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Abstract
We are looking for a paradigm of modern physics and this essay is devoted

to this problem. Thus in the essay we consider very important problems of
philosophy of physics: a unification and a geometrization of fundamental
physical interactions and holism. We are looking for holistic approaches in
many different domains of physics. Simultaneously we look for some holistic
approaches in the history of philosophy and compare them to approaches in
physics. We consider a unification and a geometrization of physical interac-
tions in contemporary physics in order to find some connections with many
philosophical approaches known in the history of philosophy. In this way
we want to connect humanity to natural sciences, i.e. physics. In the his-
tory of philosophy there are several basic principles, so-called “arche”. Our
conclusion is that a contemporary “arche” is geometry as in the Einstein
programme connected to a holistic approach. In our meaning geometry as
“arche” of physics will be a leading idea in a fundamental physics. Physics
itself will be a leading force in philosophy of science and philosophy itself.
Cultural quasi-reality (in R. Ingarden’s meaning) and also biology, medicine
and social sciences will be influenced by physics. In this way a cultural
quasi-reality will be closer to physical reality.



Motto

The main concern in all scientific work
must be the human being himself.

This one should never forget among
all those diagrams and equations.

Albert Einstein
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Preface

This essay is devoted to an important approach in philosophy of physics, ac-
cording to which “the whole” is more important and takes precedence over
“the part”. In the treatment here offered, holism links the geometry and
the unification of fundamental interactions. In this way one tries to give
a certain version of philosophy of physics. Let us define briefly what is to
be understood as philosophy of physics. Under this term we are going to
mean a general-theoretic superstructure spanned over the physical laws and
methods. One includes into the philosophy of physics all such physical prob-
lems, which at present could not be solved by the exact methods of physics.
The domain in question is therefore a kind of meta-science in its relation to
physics, and one would quite naturally employ the name of metaphysics here,
should not this term already been rooted inside definite and a completely
different semantic tradition.

The impact of problems dealt with by the philosophy of physics is quite
considerable for physics itself, as well as for the philosophy, since it offers a
unique conceptual framework, within which one might embark onto the ef-
fort of reflecting upon the physical laws, methods, development, trends etc.
Further, also within this conceptual picture one could tackle a number of
general world-view topics, which have a bearing onto determinism, indeter-
minism, unity of nature, geometrization of physics and onto the unification
of the fundamental interactions. Philosophy of physics thus assumes, within
a perspective adopted — the status of a domain of inquiry occupying the
borderline between the humanities and the mathematized natural sciences.
Naturally for such a domain of inquiry frequent references to methods like
analogy and value judgements shall find its place, quite typical of any phi-
losophy. Such references (I hope) shall contribute to the humanization of
the physics itself. Another important aspect of the approach adopted here
consists in drawing attention to the culture and civilization advancement
component of the role played by physics; so long as the human being is go-
ing to remain at the heart of all our undertakings — the humanization of
physics deserves and shall assume very remarkable status. The thrust of that
humanistic message is being emphasized by an excerpt from Prothagoras (in
Albert Einstein spelling), serving as motto to this work.

Prothagoras known as a creator of humanity simply tells us that a mea-
sure of everything is a human being himself. According to our ideas devel-
oped in this essay we have to do with Scientia humanitatis which contains all
sciences and arts and especially Studia humanitatis. The last one contains
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philologies, history, history of art, musicology, linguistics, archeology, theory
of literature (studies of literature). In this type of scientific activity we use
methods known in sciences, i.e. we are describing facts, and interpret them.
This is very sound in linguistics and in archeology and history. In some sense
we are using methodology of physics. Thus there is a place here for philo-
sophical considerations. Philosophy of physics seems to be very important
from this point of view because it connects physics (in general sciences) with
remaining human scientific activity.

Physics can be considered as a mother science of chemistry and biology.
On the molecular level there is no difference between physics, chemistry,
biology or medicine. There is only physics. Physics can also be employed
in evolution processes and even in psychology. To be honest, we should
mention on a different approach to understand the reality. It is an anthropic
principle. In this approach we explain everything as a postulate that the
world, the universe exists, because we (the mankind) can explore it. In this
way the mankind exists.

Thus all the parameters of physical world must allow a human being
to exist. Moreover, it seems that the principle is very simplimistic and all
history of science is going to avoid this principle. (This principle has in
some sense a religious origin.) Some interesting problems in geometrization
of physics and cosmology raised a concept of the Multiverse. It means, a
concept with many universes considered at once. These universes are very
different with different dimensions, different physics, different geometries.
Many of them cannot be habitated by human beings. Moreover, no one
proves that our Universe can be distinguished among remaining universes
except this fact that we are living here. This is in favour of the anthropic
principle. Moreover, this fact demands more investigations. The geometry
of some of those universes can be very complex. The topology of them can
also be complex.

One of the interesting problems is a problem of limits of science. This
is a problem of philosophy of science and of course of philosophy of physics.
L. Chwistek in his Limits of Science (Chwistek 1935) deals with this prob-
lem. The first problem is of course a problem with insolvability. Moreover,
we have more problems. This is a problem of complexity. Some of cal-
culational problems in theoretical physics (I mean here not only numerical
calculations, but also some symbolic manipulations) can be non-polynomial
or even hard. We have some academic examples in foundations of math-
ematics (some parts of Peano axiomatics). Thus some of the problems (if
they exist) can be outside our calculational capabilities. This could happen
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also for our memory capacity. There is also a problem with our capabilities
in constructing mathematical models of the Nature. Moreover, we have also
possibilities (in future) to construct quantum computers to solve some hard
problems. Maybe it is enough to find a model (a theory) to encompass the
Nature. The second possibility is a pessimistic one. In this case there is a
gap between complexity of the Nature and our (as the mankind) capability
to construct models (theories) of the Nature. This will be an end (a limit)
of science. Moreover, this is beyond the scope of the essay.

We can find such possibilities in the science-fiction literature. For exam-
ple, in Master’s Voice and Solaris by S. Lem (Lem 1961; Lem 1968). The
conclusion is such that One day we can find in our environment something
which does not fit to our understanding of the world. This is similar to the
Ignorabimus by E. du Bois Reymond and really pessimistic. Let us sketch
what it means.

E. du Bois Reymond put in his Ignorabimus (Ignoramus et ignorabimus)
all we do not know and we will not know. It happens some of his predictions
will not fulfil (e.g. a chemical composition of distant stars). This can give us
a hope that there are no limits of science. The human mind is unbounded,
the only boundaries are boundaries of the complexity of the Universe which
is cognizable. (D. Hilbert in opposition to Ignorabimus wrote: Wir müssen
wissen — wir werden wissen.) The assumption of cognizability of the Uni-
verse can be included to principles of the philosophy of science (moreover,
not necessarily).

The very interesting point in any theoretical investigations on foundation
of nature (I can say a physical reality) is an incredible successful applica-
tion of mathematics. There is no physics without mathematics. It seems
that a physical reality has a mathematical structure. In our meaning this
mathematical structure is a geometry and because of this we are looking for
a geometrization of physics. This geometrization can simultaneously unify
physics of fundamental interactions.

Due to the status of physics as a standard, most developed among the
natural sciences, the conclusions arrived at in this essay, shall bear its validity
also in the remaining natural sciences — a fact it seems to us of equal
importance.

This work does not claim to have completely solved the question of re-
lationship between a holistic approach to physics and the one of having the
fundamental physical interactions geometrized and unified. Nonetheless it
does put forward a claim to the effect that the tasks of geometrization and
unification of the fundamental physical interactions are reciprocally very
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strongly associated. Simultaneously, the geometrization and unification of
fundamental physical interactions are implying the holistic approach, which
in its turn gives rise for using of certain definite mathematical theories as
tools for theoretical (mathematical) physics. It is just in the above sense a
kind of attempt aimed at approximating the meaning of the philosophy of
physics, emphasized in the subtitle of this essay.

