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Abstract  

We introduce two new Kirchhoff-law–Johnson-noise (KLJN) secure key distribution schemes, which are the generalization 
of the original KLJN version. The first system, the Random-Resistor (RR-) KLJN scheme is using random resistors chosen 
from a quasi-continuum set of resistance values. It is well known since the creation of the KLJN concept that such system 
could work because Alice and Bob can calculate the unknown resistance value from measurements; however, it has not been 
addressed in publications as it was considered impractical. The reason for discussing it is the second scheme, the Random-
Resistor-Random-Temperature (RRRT-) KLJN key exchanger inspired by a recent paper of Vadai-Mingesz-Gingl where 
security was maintained at non-zero power flow. In the RRRT-KLJN secure key exchanger scheme, both the resistances and 
their temperatures are continuum random variables. We prove that the security of the RRRT-KLJN system can be maintained 
at non-zero power flow thus the physical law guaranteeing the security is not the Second Law of Thermodynamics but the 
Fluctuation-Dissipation Theorem. Knowing their own resistance and temperature values, Alice and Bob can calculate the 
resistance and temperature values at the other end from the measured voltage, current and power-flow data in the wire. Eve 
cannot determine these values because, for her, there are 4 unknown quantities, while she can set up only 3 equations. The 
RRRT-KLJN scheme has several advantages and makes all the existing former attacks invalid or incomplete.  
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1. Introduction 

The Kirchhoff-law–Johnson-noise (KLJN) secure key distribution [1-21] is a classical statistical physical 
alternative to the quantum key distribution. In the binary version of the scheme, see Figure 1, during a single bit 
exchange, the communicating parties (Alice and Bob) connect their randomly chosen resistor (including its 
Johnson noise generator) to a wire channel. These resistors are randomly selected from the publicly known set 

 RL,RH{ } , RL ≠ RH , representing the low (L) and high (H) bit values. The Gaussian voltage noise generators—
mimicking the Fluctuation-Dissipation Theorem and delivering band-limited white noise with publicly agreed 
bandwidth—produce enhanced thermal (Johnson) noise at a publicly agreed effective temperature Teff , typically 
being Teff >>1010K , so the temperature of the wire can be neglected. The noises are statistically independent of 
each other and from the noise of the former bit period.  

In the case of secure bit exchange—i.e., the LH or HL bit situations for Alice and Bob—an eavesdropper 
(Eve) cannot distinguish between these two situations by measuring the noise spectra   Su ( f ) ,   Si ( f )  of voltage 
and/or current in the cable, because the LH and HL noise levels are identical (degenerated). Thus when Alice and 
Bob detects the noise spectra (or noise levels) characteristic of the LH and HL situation, they know that the other 
party has the opposite bit and that this bit is secure. Then one of them will invert the bit (it is publicly pre-agreed 
who) to get the same key bit as the other party. The KLJN scheme offers unconditional (information theoretic) 
security at both ideal and slightly non-ideal (practical) conditions [3].  

To avoid potential information leak by variations in the shape of a probability distribution, the noises are 
Gaussian [1], and it has been proven that other distributions cannot offer perfect security [18,19]. The security 
against active (invasive) attacks provided by the robustness of classical physical quantities, which guarantees 
that these quantities can be continuously monitored and exchanged between Alice and Bob via an authenticated 
communication. Therefore the system and data integrity with the known cable parameters and model can be 
checked continuously and deterministically without destroying the data, which is absolutely different from the 
case of quantum key distribution. 
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Fig. 1. The core of the KLJN scheme without the defense circuitry [2] against active (invasive) attacks and attacks utilizing 
non-idealities. The RL and RH resistors, identical pairs at Alice and Bob, represent the Low and High bit values. The 
corresponding noise spectra SL and SH also form identical pairs at the two ends however they belong to independent Gaussian 
stochastic processes. Both parties have the same temperature thus the net power flow is zero. The LH and HL bit situations of 
Alice and Bob produce identical voltage and current noise spectra, Su and Si, in the wire thus they represent a secure bit 
exchange. The LL and HH bit arrangements, which occur 50% of the cases, have singular noise levels in the wire thus they 
offer no security because Eve can distinguish them. Thus 50% of the bits must be discarded. This system works also with 
arbitrary, non-binary resistor values, too, as an analog circuitry to exchange continuum information about the distribution of 
random resistors, see the text below and in Sections 3,4. 

