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This paper is to address using what a fluctuation of a metric tensor leads to, in pre Planckian 

physics, namely 

2tt

t E
g




   . If so then, we pick the conditions for an equality, with 

a small 
ttg  , to come up with restraints initial temperature, particle count and entropy 

affected by initial degrees of freedom in early Universe cosmology.   
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1.   Introduction . Finding  

This article starts with updating what was done in [1] , which is symbolized by, if 

the scale factor is very small,  metric variance [2,3]  
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In [4] this lead to  
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We assume  
ttg is a small perturbation and look at 
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This would put a requirement upon a very large initial temperature 
initialT and so 

then, if   
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And if we can write as given in [ 2,3]  

                       (4)

( ) ~volume initial surface area PlanckV V t A r l                             (5) 

The volume in the pre Planckian regime would be extremely small, i.e. if we are 

using the convention that Eq. (4) holds, then it argues for a very large sg
beyond 

the value of 102, as given in [5] . In any case, our boundary between the Pre 

Planckian regime and Planckian, as far as the use of Eq. (4) yields a preliminary 

value of , for a radii less than or equal to Planck Length , of non zero value, with  

                         20 3710 ( ) ~ ( ) 10
Pr l

S initial n particle count


                        (6) 

This is also assuming a 
initial initialt t Plank time     , i.e. at or smaller 

than the usual Planck time interval. 

2.   Counter pose hypothesis, by String Theory, for Eq. (6) 

 The author is aware of the String theory minimum length and minimum time 

which is different from the usual Planck lengths, but are avoiding these, mainly 
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due to a change in the assumed entropy formulae to read as the square root of the 

above results, namely  [ 6,7,8 ]  

            10 1610 ( ) ~ ( ) 10
P

String Theory
r l
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

                  (7) 

The above is still non zero, but it cannot be exactly posited as in the Pre Planckian 

regime of Space-time, since the minimum length may be larger than Planck 

Length, i.e. as of the sort given in [8]  

3.   Conclusions : Questions as to refining both Eq. (6) and Eq. (7) for 

more precise Entropy bounds  

If  from Giovannini  [9] we can write 

                                            2~ ( ) 1ttg a t                                                     (8)        

 Refining the inputs from Eq.(8) means more study as to the possibility of a non 

zero minimum scale factor [10]  , as well as the nature of   as specified by 

Giovannini [9] . We hope that this can be done as to give quantifiable estimates 

and may link the non zero initial entropy to either Loop quantum gravity 

“quantum bounce” considerations [ 11]  and/or  other models which may presage 

modification of the sort of initial singularities of the sort given in  [ 12  ]. 

Furthermore if the non zero scale factor is correct, it may give us opportunities as 

to fine tune the parameters given in [10] below.  
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Where the following is possibly linkable to minimum frequencies linked to E 

and M fields [10]  , and possibly relic Gravitons  
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