Warsaw in February 2015
Marek Wojciech Kalinowski



CONTENTS ix

Contents

Introduction and General Remarks 1

1 Field Theoretic Worldview and Geometry 28

2 Classical Electrodynamics as an Example of the Unification
of the Electric and Magnetic Interactions 34

3 General Relativity Theory and the Programme of
Geometrization of Physics 40

4 Quantum Chromodynamics, Gauge Fields and the Unifica-
tion of the Fundamental Interactions 48

5 Dialectical Notion of Matter and the
Geometrization of the Physical Interactions 78

6 Latin Averroists and the Geometrical Unification of
the Physical Interactions 81

7 Geometrization Criterion as a Practical One.
The Role of Praxis in Physics 85

8 Paul Feyerabend and the Geometrization
of Physics 88

9 Symmetries in the Theory of Elementary Particles. At-
tempts at Unifying of the Internal Symmetries with the
Space-time Ones 93

10 Hidden Symmetries and Supersymmetric Algebras. Bosonic
Strings and Strings with a Spin 99

11 Anticommuting Coordinates. Lie Supergroups 107

12 Supersymmetric Gauge Transformations. Supersymmetric
Gauge Fields 111

13 Physical Determinism and Holism 117



x CONTENTS

14 Holism and Reductionism
in Contemporary Physics 132

15 Holism in Physics of Nonlinear Phenomena and in Cosmol-
ogy 146

Conclusions, Remarks and Prospects for Further Research 158

Acknowledgements 209

References 210

Index of Names 218



Introduction and General Remarks 1

Introduction and General Remarks

This work is devoted to philosophy of physics (Bunge 1980, 1973; Schultz
2013; Van Melsen 2012; Kemeny 1959; Kuhn 1970). A definition of its scope
would be in order. We have got two possibilities. One of them places phi-
losophy of physics inside philosophy of science. By this way philosophy of
physics becomes a kind of metascience. One could call it metaphysics if
this term have not already been earlier reserved for a completely different
area. Philosophy of physics according to such an approach would deal with
metaproblems, that is the methodology of physics, or to put it in another
way to an empirical science called physics. We are all aware that a method-
ology of deductive sciences under the name of metamathematics scored a
number of successes. Let me recall only such facts like: theory of truth,
Gödel theorem, degrees of unsolvability, etc. Looking with envy onto meta-
mathematics we might have desired to obtain certain similar results in the
philosophy of physics. To prove the “Gödel theorem” as a thesis in the
methodology of physics. Certainly the importance of such an achievement
could have been great, I presume that even far greater than the value of
Gödel theorem for mathematics. However, I would like to clearly stress that
such a result is impossible at present and never shall become possible. Let
us not be deceived by the mathematical character of theoretical physics,
by its extensive apparatus, its abstractiveness, especially in the field theory
or theory of elementary particles. The issue here has nothing to do with
neither mathematical apparatus, nor quantitative results, or even abstract
notions. Physics is simply an empirical science and this is its differentia
specifica in comparison to mathematics. Of course this is truism, but one
has to emphasize it, to avoid any doubts.

Mathematical theories are handsome when undertaking metamathemat-
ical type of investigations. Examining their logical structure within the
framework of model theory and extracting general conclusions is very use-
ful and interesting. Here we could say that sufficiently well axiomatized
and mathematized physical theories shall also be amenable for similar treat-
ment. Clearly, that is the case. But nothing would follow out from such an
approach. Theoretical physics would have become a strange variety of math-
ematics, towards which hardly any mathematician would show any predilec-
tion. Such an approach would miss certain feature of physics, a very basic
one, mainly the fact that physical theories describe reality somehow that
there is a degree of conformity of their predictions with empirical evidence,
and therefore physical theories might be either confirmed or rejected on the
basis of experiment. (D. Hilbert tried, quite successfully, to axiomatize the-
ory of elasticity, classical mechanics and even general relativity.)
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It is precisely this problem, the most important for the whole issue which
is unlikely to be formalized along the terms one is accustomed to within the
realm of mathematical problem. It is hardly possible expressing all the
variability exhibited by physical theories, which still better and more ade-
quately describe reality. After all each physical theory contributes to yet
another picture of physical phenomena. Let us consider for example Newto-
nian mechanics and non-relativistic classical mechanics. Both these theories
present us with completely different world-views, but they are linked via the
principle of correspondence. We also know that Newtonian mechanics is not
false at all. The predictions offered by it agree with experiments to a definite
extent. The relationship between classical mechanics and the quantum one
in known post factum. We are occupying ourselves with this relationship only
because quantum mechanics better describes reality. We see therefore, how
unfounded is the claim that methodology of physics will gradually become
indiscernible from the methodology of mathematics. Presumably we shall
never grasp the suitable variability of physical theories which are leading
towards still a better description of the world.

Should it be otherwise, we would become omniscient and would one day
know the most fundamental physical theory, just the one most precise and
the best possible. Let us just call it superunified field theory or something
of that kind. For such a theory we could have used the apparatus of meta-
mathematical type and arrive by this way to results quite analogous with
the ones obtained for methodology of deductive sciences. Let us notice that
in this case we should have assumed (God alone knows on what grounds)
that our supertheory is the one most precise and best available description
of reality. Thus we would invalidate the issue of whether it has any rela-
tionship to reality or not. Our theory would be the best possible and could
not be improved. Every other physical theory would be either a paraphrase
or a certain approximation of this one. Therefore by axiomatizing it and
examining its structure we shall reach all possible philosophical implications
of its contents, of the type like degrees of unsolvability and Gödel theorem.
But this would be clearly absurd and impossible. That is why all those who
would like to see the philosophy of physics in the role of metamathematics
for physics must take into account this sort of consequences. Philosophy of
physics in this sense will never play the role of metamathematics for physics.
That is why a question arises as to whether the philosophy of physics should
be methodology for physics, or it has to be a part of philosophy of science?

There is though another idea — the second possibility, which I had men-
tioned at the very beginning. According to this idea the philosophy of physics
constitutes a part of physics itself. How could this be possible? — physi-
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cists as well as philosophers would immediately ask. The puzzle is to be
explained by determining what is to be understood as problems in philos-
ophy of physics. They are not methodological problems, but the problems
of physics, which as yet are unsolvable by methods of physics alone. Here I
mean of course the theoretical physics. By this token the problems in the
philosophy of physics will assume their place inside the cone of growth of
contemporary physics (and it would be the most fundamental one here). The
basic question which we have to ask now is: What is the role of philosophy
in this problem area? If physics by using its contemporary methods is not
able to solve problems of this kind, then how should they be solved by phi-
losophy? We will reply this question right now — it is not philosophy which
would try to solve them. Philosophy after all, as we know, in principle does
not solve any problems. Its responsibility lies in posing them and at the most
showing some directions, presumably leading towards solutions. Such a role
for philosophy of physics is interesting from the cognitive point of view and
at the same time is of certain practical importance for physics. It shall play
the germinal role. In order to enable the better shape of this role, let us give
some problems, which are to be classified as ones belonging to the realm of
philosophy of physics and have them presented briefly. Here belong:

1. problem of the unification of the fundamental interactions in physics
2. problem of the existence of elementary particles
3. problem of geometrization of physics
4. problem of relationship between physics and cosmology.

Let us first deal with problem 1). As we know there are four fundamental
interactions: gravitational, weak, electromagnetic and strong. In order to
acquaint ourselves with the issue of unification, let us return to the time pe-
riod preceding C. Maxwell, that is the time when electricity and magnetism
were conceived as separate types of phenomena related in a certain no fully
understandable manner.

C. Maxwell by inventing his famous equations managed to unify electric-
ity with magnetism. In doing so he was guided exclusively by his perception
of mathematical elegance, rather than new, experimental evidence. Strictly
speaking, he had adjoined to the equations a new term, displacement cur-
rent. He took advantage in this case of a certain mechanical model for electric
and magnetic phenomena and also had striven that a charge conservation
principle would follow from his equations. At the same time he managed,
somewhat unconsciously to unify not only electricity and magnetism but
also optics, since in his theory light has turned out to be an electromagnetic
wave.
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In this manner electricity and magnetism revealed themselves as phe-
nomena of the same type, examples of the same interaction. We call this
interaction an electromagnetic one. One might separate electricity and mag-
netism only under special circumstances, they reveal themselves to us as the
two sides of the same medal. At the same time phenomena become admis-
sible, where electricity and magnetism occur simultaneously in a symmetric
fashion. We mean here electromagnetic waves, whose existence was soon
experimentally confirmed. Since the times of Maxwell a lot of things have
naturally changed. New interactions were found, that is weak and strong
ones (what concerns the gravitational ones, we shall consider later). The
former is responsible among other things for the so called β-decay, observed
in nuclear physics whereas the latter for the keeping together of protons
and neutrons (components of the nucleus). There are numerous attempts
of relating these interactions somehow, and also to unify them with electro-
magnetic ones, or at least to find a unified description of them similar to one
valid for the case of electromagnetic interactions. All these efforts remained
futile for quite long. A lot of physicists started to even doubt, whether it
could ever be achieved. It was even claimed that relating these interactions
among themselves could amount to something like joining kilogram with
meter (since the electric charge — a coupling constant of electromagnetic
interactions and Fermi constant — characterising the weak ones — have
different physical dimensions). Nonetheless it has turned out that the re-
lating of them is possible, and it occurred due to the introduction of a new
theoretical concept (i.e. Yang–Mills fields).