We must keep in mind that the KLJN secure information exchanger is basically an analog circuitry and can 
work with arbitrary resistances because, even if the resistance values are not pre-agreed, Alice can calculate 
Bob's resistance from the measurement data [1] by using Johnson's formula and vice versa. For example, by 
using the measured current spectrum in the wire: 

 
RB =

kTeff

Si

− RA             (1) 

It is important to note that Even Eve is able to determine an arbitrary, non-pre-agreed (non-publicly know) 
resistor pair connected to the line by using both the measured voltage and current spectra [1]. The two solutions 
of the obtained second order equation serve the two resistance values of the pair: 

R1,2 =
4kTSu ± 4kTSu( )2 − 4Su3Si

2SuSi
 .        (2) 

However, Eve cannot determine which resistor is with Alice and which is with Bob, thus the information 
exchange about the distribution of arbitrary, non-binary resistor values is secure in the original KLJN system, 
see also Section 3. 

 

2. The Vadai-Mingesz-Gingl KLJN scheme 

Resistor inaccuracies in the binary KLJN scheme can lead to remove the degeneration of the LH and HL noise 
levels in the line, leading to non-zero information leak, which was pointed out long time ago [response to 
Scheuer] and keeping inaccuracies at the 1 % range was recommended. Recently, Vadai-Mingesz-Gingl (VMG) 
published a modified KLJN scheme [20] with very interesting properties to fully eliminate such a leak. We call 
this the VMG-KLJN system. In a subsequent manuscript submitted for publication they also show [21] that the 
earlier temperature-compensation defense principle [17] against wire resistance attacks against the KLJN system 
can also successfully be used (with their new temperature-compensation functions) for the VMG-KLJN scheme, 
too. 

We note by passing that the title of their paper [20] is misleading because it talks about "arbitrary" resistors 
indicating that as the main new result of the paper. However, the original KLJN scheme already had "arbitrary" 
resistors but not a random set of resistors, which the VMG-KLJN scheme cannot offer either. The really new 
aspect of the VMG-KLJN scheme is different, namely, that Alice and Bob can there have two different pairs of 
resistors consisting of  RAL ,  RAH ,  RBL ,  RBH , which are Alice's and Bob's logic Low and High resistances, 
respectively, see Figure 2.  
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Fig. 2. The Vadai-Mingesz-Gingl KLJN scheme. The resistors pairs representing the Low and High bit values are different at 
Alice and Bob and their temperatures and the corresponding noise spectra are different too. Thus the net power flow is non-
zero. The resistance values, RAL, RAH, RBL, RBH and their temperatures TAL, TAH, TBL, TBH are pre-determined thus publicly 
known. This protocol is not desiged to work with arbitrary, non-binary resistor values to exchange continuum information 
about the distribution of random resistors because the temperatures are resistance values are interrelated and Alice and Bob 
cannot abruptly change them without changing the temperature(s) at the other party. For such system see the text at the end 
of Section 1 and in Sections 3 and 4. 

Because the VMG-KLJN scheme is also binary, just like the original KLJN system, their task was to find 
conditions where the voltage and current noise spectra in the wire at the HL and LH bit combinations, that is for 
the pairs  RAL − RBH  and  RAH − RBL , are identical. This is not possible with uniform temperatures. From the 
temperature  TAL  of Alice's  RAL  resistor, the other temperatures,  TAH ,  TBL  and TBH , are designed so, that the LH 
and HL bit situations produce identical voltage and current noise spectra and power-flow  PAB  in the wire thus 
they represent a secure bit exchange. VMG found the necessary temperature values [20] in the following generic 
form:  

 TAH = TALF RAL ,RAH ,RBL,RBH( )           (3) 

 TBL = TALG RAL ,RAH ,RBL,RBH( )          (4) 

