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Abstract

A new de�nition of heat for open systems, with a number of advantages over previous de�nitions, was

introduced in [2013; Int. J. Therm., 16(3), 102�108]. We extend the previous work by analyzing the

production of entropy and showing that the new de�nition of heat appears naturally as the proper

�ow [��ux density�] conjugate to the gradient of temperature, with the previous de�nitions only

considering a subset of the physical e�ects associated to this gradient. We also revisit the transfer

of heat in multicomponent systems, con�rming the identity derived in the previous work for the

identi�cation of thermal e�ects associated to each one of the chemical potentials in the system.

The new de�nition of heat was previously obtained within the scope of the traditional thermodynamics

of irreversible processes (TIP), which has a limited �eld of applicability to macroscopic systems with

no too strong gradients and not too fast processes. We extend now the new de�nition of heat to more

general situations and to the quantum level of description using a standard non-commutative phase

space, with the former TIP-level de�nition recovered from partial integration.
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1 Introduction

A new de�nition of heat for open systems, with a number of advantages over previous

de�nitions, was introduced in [1]. The new de�nition was motivated by the analysis

of the components of the �ow [2] of entropy for open systems and the identi�cation of

the entropy per mole transferred by the �ux of mass. The �ow of heat was then found

to be proportional to a 'thermal' entropy �ux where the entropy transfered through

a mass �ow had been subtracted. In this work we will use all the conventions in the

former paper [1].

In the next section, we show how the analysis of the production of entropy provides

further physical insight on the new de�nition of heat as the proper �ow conjugate to

the gradient of temperature, and show how the previous de�nitions only considered

a subset of the physical e�ects associated to this gradient. In a posterior section,

we revisit the transfer of heat in multicomponent systems, con�rming the identity

derived in [1], for the identi�cation of thermal e�ects associated to each one of the

chemical potentials in the system.

The new de�nition was previously obtained obtained [1] within the scope of the

traditional thermodynamics of irreversible processes (TIP), which has a limited �eld

of applicability to macroscopic systems with no too strong gradients and not too fast

processes. We will show in a �nal section of this paper how the new de�nition of heat

can be extended to more general situations and to the quantum level of description.

2 Heat �ux in the production of entropy

We begin by considering a simple system de�ned by one-component element of vol-

ume, at rest, that can interchange internal energy and matter, without chemical

reactions, and that verify the generalized Gibbs equation [3]

Tds = du� �dn; (1)

for thermodynamic temperature T , density of entropy s, density of internal energy

u, chemical potential �, and mole unit per unit volume n.
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The production of entropy �S for this system is given by

�S = JU � r

 
1

T

!
� JN � r

 
�

T

!
; (2)

where JU and JN are the �ows [2] of internal energy and matter, respectively. This

will be our starting point for the analysis of the new de�nition of heat �ux. Systems

more complex will be considered latter.

DeGroot & Mazur, Fox, Jou, Casas-Vazquez, & Lebon and Balescu �see [1] and

references cited therein� identify the heat �ux as the �ow conjugate to the �rst

gradient of (inverse) temperature, i.e.; JQDM
def
= JU . Using this de�nition, (2) can be

rewritten as

�S = JQDM � r

 
1

T

!
� JN � r

 
�

T

!
: (3)

Besides all the defects inherent to this de�nition [1], we can observe that it is only

considering partially the e�ects of the gradient of temperature.

Precisely Callen and Misner, Thorne, & Wheeler �see [1] and references cited

therein� also consider the gradient of temperature in the second term of (2) and

propose JQC
def
= JU ��JN . Now the production of entropy (2) takes the simple form

�S = JQC � r

 
1

T

!
� JN �

r�

T
: (4)

Their de�nition has still all the de�ciencies mentioned in the former work [1], but

its more important weakness is that their de�nition does not account for all the

e�ects generated by the gradient of temperature, because it is ignoring thermal e�ects

associated to the chemical potential.

The next logical step consists on using the Gibbs & Duhem equation associated to

(1) to obtain an identity that links gradients of chemical potential to gradients of

temperature

srT �rp = �nr�; (5)

which applied on (2) yields

�S =

"
JU �

 
�+
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n
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#
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Tn
: (6)

Precisely the term between square brackets corresponds to the new heat �ux de�ned

in the former work [1] by

JQ
def
= JU �

 
�+

Ts

n

!
JN : (7)
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It is now evident that the new de�nition of heat �ux introduced in [1] acquires further

physical meaning as the more general conjugate �ow to the gradient of (inverse)

temperature, with previous de�nitions in the literature, JQDM and JQC recovered

from it as incomplete cases.