These fields, known also under the name of gauge fields, are very much
like the electromagnetic fields, but are endowed with a richer structure, due
to being associated with the so called non-Abelian (non-commutative) gauge
groups. Roughly speaking they differ from the electromagnetic field in that
they possess several types of “photons” (photon — a quantum of an electro-
magnetic field). These “photons” called intermediate bosons in the case of
weak interactions (strictly speaking weak-electromagnetic ones) and gluons
in the case of strong interactions (in the so called quantum chromodynamics
— Q.C.D.), carry interactions in a manner similar to usual photons carrying
electromagnetic interactions. A special mechanism called after Higgs endows
masses to these intermediate bosons. Glashow–Salam–Weinberg (GSW)
model, since it is the one which unified the electromagnetic and weak in-
teractions, employs gauge fields with the group SU(2)L × U(1)Y , whereas
quantum chromodynamics is using the SU(3)C group.

One has to note that the electromagnetic and weak interactions are far
less tightly related then is the case of electricity and magnetism in electro-
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magnetic forces (Maxwell theory). Strictly speaking there is no full uni-
fication within Glashow–Salam–Weinberg model, but only the mixing of
both the interactions in a certain sense. Strong interactions are not here
linked with the weak and electromagnetic ones, and a special theory was put
forward for them — Quantum Chromodynamics. Instead we have unified
description of interactions in terms of gauge fields — Yang–Mills ones (ex-
cluding gravitation). Presently attempts are being made in unifying strong,
electromagnetic and weak interactions by postulating a wider gauge group,
which would include as its subgroups: a group SU(3)c and SU(2)L×U(1)Y .
This would lead to the creation of theory capable of unifying all interac-
tions (except gravitational one). Only employs at present groups like SU(5),
SO(10), E6, E7, etc.

Concerning gravity, there are some attempts at joining it with electro-
magnetic interactions in the so called Kaluza–Klein theory. Of course the
General Relativity Theory is used as theory of gravitation. It is also possi-
ble to join any gauge field theory with General Relativity in the form of a
generalized Kaluza–Klein theory. Let us deal with the second problem, that
is one of the existence of elementary particles.

In order to understand what is involved here, we shall employ several
examples from solid state physics. As we know, any solid consists of a
periodical lattice formed by atomic nuclei together with their outer electron
shells. To the entire lattice belong also the valency electrons, more or less
localized with respect to the nodes of it. Such a system is very well described
by non-relativistic many body quantum mechanics. This is only a theoretical
possibility of course, since the solution of such a many-body problem far
exceeds our calculation capabilities. To that end we use some approximate
methods. For example, we may factor lattice vibrations into its elementary
components and quantize them. We obtain in this manner a system of bosons
called phonons (phonon — a quant of acoustic energy, of lattice vibrations).
This gives us in accordance with the second quantization the operators of
phonon creation and annihilation. This allows us to view the interactions of
electrons with lattice as the interaction of electrons with the phonon field.

Due to the fact that there are certain anharmonic couplings, phonons are
capable of interacting between themselves. These new particles (phonons)
are not real ones. Their existence follows as a result of the approxima-
tion adopted. They are quasi-particles in principle the electrons, when we
consider them as interacting with the phonon field, are also quasi-particles.
They have a mass different from usual one and a different wave function (it
is the so called Bloch’s function). In the solid state physics we often have
to deal with quasi-particles. The so called holes in semiconductors are of
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this kind, Cooper’s pairs (in superconductivity) and also the so called exci-
tons, which represent bounded states of holes and electrons. The latter ones
are much like hydrogen atoms. The so called Bogolyubov transformation is
closely related to quasi-particles. In it two types of objects are related —
particles and quasi-particles.

Quasi-particles are endowed with a certain physical realm. Namely, ex-
periments confirm their “existence”. We could experimentally observe ex-
cited states of excitons, exciton liquids, hole current, scatterings between
electrons and phonons, etc. On the other hand we are well aware that a
solid body consists of real particles-atomic nuclei and electrons, but not
quasi-particles. The same situation might be related also with regard to ele-
mentary particles and a question asked: maybe they are also quasi-particles
of same kind more basic structure similar to crystalline lattice. Perhaps it
is a very intriguing question and in spite of its strangeness, it ceases to be
perceived as such, once we recall that in the theory of black holes the Bo-
golyubov transformation relates particles e.g. photons in −∞ time-like with
particles in +∞ time like (we have an event horizon). Due to this we obtain
there the evaporation of “black holes” (Hawking effect).

The third problem of the philosophy of physics is the issue of its ge-
ometrization. This topic is to be discussed in the sequel. Let us notice some
additional meaning of a geometrization of physics. First of all we have an
application of symplectic geometry in a canonical formalism. There is also a
geometrical approach by Carathéodory to phenomenological thermodynam-
ics, e.g. to the second law of thermodynamics. Similarly it is possible to
extend to irreversible thermodynamics by Onsager and Prigogine. The ge-
ometrical quantization approach in mechanics with some extension to field
theory is also an example of geometrical methods in physics which we do
not consider as geometrization of physics. Our meaning of geometrization of
physics is as follows. It is a geometrization of fundamental physical interac-
tions. This will be described later in this work and we give many examples
of such a procedure.

We shall only state at this point that we mean here Einstein’s programme
of reducing all the physical interactions to geometry, in much the similar
manner as it occurred with gravity in the General Relativity Theory. Let
us note here that Yang–Mills fields, which had found their place in the
unification of the fundamental interaction occur there as connections on
fiber bundles, therefore behave like geometrical objects, and also note that
Kaluza–Klein theory is a geometrical theory like General Relativity. As we
might see, the task of geometrization of physics and that of interactions seem
very much related.
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Let us give the following remark. Geometry works in Physics via in-
variants in a way independent of a coordinate system. Moreover, in order
to apply mathematical results in physical sciences we should choose a co-
ordinate system and replace “invariants” by “variants”. Afterwards we can
proceed calculations and compare our results with an experiment or an ob-
servation. This is a clear methodological remark on any application of Ge-
ometry in Physics, not only in our case of geometrization of fundamental
physical interactions.

The fourth problem, that of the relation between cosmology and physics,
could be stated as follows: are the properties of the Universe implied by our
local physics or rather the other way round — does the global properties of
the Universe determine how the local physics looks like? The first point of
view claims that one ought to go from physics to cosmology, the second that
from cosmology to physics. The above dilemma is also very intriguing due
to the fact that the Universe, by definition, is unique.

Having completed the above tour of the viewpoints, let us inquire, how
the philosopher of physics is able to inspire anybody towards the solution
of these problems. Such a thought provoking postulate would undoubt-
edly arise out of identifying the first and the third problem. Another such
postulate shall be constituted by a holistic viewpoint, which for the fourth
problem would bring a reply: from cosmology to physics, whereas with re-
spect to second problem — it should push us towards seeking fundamental
structure, as quasi-particles within that structure. Certainly the scientists
like A. Einstein, W. Heisenberg, C.-F. von Weizsäcker, etc. had been de-
veloping the kind of philosophy of physics described here. In such cases it
would be hardly possible to discern the physicist from philosopher, since
these scientists were both at the same time. They had combined the two
roles in one person. In a certain sense therefore — they were self-motivating
themselves.