 TBH = TALH RAL ,RAH ,RBL,RBH( ) ,         (5) 

where the F, G and H functions are deterministic (their concrete form are published in [20] and are not 
interesting here). Thus Alice and Bob must know not only their own set of resistors but also the resistance values 
at the other side and Bob must also know Alice's  TAL  temperature. Thus, these resistor sets and temperatures are 
deterministic, which, in accordance with the Kerckhoffs's principle, implies that all these parameters are known 
by Eve. (Note, "keying" these parameter values by randomly generating and communicating them via secure 
communication by using the formerly shared key is of course possible, similarly to the Keyed-KLJN scheme [5], 
but such enhancements to make Eve's job more difficult are not the topic of the present paper).  

The LL and HH bit arrangements, which occur 50% of the cases, have singular noise levels in the wire thus 
they offer no security because Eve can distinguish them, even though she knows all the temperature values and 
the values of resistance pairs at both ends. Thus 50% of the bits must be discarded so the VMG system does not 
offer a speedup of key exchange. 

Concerning practical applications, in "macroscopic" circuit boards or hybrid integrated circuits of the original 
KLJN system, the resistors pairs can easily be chosen with sufficiently high-enough precision thus the VMG 
system is not needed. However, in monolith integrated circuits, if no post-processing for the trimming of the 
KLJN resistors is used, the VMG method can be handy to eliminate the information leak due to resistor 
inaccuracies [22,23]. 

However, in the VMG paper [20], there is a historically important discovery. It is the fact that they showed 
that unconditional security could also be attained at non-zero power flow, that is, at non-equilibrium conditions! 
That means, in their system, not the Second Law of Thermodynamics guarantees the security but the 
Fluctuation-Dissipation Theorem, via the Johnson-Nyquist formula (just as it was actually stated in the very first 
KLJN paper [1] with zero power flow; an argumentation that later switched to the more popular Second Law of 
Thermodynamics, which is also correct in that case).  
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3. The Random-Resistor (analog) KLJN scheme 

Before we turn to our main results, first we outline the Random-Resistor (RR-) KLJN scheme, which is not 
binary but analog, see the final part of Section 1, and is still in thermal equilibrium. The RR-KLJN scheme is 
using random resistors chosen from a quasi-continuum set of resistance values. It is well-known since the 
creation of the KLJN concept that such system could work because Alice and Bob can calculate the unknown 
resistance value from measurements, however, it has not been addressed in publications, as it have been 
considered impractical.  

 

 
Fig. 3. The Random-Resistor KLJN scheme. The temperature at the two sides is the same and it is a pre-defined, publicly 
known constant value, thus the net power flow is zero. The resistors at Alice and Bob (and their corresponding voltage noise 
spectra) are continuum random variables with a new random choice at the beginning of each KLJN period. The Low and 
High bit values at Alice and Bob are determined by the relative resistance values, for example, that party has the high bit 
which has the higher resistance. From voltage and current measurements, Eve can also estimate the two resistance values but 
not their locations, unless the resistors are identical. In the hypothetical but non-practical case when the resistance 
distribution is ideally continuum and the inaccuracies of Alice's and Bob's estimation results are zero; 100% of the secure bit 
exchange is successful because the probability of choosing two identical resistances is zero. In the practical case with finite 
accuracy (finite bit exchange duration) and quasi-continuum discrete distribution, the secure bit exchange efficiency is less 
than 100%, because some of the bits must be discarded, but it is greater than 50%.  

 

4. The Random-Resistor-Random-Temperature KLJN scheme 

The important discovery by VMG [20] that unconditional perfect security exists at non-zero power flow is the 
very feature that inspires our new, Random-Resistor-Random-Temperature, RRRT-KLJN, see Figure 4. Yet, our 
new scheme is completely different from the VGA system because it is using really "arbitrary" (ad-hoc) random 
resistances like the RR-KLJN scheme moreover random temperatures  (ad-hoc) from a continuum interval. Thus 
the forthcoming resistance and temperature values are unknown by even Alice and Bob (similarly to their lack of 
knowledge about the next secure key bit), except the ranges of values. Consequently, even the Kerckhoffs's 
principle does not allow information leak about them and only their continuum range is known publicly. This 
fact makes all formerly known attack types invalid in their original form and, without further development of 
them, they offer zero information gain about the key for Eve. This feature makes all formerly existing attacks 
invalid or, at minimum, incomplete. 
 