3 Revisiting multicomponent systems

As noted previously [1] the extension of the de�nition (7) to multicomponent systems

described by the generalized Gibbs equation

Tds = du�
X
k

�kdnk (8)

is not straightforward due to the interrelation between the di�erent chemical poten-

tials. The di�culty was solved by using an identity that equipartitions the overall

thermal e�ects between each one of the chemical potentials in the system. This could

give the false impression that the multicomponent heat �ux [1, 2]

JQ
def
= JU �

X
k

 
�k +

TsP
i ni

!
JNk

: (9)

is only valid when one ignores the deviations from thermal equipartition of the con-

tribution to the heat of each one of the chemical potentials. However, it can be shown

that the above de�nition is exact because the deviations self-cancel in the system as

a whole. To demonstrate this we can introduce an average chemical potential de�ned

by

h�id�
def
=

X
k

�kdnk; (10)

where �
def
=

P
k nk. This allows us to rewrite (8) as

Tds = du� h�id�; (11)

which is formally equivalent to the monocomponent case (1). We can then take the

formal heat �ow for (11) and replace J� !
P

k JNk
, h�iJ� !

P
k �kJNk

, and � !
P

k nk

to formally re-derive the expression (9) valid for the multicomponent system.

Note that (10) implies that the deviations of the chemical potentials from the average

self-cancel, i.e.,
P

k(��k)dnk = 0. The physical explanation for the self-cancellation
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is that the thermodynamic description consider the system as a whole and (8) uses

the total entropy and total internal energy of the system, instead S and U of each

component. As a consequence, the energetic and entropic contributions that we can

formally associate to each component play no role during the extraction of thermal

e�ects from the �ow of internal energy JU and from the �ow of entropy JS in the

general case [1]:

JS =
JQ
T

+
X
k

 
sP
i ni

!
JNk

; (12)

JU = JQ +
X
j

�jJZj
+
X
k

 
�k +

TsP
i ni

!
JNk

: (13)

4 Extension beyond TIP

Until now, and in the previous work [1], we restricted the discussion to systems

described by the thermodynamics of irreversible processes (TIP). This is an excellent

approximation when there are not large gradients and/or fast processes, otherwise a

generalized formalism is needed.

A generalized formalism can be obtained by extending the number of variables of

the classic thermodynamic space. This is the extended thermodynamics approach.

Its main problem is the lack of consensus on which is the relevant set of extended

thermodynamic variables or even its number [4�7].

We follow an alternative approach based in the succesive elimination of equilibrium

constraints for introducing higher levels of detail in the description. On the simplest

level of description, the thermodynamic system is at internal equilibrium as a whole

and has entropy S[t] �in this section, we do not list other thermodynamic quantities by

simplicity�, which can vary by interchanges of energy and/or matter with surrounds.

The next level of description consists on considering a system which is not in ther-

modynamic equilibrium as a whole, but is composed of small elements of volume at

equilibrium and with entropic density given by s(x; t). Those are the systems studied

in the sections 2 and 3.
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We can further generalize the description by considering that each element of volume

is not at internal equilibrium but can be decomposed into subelements, living now

in a six-dimensional phase space, and with entropic phase space density given by

s(p; x; t). Note the hierarchies of the descriptions, where each level can be obtain

upon integrating the inferior levels

S[t] =
Z
s(x; t) dx =

ZZ
s(p; x; t) dpdx: (14)

The next generalization would consist on considering quantum phenomena, �nally

deriving a local quantum phase space entropic density es(p; x; t) def
= �kB

ef ln ef , where
kB is the Boltzmann constant, and ef(p; x; t) the quantum Wigner function [5].

Once reached this point, we only need to replace now the quantities in previous

de�nition of heat [1] by their formal quantum analogs in the non-commutative phase

space to obtain a quantum general de�nition of heat

eJQ def
= eJU �X

j

e�j eJZj
�
X
c

 e�c + T esP
i eni

!eJNc
: (15)

Of course, the partial integration of (15) yields, in the classical limit, the �ow JQ
used in (12) and (13)

JQ(x; t) = lim
~!0

Z eJQ(p; x; t) dp: (16)
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