In the work we will deal with all the questions touched upon thus far. We
shall discuss briefly the problem of geometrization of physics. Geometriza-
tion of physics is a certain methodological doctrine which one might define
as using of the geometrical methods in every such place within physics where
possible. Such a definition from the outset quite vague and undetermined
calls for a number of comments and precization. At the same time we will
examine the examples of using geometrization of physics and which definitely
not. To that goal let us return to Albert Einstein original contributions here,
namely the General Relativity Theory and the so called Unitary Field The-
ory. Recalling briefly what was the most important on the road from Special
Relativity Theory and the GRT. Namely, Special Relativity is the theory of
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a “space-time background”, in which the Poincaré group plays the role of
space-time symmetry group, Minkowski space endowed with Minkowski ge-
ometry is just the space-time of Special Relativity. Minkowski tensor is
a principal geometrical invariant in this theory. Now, in accordance with
Erlangen programme of F. Klein, this geometry constitutes a set of invari-
ants of the Poincaré group and Minkowski tensor is to become a principal
quantity occurring in this theory. Development of this theory consists of
relating some geometrical quantities occurring in geometry of the Poincaré
group with physical ones. In fact we shall be able to construct a four-tensor
of electromagnetic field strength out of the strengths of electrical and mag-
netic fields. Energy and momentum shall serve for the construction of a
four-momentum. The density of a charge and the density of a current shall
constitute the current four-density. In a similar manner the notions of a
four-force, four-velocity etc. should arise. According to the symmetry group
selection postulate, we shall require that all these quantities should trans-
form along a suitable representation of the Lorentz group. Therefore, we
see that space-time geometry of Minkowski space-time constitutes a certain
fixed, invariant background for the motions of bodies and fields. This is a
setup characterizing also the mechanics of Newton and Aristotle. In these
two cases also the geometry of space-time is a durable non-dynamical back-
ground. The only difference among these three systems of mechanics lies in
the choice of space-time symmetry group, and consequently ends up in ar-
riving at different geometrical invariants, which means various geometries —
in accordance with F. Klein’s programme. Undoubtedly it is a considerable
difference. When seen in historical perspective it amounts to the abandoning
of space-time concept, the notion of Universe and the overall world view. Let
us recall that the transition from the Aristotelian to Newtonian mechanics
has led to complete transformation of world-view by a Middle Age men. It
has ruined the world order described e.g. in Dante’s Divine Comedy, and
therefore the foundations which were at the origin of that world-view. It
was a really tremendous change, one of the greatest one in the history of
human thought. One should not underestimate its impact by any means.
Nonetheless from the standpoint of F. Klein’s programme it is to be con-
sidered as “only” a change of space-time symmetry group, change of the
background for mechanical movement. In short, it consisted of passing from
the Aristotelian space-time with the group of rotations and absolute rest to
a Galilean space-time with a Galileo group acting upon it. As a matter of
fact, it amounted to the extending of a former group to a Galileo group.
In this way we have admitted the possibility of mixing of space and time
coordinates in a definite way. At the same time in this new theory (Galilean
mechanics) there appeared the idea of an absolute space and of the absolute
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time with accompanying relativization of the notion of rest. Both Aristotle
and Newton had attached great importance to absolute notions. Aristotle
considered the absolute rest as a natural state of physical bodies and was
linking that with his idea of four elements, four basic elements serving as
building blocks of all earthly substances. In turn Newton has considered
absolute time and absolute space to be sensorium of God. We therefore
see that both notions of space-time were very closely connected with the
metaphysics of both thinkers. The relationship between the mechanics of
Aristotle and a general world-view of the ancient and Middle Age people is
without any doubt natural. One could not have existed without the other,
with the fall of a first one, the second has fall down as well. Clearly Aris-
totle has never expressed his theory in the form of geometrical axioms and
equations. What we have been undertaking here is only a certain recon-
structions of his theory in contemporary terms. Nonetheless it is very useful
and interesting. It offers us the example of translating certain metaphysical
postulates to mathematical language, namely the geometrical one. In the
case of Newton we need not to do that. Newton has done it for us. He
managed to translate his metaphysical views concerning time and space into
the mathematic language. He expressed them in quantitative terms in the
principles of dynamics. Afterwards it has turned out that in this manner he
obtained a space-time with the Galileo group acting on it. Although Aristo-
tle and Newton had dealt with different qualities involved in their theories,
it turns out that they are of the same type. There are namely geometries
serving as backgrounds for mechanics which were linked between themselves
in a certain intriguing way. Once we introduce for comparison the Special
Relativity Theory the situation will not change since we are going to obtain
an absolute component again. It will be Minkowski space-time — an arena
of all events. The geometry of this space-time will be of course different,
because we have another symmetry group. This new symmetry group, an
inhomogeneous Lorentz one, is a Poincaré group. It turns out that there is an
interesting relationship among Lorentz group and the Galileo one. Namely,
the Lie algebra of a Galilean group is a contraction of Lorentz group Lie
algebra. This relation could be considered as a correspondence principal
linking relativistic mechanics with the Newtonian one. This is an interesting
fact since it enables us to avoid the not so well determined limit c → ∞
(where c is the velocity of light in a vacuum) when performing this kind
of transition between the corresponding theories. Let us note also that rel-
ativistic mechanics (Special Relativity Theory) decides a dispute between
Leibniz and Newton — on behalf of the latter. Recall that this dispute dealt
with the relativeness of space. Leibniz took the relativistic side, whereas
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Newton advocated the concept of an absolute space. In relativistic mechan-
ics there occurs an absolute notion of Minkowski space-time, which expresses
the absoluteness of the geometry adopted here as a background. In spite of
the parallelism between the names, Minkowski’s idea of space contradicts
that of Leibniz. Once this discussion of the geometrical meaning of different
space-time from Aristotle to Einstein is over, let us return to our main topic
— geometrization of physics. We are emphasizing at this point that all these
notions are not to be taken as geometrization of physics in our sense. They
constitute only mere application of certain geometrical methods. This is so
because geometry as dealt with within these approaches is at most a back-
ground, not a dynamic variable. We might say here that in our approach
to geometrization of physics, geometry cannot assume the role of a fixed,
invariable background — the “invariant” of a theory. It has to be a dynam-
ical quantity. It follows from such a postulate that we have to link it with
some physical magnitudes, which would be subject to the variation. To put
it in more exact terms, we shall require that some physical field corresponds
to it. More specifically these should be field of the fundamental physical
interactions.

Let us now start considering basic examples. There are a gravitational
field in General Relativity Theory and the electromagnetic field. Let us
notice that GRT is now a quite old, i.e. 100 years old, theory. In this way a
relation between matter and geometry is also quite old. It is an established
idea. General Relativity is a theory of a space-time and gravitational field.
In this way according to Albert Einstein we can summarize the theory of
relativity in one sentence: Time and space and gravitation have no separate
existence from matter.

Albert Einstein geometrized the gravitational field by transferring from
Special to General Relativity Theory. He has performed this in an usually
simple and natural way. He postulates the geometry to be variable, making
it into a dynamical quantity. Space-time metric tensor assumed the role of
a dynamical quantity, ceased to be a “constant” of a theory. At the same
time this tensor was linked to the gravitational field. The fact that the
curvature of a Riemannian connection generated by this tensor was related
to the existence of a non-vanishing gravitational field. Einstein’s equations
managed to link space-time geometry with masses, with non-gravitational
fields. Such a relationship might be taken as the first case of equations, where
on the left side occur geometrical quantities (Einstein tensor) whereas on the
right hand side “material” ones (the energy-momentum tensor of matter).
This is not to say that gravitation is “non-material”. At this point our idea
needs recapitulating.
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The geometry taken as a dynamical quantity corresponds to a certain
physical field-gravity. Sources of gravity are massive fields — the right hand
sides of the Einstein equations. These have not been geometrized yet. The
physics geometrization postulate requires obtaining new such equations, i.e.
equations of the form: matter on the right hand side and “geometry” on the
left. This idea of a unified geometrical field theory seems to be in the light of
present state of knowledge correct. One has only to abandon this too rigor-
ous a postulate, to the effect that all geometrical quantities be defined on a
space-time. One has to define them on multi-dimensional (of more than four
dimensions) manifolds. This type of a theory was known even to Einstein, it
was the Kaluza–Klein theory. He was even able to contribute something of
his own. Strictly speaking, the ultimate classical solution is due to him. Let
us recall here that the Kaluza–Klein theory is a geometrical theory of the
electromagnetic and gravitational fields. This theory satisfies the postulate
of moving the right hand side of field equations as the geometrical quan-
tities onto the left. This postulate is fulfilled for the electromagnetic field
in a vacuum. Formally in classical formulation of this theory we obtain a
five-dimensional counterpart of General Relativity Theory without sources.
We shall obtain out of the equations contained in it Einstein’s equations for
electromagnetic field with energy-momentum tensor in the vacuum and also
Maxwell’s equations for the vacuum simultaneously. One has to strive for
placing the maximum possible number of right-hand quantities to the left.
This corresponds to the geometrization of quantities thus displaced. The
maximal programme for the geometrization of physics would consist of fi-
nally arriving at a single equation (or system of equations). The right-hand
side in this equation shall be zero, while on the left a certain geometric quan-
tity. Such a left-hand side quantity shall depend on the geometry capable of
describing all fundamental interactions. This would be a dream programme,
Einstein’s dream. When it was put forward by Einstein, it had failed as
we recall in its classical form. Namely, Einstein had required that all ge-
ometrical quantities be the ones determined over a space-time. Einstein’s
Non-symmetric Field Theory, while it constituted the culmination of this
idea, was doomed to fail. Currently it seems that this was an inevitable
outcome. Space-time geometry (dealt with as a dynamical quantity) is too
poor for explaining the electromagnetic fields of strong interactions and weak
ones. Einstein had attempted to unify solely the electromagnetic and grav-
itational interactions. He failed even to envisage the existence of the weak
and strong interactions. He was unable to foresee their occurrence. That is
why his theory from the very beginning was incomplete.