3.1 Security proof of the RRRT-KLJN scheme 

We analyze the protocol from Alice's point of view, which is naturally valid for Bob, too.  

• Known for Alice: her own temperature, resistance, noise spectrum and the wire measurements of  Su ( f ) , 

 Si( f )  and the power  PAB  flowing to Alice from Bob.  
• Unknown for Alice: α  and β .  
• Known for Eve: the wire measurements of  Su ( f ) ,  Si( f )  and  PAB . 
• Unknown for Eve: α , β ,  TA ,  RA .  
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Fig. 4. The Random-Resistor-Random-Temperature KLJN scheme. The temperatures and the resistors at Alice and Bob (and 
their corresponding voltage noise spectra) are continuum random variables with a new random choice at the beginning of 
each KLJN period. The Low and High bit values at Alice and Bob are determined by the relative resistance values, for 
example, that party has the high bit which has the higher resistance. Known for Alice: her own temperature, resistance, noise 
spectrum and the wire measurements of  Su ( f ) ,  Si( f ) , and the power  PAB  flowing to Alice from Bob. Unknown for Alice: 
α  and β . Unknown for Eve: α , β ,  TA ,  RA . Known for Eve: the wire measurements of  Su ( f ) ,  Si( f )  and  PAB . Eve 
cannot determine the two resistance values, not even their sum, like in the KLJN, VMG-KLJN and RR-KLJN cases. In the 
hypothetical but non-practical case when the resistance distribution is ideally continuum and the inaccuracies of Alice's and 
Bob's estimation results are zero; 100% of the secure bit exchange is successful. In the practical case with finite accuracy 
(finite bit exchange duration) and quasi-continuum discrete distribution, the secure bit exchange efficiency is less than 100%, 
because the bits with singular noise and power levels must be discarded, but 100% can be approached with proper design.  

 

Alice wants to find out Bob's unknown parameters α  and β . She can set up three equations by using the 
principles of liner operations on noise: 

 

 
Su ( f ) = 4kTARA

αRA

RA 1+α( )
⎡

⎣
⎢

⎤

⎦
⎥

2

+αβ4kTARA
RA

RA 1+α( )
⎡

⎣
⎢

⎤

⎦
⎥

2

= 4kTARA

1+α( )2
α α + β( )      (6) 

 

 
Si( f ) =

4kTARA

RA
2 1+α( )2

+ 4kTARAαβ
RA
2 1+α( )2

= 4kTA

RA

1+αβ
1+α( )2

        (7) 

 

and [17]: 

 

 
PAB = Δf αRARA

RA + RAα( )2
β −1( )4kTA = 4kTAΔf

α β −1( )
1+α( )2

  .      (8) 

 

From Equation 6-8 we define three new quantities, which Alice can calculate from her own parameters and the 
measurement data: 

 

 
γ = Su ( f )

4kTARA

=
α α + β( )
1+α( )2

           (9) 

 

 
ϕ = PAB

4kTAΔf
=
α β −1( )
1+α( )2

           (10) 
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δ = Si( f )RA

4kTA

= 1+αβ
1+α( )2

           (11) 

 

In can be shown that Equations 9,10 lead to a second-order equation for β , which has two solutions: 

 

β1,2 =
−δ 1− 2γ( )−ϕγ ± δ 1− 2γ( ) +ϕγ⎡⎣ ⎤⎦

2
+ 4 γ −1( ) δ −ϕ( ) ϕ −γδ( )

2 γ −1( )  ,    (12) 

 

In situations, when one solution is positive and the other one is negative, which is unphysical, the positive result 
gives Alice Bob's temperature value. When both solutions are positive, an alternative second order equation 
created from Equations 10,11 must be solved and the joint solution of that with that of Equation 12 yields the 
correct temperature parameter β  of Bob. Finally, knowing the correct β  value, anyone of Equations 9-11 yields 
Bob's resistance parameter α . 

