conventional partial differential equation
- the second Fick’s law with the diffusion transport coefficient propor-
tional to the temperature.

The diffusion in the present context is understood as an evolution of any
spatial distribution, usually a concentration or a density of arbitrary quan-
tity. The time-dependent distribution function for the evolution of diffusion
type is subject to the partial differential equation of second order in space
coordinates and of first order in time.

The classical derivation of the governing PDE in case of the linear dif-
fusion in a usual way is based on the first Fick’s law for diffusion flow,
which is postulated empirically (the flow is supposed to be proportional to
the gradient of concentration).

Then, the second Fick’s law - the actual ’diffusion equation’ follows from
the first one combined with the continuation equation, which connects the
divergence of the flow with the time rate of the concentration change [2]. In
the framework of statistical physics [1, 3] the conventional approach is the
probabilistic formulation in terms of Einstein’s probability density entering
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the ’master equation’ The change of the concentration is related to the ’jump’
probability distribution. Under special requirements (e.g. a Botzmannian
distribution of energy) it provides the local relation having a form of the
second Fick’s law (e.g.[3] for details).

In the present note a reformulation of the Einstein’s problem of randomly-
jumping objects is performed in terms of site-occupation numbers for the
state of a system consisting of spatial sites, occupied by countable units (par-
ticles) changing in time. The probabilistic postulation for the transition prob-
ability distribution is formulated deterministically as the given partition func-
tion for transition velocities. It has been shown, that this formulation leads
immediately to the first-order dynamical system for infinitely-dimensional
state vector. In a continuum limit it provides an integro-differential dynam-
ical equation. The diffusion equation results as its local approximation.

The main difference from the classical approach is the formulation in
terms of occupation numbers instead of number of moving individual units
in elementary space volume (in a three-dimensional case). In this approach
the formulation is also well-appropriate for quantum statistical systems. In
particular, the problem outlined below relates to the case of bosonic system.
The buildup of this formalism is the main idea of the present note.

Starting with the discrete formulation for the state of a statistical system
as a set of sites with integer occupation numbers, this approach leads to the
dynamical (first order in time) system of ODE’s with the standard exact
solution in a matrix exponential form.

A generalization of this system in the continuum limit provides the integro-
differential equation for the time - dependent space distribution. The subse-
quent local approximation of this equation reveals the desired construction
of the second Fick’s law. The coefficient appearing in this pattern as the
diffusion constant is clearly interpreted as the first power of temperature.

Formulation of the Problem in terms of occupation numbers

We start initially with the one-dimensional formulation. A subsequent
generalization for three dimensions is straightforward.

Suppose, a one-dimensional configuration space consists of discrete sites,
enumerated by ..., i − 1, ... i, i + 1, i + 2, ... and occupied by numbers
..., ni−1 ni, ni+1, ni+2, ....
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The ’motion’ of objects of any nature in this representation is defined as a
change of its position i, and should result therefore in a change of occupation
numbers of the site i. It is appropriate to consider the problem in an infinite
space, so that the site number i runs as −∞ < i <∞.

The velocity of a single unit is understood conventionally as the shift m
in its position per single time-tick dτ . In a microscopically discrete repre-
sentation, the minimal change dτ of a quantum time-reference state (’clock’)
is dτ = 1. From the physical point of view, an observer cannot follow the
position i of each unit in each time point during a measurement of n(i).
Moreover, in the sense of quantum mechanics this approach is not consis-
tent, since all units in all sites are not distinguished. For this situation we
could still consider a total ensemble of units with different velocities which
are distributed statistically by means of the corresponding partition func-
tion. The partition of velocities vk represents the fraction nivk of the units
ni (occupation number of the site i) which is shifted per dτ by k positions
along the scale ..., i− 1, ... i, i+ 1, i+ 2, ...
In other words it means, that vkni units shift from the site i to the site i+ k
per time tick dτ

In order to get a consistent formulation in terms ni, we should change from
the representation of motion as the position change vk of each individual unit
to the representation in terms of occupation numbers ..., ni−1 ni, ni+1, ni+2, ...

To this end we observe the change dni of occupation number ni corre-
sponding to the change dτ of time-reference. Thus, per time-tick dτ the
quantity

dn→i = ni(...+ v−2 + v−1 + v0 + v1 + v2 + ...)

leaves the site i, while the quantity

dn←i = ... + ni−2v2 + ni−1v1 − ni
∞∑

m=−∞

vm + ni+1v−1 + ni+2v−2 + ...

arrives from the entire environment −∞, ..., i− 1, i+ 1, ...,∞, per definition
of the fraction vk. For the entire ensemble ni depicted as a column vector it
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looks as
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=



. . . . . .

. . . . . .

. . . . . .

... + ni−2v1 − ni−1
∞∑

m=−∞
vm + niv−1 + ni+1v−2 + ni+2v−3 + ...

... + ni−2v2 + ni−1v1 − ni
∞∑

m=−∞
vm + ni+1v−1 + ni+2v−2 + ...

... + ni−2v3 + ni−1v2 + niv1 − ni+1

∞∑
m=−∞

vm + ni+2v−1 + ...

. . . . . .

. . . . . .

. . . . . .



(3)

Thus, the resulting first order equation in the vector form reads

dni
dτ

:= ṅi =: ṅ = M(vm)n := [m(vm)]ik nk (1)

with the vector ni and the matrix M

n =



.