Bianchi identities for a Riemannian connection defined on 5-dimensional
manifold give us energy-momentum and charge conservation principles. This
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theory differs formally from General Relativity not only in the dimension of
the manifold. Another difference being in that metric tensor on that mani-
fold has also the Killing vector. The occurrence of this vector is connected
with the fact that the fifth dimension could not be directly observable. To
put it softly, no physical quantity could depend on the fifth coordinate.
Nonetheless the fact of the occurrence of that dimension has serious conse-
quences, since it is linked with gauge transformations of the four-potentials.
The four-potentials themselves are related with certain original manifold’s
metric tensor’s components. Generally speaking, the geometry of this mani-
fold describes the electromagnetic field and the gravitational one while taking
into account their gauge symmetries. This fact is quite interesting. How-
ever this theory has some drawbacks. They consist mainly in the fact that
from its equations we obtain both Einstein and Maxwell equations in their
classical form. We do not observe any interference effects between the grav-
itational and electromagnetic fields which were hitherto unknown. That is
why Einstein was very skeptical to Kaluza–Klein theory. He objected against
considering it as a unified theory of electromagnetic and gravitational fields.
On the other hand there is Utiyama’s theory of electromagnetic field, gen-
erally of a gauge field with any gauge group G. U(1) is a gauge group of an
electromagnetic field. One might represent a theory of electromagnetic field
in accordance with Utiyama’s theory as a theory of principal bundle connec-
tion over the space-time with structural group U(1). In such a situation the
gauge transformations turns out to be changes of sections of a bundle, one
could link a four-potential with the connection, whereas the strength of the
electromagnetic field with a connection’s curvature. The minimal coupling
scheme shall consist in substituting of all partial derivatives in the equations
by covariant derivatives in the bundle’s connection. The principal bundle,
mentioned above, we shall be calling electromagnetic one. It turns out that
there is a procedure linking Kaluza–Klein and Utiyama theories in a bun-
dle formulation. Namely, Trautman and Tulczyjew had noticed that once
the electromagnetic bundle is metrized in a natural manner, we obtain the
metric tensor known from the Kaluza–Klein theory. This observation is very
interesting and allows generalization to Yang–Mills’ fields. Let us recall at
this point that Yang–Mills fields are connections on principle bundles over
the space-time endowed with a structural group G. Most often we assume
that G is semisimple. In the case of a classical Yang–Mills field G = SU(2).
At present it seems that Yang–Mills with non-Abelian gauge groups describe
the fundamental physical interactions, that is weak and strong ones. It turns
out that in this theory strong interactions have the so called colour gauge
group, whereas the weakly electromagnetic ones within Glashow–Salam–
Weinberg model have the group SU(2)L × U(1)Y . At present it is assumed
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that SU(3)C is the colour gauge group. Investigations are underway aimed
in joining the strong electromagnetic and weak interactions into a unified
theory of Glashow–Salam–Weinberg type of model for the weak and the
electromagnetic interactions. On the other hand it is known that there is a
natural link between gauge field theory with General Relativity Theory. In
order to obtain such a relationship, one has to metrize the principal bundle
and further to proceed as in Kaluza–Klein theory. Glashow–Salam–Weinberg
model uses spontaneous symmetry breaking and the Higgs mechanism, the
geometrization of which in a proper way was as yet unsuccessful, in spite of
repeated attempts. Promising attempts include ideas requiring the applica-
tion of nonsymmetric metric connections. In the case of GRT (dimension 4)
we get the theory of Einstein-Cartan. In such a theory the spin of material
fields serves as a source of torsion. The introducing of torsion into Kaluza–
Klein theory supplies the geometrical interpretation of the electromagnetic
polarization. Electromagnetic polarization becomes a source for a certain
part of torsion. This theory might be generalized to the case of any gauge
field. Once this is done the polarization of Yang–Mills becomes the source
of torsion for higher dimensions. However in this type of theory, not all
torsion components are involved. Probably they might be linked with the
Higgs field and geometrize in this manner spontaneous symmetry breaking
and Higgs mechanism.

Summing up we see that the problem of geometrization of fundamental
interactions is open and it seems that Albert Einstein was right but had put
forward this idea too early. At present, the geometrization of physics in that
sense seems to be approaching completion due to the progress in the theory
of elementary particles. At the same time there is a strong link between the
geometrization of fundamental interactions and the idea of Unitary Field
Theory which seems not to be accidental.

The possibility of geometrization of all the fundamental interactions to-
gether with their unification, emerging in recent years is presented in this
work. These are precisely the gauge fields which have given rise to the es-
tablishment of a basic language, offering the description modo geometrico for
the theories of fundamental interactions. Relationships between gravity —
GRT, Einstein–Cartan theory and gauge theories has also been shown here.
There is also a scheme presented for unifying two theories T1, T2 with sup-
porting examples. These examples come from recent investigations dealing
with the unification of gravity and Yang–Mills fields. Kaluza–Klein theory,
which unifies gravitational interactions with the electromagnetic ones, plays
here the role of a principal example.
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The origins of supersymmetry and supergravity was presented in the
work. Examples of applications were shown and analogies found with Yang–
Mills type of theories. It was also demonstrated that these theories could be
geometrized once extending the notion of geometrical structures to include
anti-commuting coordinates (i.e. supermanifolds) is performed. The rela-
tionship between the supersymmetric and supergravitational formalism for
fermion fields has been given in our proceedings. The fact that geometriza-
tion and unification of fundamental interaction’s fields are strongly linked,
as is the case for ordinary gauge theories was presented too.

The present work is also devoted to holism in contemporary physics and
aims at proving that this research direction in spite of its origin stemming
from biology remains very useful in physics because of its anti-reductionistic
standpoint. According to holism, the “whole” is not reducible into “parts”
that in a sense it precedes “part” and is more fundamental. In this manner,
often the division of a “whole” into “parts” is a conventional one, is a question
of convenience, constitutes a procedure without any counterpart in reality.
Very often such a division is possible only in specific circumstances. For
example, the division of interactions into weak and electromagnetic ones
as it follows from recent investigations, turn out to be a question of mere
convention.

The holistic programme in physics, which claims that elementary parti-
cles are solutions of the field equations, once abandoned for computational
reasons, comes back today in a new form. It has taken the shape of a new
version of a Nonlinear Unitary Field Theory linking together the programme
of simultaneous geometrization and unifying of physics by employing the no-
tion of soliton as a model for particle — the individuum.

We shall make an attempt at abolishing some myths rooted in the phi-
losophy of physics, and show the real one, holistic picture of contemporary
physics.

We shall be going also to link the physics geometrization programme with
the holistic approach to physics. It is interesting here to note that Einstein’s
programme of the so called Nonsymmetric Field Theory is exactly the case
for a holistic attitude towards physics. Contemporary programmes aimed at
unifying the theory of elementary particles and of the fundamental interac-
tions constitute exactly the continuation of the same general programme.

Finally this work has to prove that the holistic approach is most produc-
tive one in contemporary physics, and also that the holistic attitude itself
implies the anticipation of such particular research directions, which for the
time being could no be solved by strictly physical means.
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An attitude of this type substantially influences the researcher’s approach
towards conducting investigations, the horizon of his research interest, causes
even the usage of definite mathematical means. Here I mean employing
methods of differential geometry (Kobayashi, Nomizu 1963), algebraic ge-
ometry and topology.