Eve cannot determine these values because, for her, there are 4 unknown quantities, while she can set up only 
3 equations. Thus she has infinite possibilities provided the continuum system is unbounded, which is 
impractical. 

In practical applications, the solution of the above equations will not be needed, when we consider the fact 
that the RRRT-KLJN system will be a digital one, similarly to the former realization. That means, the 
temperature and resistance data will form a quasi-continuum discrete set with resolution given by the bit 
resolution of the system. Thus, instead of the calculations outline above, a bottom-up version is much more 
feasible due to its reduced calculation need during operation: tabulation of all possibilities of temperature and 
resistor settings at Alice and Bob, and creating a lookup table from the  Su ( f ) ,  Si( f )  and  PAB  data.  

Note: Such tabulation must be done in any case to locate possible singular  Su ( f ) ,  Si( f )  and  PAB  
combinations that could uniquely tell Eve the resistance and temperature situations. The measurable set  Su ( f ) , 

 Si( f )  and  PAB  for any secure bit must be degenerated thus must occur at least two opposite bit situations within 
the statistical inaccuracy of the KLJN operation, otherwise Eve can extract the bit by using her own model of the 
system, which she can build according to the Kerckhoffs's principle. Those singular shared bits are insecure and 
must be discarded during operation whenever they occur. 

 

3.2 Immunity against former attacks 

The RRRT-KLJN scheme has several advantages and makes all the existing formerly valid attacks invalid in 
their known form. For example, the key exchange speed is virtually doubled because, at proper design, almost 
each bit can exchange period supplies a secure key bit. Resistor or temperature inaccuracies do not matter and 
they cannot be utilized for Hao-type attacks [24], anymore. The Bergou-Scheuer-Yariv-Kish cable resistance 
attack [25,26] is also invalid in its known form, just like the new cable-capacitance attack by Chen, et al. [27]. 
Finally, the new transient attack [28] by Gunn-Allison-Abbott do not work either because of the unknown 
resistances and temperatures. 

New attacks are of course possible. For example if Eve measure the voltages at the two ends of the wire, she gets 
a new equations thus she probably has enough equations to solve the problem. After that, information leak will 
exist and the real question is: how much with Eve's poor statistics due to the strongly limited bit exchange 
period? 

 

3.3 Some practical considerations 

A disadvantage of the RRRT-KLJN scheme is that the Kish-Granqvist temperature-compensation defense 
mechanism [17] cannot be used to nullify cable resistance effects against a yet unknown attack type of such kind 
(for an outline, see above). A perhaps more practical version of the RRRT-KLJN scheme is the generalization of 
the formerly proposed Multiple-KLJN (MKLJN) system [5] based on random choice of a known large set of 
resistors by introducing random choice of temperatures from a known large set of temperatures. As we have 
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already mentioned above, the known sets must be properly checked because only choices with degenerated 
voltage/current/power values can be considered secure, not the singular values.  

The bit error analysis [14,15] and error removal in the RRTT-KLJN scheme is yet and open problem. 

 

Conclusions 

We introduced two schemes with arbitrary (ad-hoc) random resistor choices and enhanced communication 
speed. The RRRT-KLJN scheme has also ad-hoc random temperatures, which makes this scheme unique among 
existing KLJN versions because even the sum of the resistances is secret. All the former attacks are invalid and, 
at minimum, need further developments to extract any information. 

The RRRT system has some disadvantages, too, some advanced features of the enhanced KLJN schemes, 
such as the iKLJN improvement cannot be used and some of the defense features against active (invasive) 
attacks may need to be upgraded. 

Only future can tell if the RRRT scheme stays as a peculiar academic interest or will became an important 
practical application. Both the generation of a random (analog) resistance and temperature looks technically 
feasible especially that accuracy and reproducibility of the resistance values is unimportant. There is no reason to 
use the RR-KLJN scheme because the RRRT system needs only a minor expansion form there. 

It is yet an open question if the original KLJN system and its enhanced versions (iKLJN, KKLJN, VMG, 
etc.) or the RRRT-KLJN scheme are more feasible for practical applications, while they all offer unconditional 
(information theoretic) security. 
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