.
ni−1

ni

ni+1

.

.


; M =



. . . . . .

. . . . . .
...v1 0 v−1 v−2 v−3 ...
... v2 v1 0 v−1 v−2 ...
... v3 v2 v1 −0 v−1 ...
. . . . . .
. . . . . .


−I

∞∑
m=−∞

vm, I− identity matrix

Here the obvious fact for remaining fraction

v0 = 0

is used, since only the velocity fraction of shifting, but not remaining elements
is encountered in dni. For a given partition of velocities vk the solution of
the linear infinite-dimensional dynamical system (1) is obtained as

n(τ) = eMτn(0), (2)

in terms of the matrix exponent of Mτ .
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Suppose, we have a simplest isothermal case, such that the thermal of
velocity partition does not depend on time τ and position i. Then, in the
continualization limit −∞ < i, k < ∞ the vectors ni, vk are functions of
continuous arguments n(i), v(k) and the the summations in (1) become

... + ni−2v2 + ni−1v1 + niv0 + ni+1v−1 + ni+2v−2 + ...→
∞∫

−∞

n(i− k)v(k)

−ni
∞∑

m=−∞

vm...→
∞∫

−∞

v(m)dm.

Thus the system of linear equations (1) becomes to the integro-differential
equation

ṅ(i) =

∞∫
−∞

n(i− k)v(k)− n(i)

∞∫
−∞

v(m)dm, (3)

where:
n(i) the occupation distribution;
v(m) the partition of velocities.

Now consider the typical case of a many-particle physical system in a
disordered thermal motion. For a case, that the displacement k, (e.g. per
elementary quantum clock unit, e.g. dτ = 1 in a discrete formulation) is
small compared to the site occupation number n(i), it can be referred to the
’slow thermal drift’.

In this case

� distribution of velocities is isotropic, since the thermal motion is stochas-
tic; for a one-dimensional problem the isotropy condition reduces to the
symmetry condition v(k) = v(−k);

� the main contribution in v(k) comes from relatively slight velocities
(small k), the fraction v decreases rapidly for big ones.

Then a local approximation for k →∞ is justified. The function n(i− k) in
(3) can be replaced by its power series at small k

n(i− k) = n(i)− n′(i)k + n′′(i)
k2

2
− ... ,
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that provides

ṅ(i) = n(i)

∞∫
−∞

v(k)dk−n′(i)
∞∫

−∞

kv(k)dk+n′′(i)

∞∫
−∞

k2

2
v(k)dk−n(i)

∞∫
−∞

v(m)dm−...

(4)
The fourth term cancels with the first one, the second term vanishes iden-

tically as an integral of an antisymmetric function over the symmetric inter-
val (likewise, all integrals with odd powers of k disappear as well), and the
remaining approximation reproduces in the leading order the conventional
diffusion equation -second Fick’s law.

Since the k has the meaning of velocity, we recover form (4) that the
diffusion constant - the coefficient D2 at n′′(i)

D2 =

∞∫
−∞

k2

2
v(k)dk

is proportional to the expectation value of kinetic energy, namely the tem-
perature Θ and defines the normal linear diffusion. The next non-vanishing
term in (4) is

D4 =
n′′′′(i)
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∞∫
−∞

[
k2

2
v(k)dk

]2
∼ Θ2,

and further terms with even derivatives of n contribute to the nonlinear dif-
fusion.

Considering three cartesian components instead and replacing one-dimensional
coordinate i by cartesian coordinates x, y, z as

d

dτ
→ ∂

∂τ
;

d

di
→ ∂

∂i
; k → ki, i = {x, y, z}

we obtain the three-dimensional generalization, which follows by summation
over i straightforwardly.

Discussion and conclusions

As it has been shown in the note, the diffusion law can be obtained
directly for a system of drifting units, which are not distinguished from each
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other, each site (state) can be occupied arbitrary many times - the case of
bosonic quantum statistics.

Instead of the probability distribution in a classical probabilistic approach
[?], the derivation is represented in terms the deterministic velocity distribu-
tion for thermal motion. The resulting diffusion can be called for this reason
’thermally driven’, in opposite to the ’statistically driven’, which is treated
as a nonequilibrium phenomen and issues from the construction of entropy.
It can be obtained therefore by applying the local entropy maximization [4],
and has been recently performed in [5].

Although the philosophy of this formalism is similar to the Einstein’s
approach, for instance integro-differential evolution equation resembles the
’master-equation’ and is also global in the space of states, the approach out-
lined above works more frugal and requires a minimal supply of conditions
and formulations, thus avoiding several unnecessary definitions and assump-
tions, which are mandatory for the conventional statistical approach [2, 1, ?].
Especially, no pre-assumptions for ergodicity, Boltzmannian energy distribu-
tion, special properties of entropy function or interaction/transition potential
between different particles in different positions.

Since the existence of the velocity distribution v(k) is assured, a straight-
forward counting of occupation numbers subjected to the thermal motion
v(k) leads to the first order linear dynamical system in a discrete represen-
tation, which corresponds to integro-differential equation in a continuum.

A local approximation for a typical thermal velocity distribution provides
in the Fick’s diffusion law in the leading order, higher orders contribute to
the nonlinear diffusion.
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