It seems that there are precisely these mathematical theories which are
best capable of grasping the hiatus between “whole” and “part” in con-
temporary physics. This shall be particularly discernible in the subsequent
chapters, where the possibility emerging in recent years, of geometrizing all
fundamental interactions is being demonstrated. Let us give some details
on ideas of geometrization of physics. The postulate of geometrization of
physics is a methodological doctrine, which may be defined as the application
of geometrical methods in physics whenever it is possible. This postulate,
somehow vague and undefined in principle, requires certain remarks and def-
initions. Simultaneously we have to consider instances of using geometrical
methods in physics and answer the question: Which of them shall we take as
geometrization of physics and which not? In order to do this we turn back to
the conception of Albert Einstein, i.e., to the general theory of relativity and
to the so called unified field theory (Bergmann 1947; Thirring 1972; Tonnelat
1965). We recall, in short, the most fundamental items in transition from
the Special Relativity Theory to the General Relativity Theory. The Spe-
cial Relativity Theory is such a theory of “space-time background” in which
the Poincaré group is a group of space-time symmetries. Minkowski’s space
with Minkowski’s geometry is a space-time in the Special Relativity Theory.
The fundamental geometrical invariant of this theory is Minkowski’s tensor.
According to F. Klein’s programme this geometry is the set of invariants of
the Poincaré group whereas Minkowski’s tensor is a basic quantity appear-
ing in the theory. The developing of the theory (Special Relativity Theory)
consists in combining some appropriate geometrical quantities of the geom-
etry of the Poincaré group with physical quantities. Namely we construct
a four-dimensional tensor of strength of electromagnetic field from three-
dimensional vectors of the strength of electric and magnetic fields. Energy
and the three-dimensional vector of momentum serve to construct a four-
dimensional momentum. Three-dimensional current density ~j and charge
density ρ form a four-dimensional density of current jµ. In the similar way
we get the concepts of four-dimensional force, four-dimensional velocity, etc.
According to the postulate of choice of an appropriate symmetry group (this
postulate really means that laws are invariant with respect to the action of
the group, i.e., they are symmetric) we require these quantities to trans-
form according to an appropriate representation of this group, in this case
the Poincaré or Lorentz group. Thus we see that geometry of space-time
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(Minkowski’s space-time) is a certain constant, unchanging background of
bodies and fields. This situation is also characteristic for the mechanics of
both Newton and Aristotle (Trautman 1970). In these two cases also space-
time geometry is a constant non-dynamic background. The only difference
among these three mechanics consists of a choice of space-time symmetry
group. Consequently it consists of achievement of other geometrical invari-
ants and thus another geometry according to F. Klein’s programme. (We
mention it earlier.) Undoubtedly the difference is significant. From a his-
torical point of view it leads to a change in the conception of space-time,
Universe, and general philosophy of nature. Let us recall that the shift from
the Aristotelian mechanics to Newtonian caused a complete change in the
philosophy of medieval man. It destroyed the order of the Universe described
for instance in Dante’s Divine Comedy (Alighieri 1317) and consequently the
basis on which this philosophy was built. Indeed, this change was enormous,
one of the greatest ones in the history of human thought. Its importance
cannot be overestimated. However, from the point of view of F. Klein’s pro-
gramme it was “only” a change of group of space-time symmetry, a change
of background on which mechanical movement took place. In short, this
was a transition from Aristotelian space-time with absolute rest and rota-
tion group O(3) to Galileo’s space-time with the Galileo group (Trautman
1970). In fact, it was an extension: the previous group to Galileo’s (O(3) is a
subgroup of Galileo’s group). Thus, we have admitted a possibility of mixing
coordinates of space and time in a certain way. In Aristotle’s mechanics it
was impossible. We recall that Aristotle’s space is finite and because of this,
non-translationally invariant. Aristotle’s time is not invariant with respect
to time translations as well. At the same time, in this new theory (Galileo–
Newton mechanics) a conception of absolute space and absolute time with
the concept of relativized rest appeared. Both Aristotle and Newton paid
much attention to absolute concepts. In absolute rest Aristotle saw a natural
state of physical bodies and related this to his theory of the four elements,
the four basic elements of all substances. Newton, on the other hand, re-
garded absolute time and absolute space as God’s sensorium. So we see that
both conceptions of space-time were very strongly connected with the meta-
physics of the two thinkers. A connection between Aristotelian mechanics
and the general philosophy of medieval and ancient people is obvious. One
cannot exist without the other, and when one is destroyed the other must
be destroyed as well. Of course, Aristotle never described his theory in ge-
ometrical language. What we do now is only a certain reconstruction of his
theory in terms of geometry. It is interesting, however, in that it gives us an
example of the translation of certain metaphysical postulates into a language
of mathematics, more precisely, geometry. In Newton’s case we do not have
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to do this, since Newton himself did it for us. He transformed his metaphys-
ical concepts concerning space and time into a language of mathematics. He
expressed them in quantitative form on the basis of principles of dynamics.
Later it was revealed that he had achieved a space-time with the Galileo
group as a symmetry group. Although Aristotle and Newton wrote about
different absolute concepts, it is clear that both theories of space-time are of
the same type. Namely, they are the geometries which are backgrounds for
mechanical movements. The moment we introduce, for comparison also, the
special theory of relativity (see Augustynek 1972, 1975, 1997 for a definition
of a time by an abstraction), the situation does not change because again we
get an absolute element. It is Minkowski space-time — i.e., the background
of all events. The geometry of this space-time is of course different because
a symmetry group changes. The new symmetry is the non-homogeneous
Lorentz group — Poincaré group. It is interesting that there exists a con-
nection between the Lorentz group and the Galileo group. Specifically, the
Lie algebra of the Galileo group is a contraction of the Lie algebra of the
Lorentz group. This connection may be regarded as the correspondence law
connecting relativistic mechanics with Newtonian mechanics. We mention
about it earlier. This is interesting since in such a way we do not have to
do with a not quite well-defined transition c→∞ (c velocity of light in vac-
uum). Let us also notice that relativistic mechanics (the Special Relativity
Theory) settles the dispute between Leibniz and Newton in favour of the lat-
ter. Let us recall, too, that the dispute concerned relativity of space. In this
dispute Leibniz represented a relativistic standpoint. He believed that space
is relativized with respect to bodies. Newton, on the other hand, maintained
that space is absolute. In relativistic mechanics there appeared an absolute
concept, Minkowski space-time being an expression of the absoluteness of
geometry which is taken for background here. Thus there exists a paral-
lelism, the conception of Minkowski space-time, which contradicts Leibniz’s
conception. We consider this problem below. Moreover, it is so important
that we repeat some notions in a different context.

Following this discussion of the geometrical conception of various space-
times from Aristotle (Aristotle 1954, 1984) to Einstein let us turn back to
the subject i.e., geometrization of physics. Here we stress that all these con-
ceptions are not geometrization of physics in our meaning. They are only
applications of certain geometrical methods. This results from the fact that
geometry in the discussed conceptions is only a background, and not a dy-
namic quantity. Now we can say that in our meaning of geometrization of
physics, geometry cannot be a constant, unchanging background, a “con-
stant” of the theory. It must be a “dynamical quantity”. This postulate
requires that we must, connect geometry with certain physical quantities.
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More precisely we demand it to be connected with physical fields, the fields of
fundamental physical interactions. Now, let us turn to some basic examples.
They are: gravitational field in General Relativity Theory and electromag-
netic field. Albert Einstein has performed a geometrization of a gravitational
field passing from the special theory of relativity to the general theory of rel-
ativity. He did it in an unusually simple and natural way. He postulated
inconstancy of geometry and made it a dynamic quantity. The metric ten-
sor of space-time is no longer a “constant” of the theory. At the same time
it is connected with the gravitational field. The non-zero curvature of the
Riemannian connection generated by this tensor is connected with the ex-
istence of a non-vanishing gravitational field. Einstein’s equations connect
the geometry of space-time with masses and non-gravitational fields. On the
left-hand side of the equations there are geometrical quantities (Einstein’s
tensor) and on the right-hand side material ones (energy-momentum tensor
of matter). Obviously this does not mean that gravitation is “non-material”.

Geometry as a dynamic quantity corresponds to a certain physical field —
i.e., gravitation. The source of gravitation is other fields (the right-hand side
of Einstein’s equations). They have not been geometrized. The postulate
of geometrization of physics now requires such equations, i.e., the equations
of the type: “matter” on the right-hand side, “geometry” on the left. Si-
multaneously one should aim at shifting as many quantities as possible from
the right to the left side. It corresponds to geometrization of the shifted
quantities. A maximal programme of geometrization of physics consists in
achieving one equation, or system of equations. In this equation we shall
have zero on the right and geometrical quantities on the left. This quantity
will depend on geometry describing all fundamental interactions. This is a
dream programme, Einstein’s dream. This programme raised by Einstein
ended with fiasco in its classic form. Einstein required all geometrical quan-
tities to be quantities defined on a space-time. Einstein’s Nonsymmetric
Field Theory, being the final form of this idea, ended up with the impli-
cation that weak and strong interactions would not occur. In light of the
above arguments such a failure seems inevitable. Geometry of a space-time
(regarded as a dynamic quantity) is too poor in order to be able to explain
gravitational, electromagnetic, strong and weak interactions. Einstein tried
to combine only electromagnetic and gravitational interactions, and did not
even foresee the weak and strong interactions. He simply could not foresee
them. That is why, from the very beginning, his theory was incomplete.
However, it does not mean that his idea was wrong. This idea, i.e., the idea
of unified, geometrical field theory, seems right in the light of contemporary
knowledge. What one should do is to abandon the too rigorous postulate
that all geometrical quantities are defined on a space-time. They should
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be defined on multi-dimensional (more than 4) manifold. This type of the-
ory was known by Einstein himself. This was the theory of Kaluza–Klein
(Bergmann 1947; Lichnerowicz 1965; Tonnelat 1965; Kaluza 1921; Rayski
1965). He even introduced his own contributions to it. In fact, the final
classical formulation belongs to him (Bergmann 1947). Let us remember
here that the Kaluza–Klein theory is the geometrical theory of gravitational
and electromagnetic interactions. The theory satisfied the postulate of shift-
ing a part of the right-hand side of field equations, as geometrical quantities,
to the left. This postulate is satisfied for an electromagnetic field in vacuum.
Formally, in the classical expression of this theory we got a five-dimensional
analogue of the general theory of relativity without sources. From the equa-
tions for such an analogue we achieve Einstein’s equations with a tensor
of energy-momentum of electromagnetic field in a vacuum and Maxwell’s
equations in a vacuum. This theory differs formally from the general theory
of relativity not only in the dimension of manifold, but also in the metric
tensor of this manifold possessing Killing’s vector. The existence of this vec-
tor is connected with the fact that the fifth dimension cannot be directly
observed. In short, any physical observation cannot depend on the fifth
coordinate. Nevertheless, the existence of this dimension has considerable
consequences. It is connected with gauge transformation of electromagnetic
potentials. The electromagnetic potentials are components of metric ten-
sor of five-dimensional manifold. Generally speaking, the geometry of this
manifold describes electromagnetic and gravitational fields. We mention it
earlier. This is quite interesting. This theory, however, has some drawbacks,
which are mainly that from the equations of this theory we achieve Einstein’s
equations and Maxwell’s equations in the classic form. We do not get any
“interference” effects between gravitational and electromagnetic fields which
were not known before. Because of that, Einstein’s attitude was skeptical
about the Kaluza–Klein theory. He did not want to treat it as a unified
theory of electromagnetic and gravitational fields. On the other hand it
was known that the theory of Utiyama of electromagnetic field (Utiyama
1956), was more general than the theory of gauge group U(1). The theory of
electromagnetic field, according to Utiyama’s theory, may be described as a
theory of a connection of principal fibre bundle over a space-time with struc-
tural group U(1) (Utiyama 1956). In such a case the gauge transformations
are sections of the principal fibre bundle. The electromagnetic potentials are
related to this connection and the strength of the electromagnetic field with
a curvature of a connection (a curvature in the fifth dimension). The rule
of minimal coupling of other fields with an electromagnetic field consists (in
this language) in substituting of all partial derivatives in the equations by
covariant derivatives with respect to a connection on principal fibre bundle.
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The above-mentioned principal bundle is called the electromagnetic bundle.
It is interesting that there exists a link between the Kaluza–Klein theory
and Utiyama’s theory (Utiyama 1956) in a fibre bundle formalism. In fact,
Trautman and Tulczyjew have observed that if we metrize the electromag-
netic bundle in a natural way (Trautman 1970), we achieve a metrical tensor
known from the Kaluza–Klein theory. This is a very interesting observation.
In fact, by generalization we can achieve a unified theory of Yang–Mills’
field theory and gravitation (Kerner 1968; Cho 1975). Let us remember
here that Yang–Mills’ fields are connections on principal fibre bundles over a
space-time with a structural group G. Most often we assume that G is semi-
simple. These fields are certain generalizations of electromagnetic field. At
present it seems that Yang–Mills’ fields with non-Abelian gauge groups de-
scribe fundamental physical interactions, i.e., weak and strong interactions
(Kalinowski 1983). It appears that in this theory strong interactions are
Yang–Mills’ fields with colour gauge group SU(3)C . The weak electromag-
netic interactions in the Glashow–Salam–Weinberg model are Yang–Mills’
field with SU(2)L×U(1) gauge group. There are researches to unify strong,
electromagnetic and weak interactions. Some attempts known from the lit-
erature use groups SU(5), SO(10), E6, E8, etc. On the other hand it is
known that there exists a natural link between the theory of gauge field and
the general theory of relativity. In order to get this we should metrize the
principal bundle and then follow the Kaluza–Klein theory.

The classical Kaluza–Klein theory unifies two major concepts in physics:
(1) local coordinate invariance; and (2) local gauge invariance. The first
is a basic for General Relativity Theory and the second is fundamental for
electrodynamics. The Kaluza–Klein theory reduces these two concepts to
the first, but in more than a four-dimensional world. In the electromagnetic
case we deal with a five-dimensional manifold.

Now we know the principle of a local gauge invariance is fundamen-
tal also for weak and strong interactions (Glashow–Salam–Weinberg model,
Q.C.D.), but the gauge groups are non-Abelian. Thus it seems natural
and important to generalize the Kaluza–Klein procedure from Abelian U(1)
group to non-Abelian groups. It was done by Kerner and Cho and Freund.
The authors work with the Riemann connection on a (n + 4)-dimensional
manifold. Einstein equations with the energy momentum tensor of Yang–
Mills’ fields and Yang–Mills’ equations were obtained as a general results.
Unfortunately these Einstein equations have a cosmological term and the
cosmological constant is enormous, about 1/l2pl where lpl =

√
GN/c3 is a

Planck’s length. This cosmological constant is 10127 times greater than the
upper limit from observational data. It is a pity and one may suspect that
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the Kaluza–Klein approach failed. But there are other obstacles. In the
classical Kaluza–Klein theory (five-dimensional) there are no “interference
effects” between gravitational and electromagnetic fields, as I have written
before. W. Pauli in 1933 said that electricity and gravity were separated like
oil and water in this theory. This theory reproduces (in the five-dimensional
case) the well-known Einstein and Maxwell equations. But one may obtain
some gravitational-electromagnetical effects if one introduces spinor fields
on a five-dimensional manifold and generalizes minimal coupling scheme.
In this way we may obtain a new effect, i.e., dipole electric moment of
fermion of value about 10−31 [cm]q, where q is an elementary charge. It is
very well known that if a fermion has a dipole electric moment then PC
symmetry breaking must take place. Thus we see that “interference effect”
between gravitational and electromagnetic fields in the Kaluza–Klein theory
framework violates time-reversal symmetry. PC symmetry breaking involves
both shifting coordinates [x, y, z] to [−x,−y,−z] and replacing all particles
with their anti-particles. The breaking of PC symmetry is equivalent to
the breaking of time-reversal symmetry. This has fundamental philosophical
consequences.

In the theory which unifies gravitational and electromagnetic interactions
is a difference between future and past. It is due to this dipole electric
moment of fermion. This is a very small but significant difference. It was
done first by W. Thirring (Thirring 1972). Unfortunately Thirring’s results
were obtained at some price, namely, the existence of an unwanted minimal
mass of fermion (of order 1µg) — Planck’s mass term. Summing up, one may
say that this approach failed. But the general idea is beautiful and elegant
and it would be very important to avoid all these troubles. The general
way is as follows: to change geometry of (n + 4)-dimensional manifold to
cancel cosmological constant (Kopczyński 1978; Kalinowski 1981a, 1981b;
Orzalesi & Pauri 1981; Kalinowski 1983, 1988). In order to cancel Planck’s
mass term in Dirac equation in the Kaluza–Klein theory one is forced to
introduce a new kind of gauge derivative for spinor field (five-dimensional
case) (Kalinowski 1981a, 1981b). This new gauge derivative induces a new
connection on a five-dimensional manifold.

Recently there has been a significant progress in obtaining an upper
limit on the EDM (Electric Dipole Moment) of an electron by using a polar
molecule thorium monoxide (ThO) and 199Hg (Baron et al. 2013; Heckel
2011; Raidal et al. 2008). The upper limit obtained is |de| < 8.7 ·10−29[cm]q
which is bigger of three orders of magnitude than the result from Kaluza–
Klein theory (dKK = −4`pl√

α
q ' −7.57 × 10−32[cm]q). From the other side

there is also a progress in calculation of SM prediction of EDM for an
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electron coming from phase δCP of CKM matrix. This calculation gives
de ∼ 10−38[cm]q which is still smaller of six orders of magnitude than the
result from Kaluza–Klein Theory (Booth 1993; Pospela & Ritz 2013).

Let us consider the following problem. What would it mean for Physics
if someone measured an EDM for an electron of the value dKK = −4`pl√

α
q as

predicted by Kaluza–Klein Theory? It would mean the fifth dimension is a
reality in the sense of 5-dimensional Minkowski space.

An experiment which measures such a quantity strongly supports the
idea of rotations around the fifth axis in this space (the fifth dimension is a
space-like). This EDM exists only due to these rotations. Otherwise spinor
fields couple to ordinary connection and there is not a new effect. Even P
(a bundle manifold) is a 5-dimensional manifold, the additional fifth dimen-
sion is not necessarily of the same nature as the remaining four dimensions,
in particular three space dimensions. This dimension is a gauge dimension
connected to an electromagnetic field. Moreover, we can develop this theory
using Yang–Mills’ fields and also Higgs’ fields using dimensional reduction
procedure, expecting some additional effects. It means we can expect some-
thing as “travelling” along additional dimensions. This perspective would
have a tremendous importance for Physics and Technology. Simultaneously
an existence of an EDM of an electron has also very great impact on our
understanding of PC and T symmetries breaking. This is also very impor-
tant. Thus a mentioned measurement, with an answer: Yes, would have very
important physical, technological and philosophical consequences.

It is very easy to generalize this connection to the (n + 4)-dimensional
case. One may ask what about cosmological constant for such a Kaluza–
Klein theory. The answer is, it vanishes. Thus we avoid two basic troubles:
enormous cosmological constant in Einstein equations and Planck’s mass
term in Dirac equation. Simultaneously we get some “interference effects”
between gravitational and gauge fields (electromagnetic or Yang–Mills).

The Glashow–Salam–Weinberg model uses a spontaneous symmetry
breaking and Higgs mechanism (Albers & Lee 1973). It is very interest-
ing that Higgs’ fields and Higgs’ mechanism may be geometrized by intro-
ducing a large gauge group (Forgács & Manton 1980; Mayer 1981; Manton
1979). In the case of the Glashow–Salam–Weinberg model we must extend
SU(2)L×U(1)Y to G2 and extend the four-dimensional manifold (space-time)
to six-dimensional space. In this case, the base space is a six-dimensional
(Manton 1979) manifold and we have fibre bundle with structural group G2
over this manifold. In this way we obtain Higgs’ fields from the Glashow–
Salam–Weinberg model as a part of gauge fields. Thus we have the bosonic
sector of the Glashow–Salam–Weinberg model with correct Weinberg angle
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value. There are some troubles with fermionic sector of this model in ge-
ometrical language, but maybe supersymmetry and geometrization of the
sector. It seems that supergravity will help us in a geometrical theories of
the Kaluza–Klein type are able to describe a unification of fundamental in-
teractions in a geometrical manner. This scheme of unifying fundamental
interactions is very exciting and worth development. From a philosophical
point of view geometrization and unification are very important. Perhaps it
is the greatest problem of human thought. It seems that the geometrization
and unification in the Kaluza–Klein theory framework is similar (not only
in spirit) to philosophical systems of greater philosophers from the medieval
East: Ibn Sina, Ibn Rushd and Moses Maimoun.

Summing up, we see that the problem of geometrization of fundamental
interactions is open and it seems that Albert Einstein was on a right track
but he formulated his theory too soon. At present the idea of geometrization
of physics in this sense seems to be close to realization due to the progress
in the theory of elementary particles. The simultaneous geometrization of
fundamental interaction and the idea of a unified field theory is therefore
not accidental. The geometrization of physics may represent a necessary
psychological precondition for the development of a non-trivial unification.
Let us repeat some important points. The Einstein programme consists in
a geometrization of physics. In such an approach geometry is a dynamical
quantity. It is connected to physical fields, the fields of fundamental phys-
ical interactions. In the case of General Relativity or other (alternative)
they of gravitation we have on the left-hand side or the equations geomet-
rical quantities (it is an Einstein tensor), on the right hand side we have
some non-geometrical quantities. Thus we get “matter” on the right hand
side, “geometry” on the left. Simultaneously one should aim at shifting as
many quantities as possible from the right to the left side. It corresponds
to the geometrization of the shifted quantities. A maximal programme of
geometrization of physics consists in achieving an equation (a system of equa-
tions). In such an equation we should have zero on the right and geometrical
quantities on the left. These quantities will depend on geometry describing
all fundamental interactions. This is a dream programme, Einstein’s dream.
This programme raised by Einstein ended with fiasco in its classic form.
Namely, Einstein required all geometrical quantities defined on a space-time
(Hlavatý 1957; Einstein 1955; Tonnelat 1966). Einstein’s Nonsymmetric
Field Theory, being the final from of this idea, ended with being forced to
conclude that weak and strong interactions would not occur. In light of the
above arguments, such as a failure seems inevitable. Geometry of the space-
time (regarded as a dynamical quantity) is too poor in order to be able to
explain gravitational, electromagnetic, weak, strong and the (possible) fifth
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force. The reinterpretation of this theory as a theory of gravity seems to be
right. What one should do is to abandon the too rigorous postulate that all
geometrical quantities are defined on a space-time. They should be defined
on multi-dimensional (more than 4) manifolds. Such a theory is a general-
ized Kaluza–Klein Theory. The theory satisfies the postulate of shifting a
part of the right hand-side of field equations, as geometrical quantities to
the left. This postulate is satisfied for an electromagnetic field, non-Abelian
Yang-Mill’s field, Higgs’ field. Thus it can geometrize a bosonic sector of
electromagnetic, weak and strong interactions. In order to geometrize the
fermionic sector it is necessary to employ supergravity or supersymmetry
— like theories. Such a theory due to possible miraculous cancellations of
ultraviolet divergences would be finite in perturbation calculus in Quantum
Field Theory. The programme of this investigation seems to be quite unam-
bigous. The only one ambiguity is connected to groups in the theory. They
could be fixed by a consistency (anomaly cancellations). It seems that our
model (Nonsymmetric Kaluza–Klein Theory) would be more unambigous
than superstrings models. We mean here ambiguities connected to a spon-
taneous compactification of a superstring. The existing super Kaluza–Klein
theory could help us in this programme similarly as superspace generaliza-
tion of NGT. In this place we should give a remark on geometrical view of
physics of fundamental interactions. Nature likes theories that are simple
when stated in coordinate-free, geometrical language. According to this prin-
ciple, Nature must love Kaluza–Klein Theory and hate phenomenological
theories.

In philosophy of physics we should consider a problem of an existence.
Let us notice the following fact concerning an existence. What does it mean
“to exist” and is it possible to prove that “something exists”. This problem
has been raised by A. Husserl and R. Ingarden (Ingarden 1947–1974, 1992).
This is the famous dispute (controversy) on the existence of the world in
the philosophical (realistic) phenomenology (this is not the phenomenology
from physical theories). The famous dispute (controversy) is not finished.
Moreover, R. Ingarden was forced to consider not so ambitious problem. He
wanted to prove only that “something exists” (not the whole world). In this
way he turns his interests to philosophical aesthetics. Roughly speaking, in
order to find some important differences between something which “really
exists” and something which “does not really exist” he considers a hero of
a novel (a literary work). R. Ingarden developed in very great details an
analysis of a literary work, which is interesting for itself (Ingarden 1977).
Moreover, he developed afterwards a philosophical phenomenology in order
to describe the reality. This description happens to be purely classical (as
it was pointed out by A. Szczepański). Quantum mechanics is beyond this
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description. In this way the philosophical phenomenology by Husserl and
Ingarden cannot be a philosophical foundation of the physical world. This
is really a pity because such a philosophy is very promising in any different
domains of human activity. Maybe some descenders of R. Ingarden would be
able to extend philosophical phenomenology to quantum world. Moreover,
in our investigations we will consider (without any ambitions to prove an
existence) three types of beings:

1. beings with a space-time existence,
2. beings with only a time existence,
3. beings without a space-time existence.

According to W. Krajewski beings of the first type are physical objects,
beings of the second type are psychological impressions, and beings of the
third type are mathematical or logical notions. In this way to be a physical
object is to be extended in a space and to exist for some time. In further
considerations we are interested in geometrization and unification of physical
interactions with holistic aspects and space-time beings can be considered.
Psychological impressions can be considered as physical processes in a brain.
Mathematical and logical notions (especially geometrical objects) are behind
physical interactions (it means also behind physical objects). According
to our philosophy there is only a geometry behind a matter (a space-time
existence). It would be a formidable task to connect R. Ingarden’s phe-
nomenology to our geometrization and unification of fundamental physical
interactions with holistic aspects. In this way we could get a connection of
a philosophical system with an ancient Greek idea of an arche (here a ge-
ometry) to very modern ideas of philosophical (realistic) phenomenology as
in R. Ingarden’s works: Controversy on an existence of the world (in Polish,
vol. I, II (parts I, II) and vol. III). (We should remember A. Szczepański’s
criticism.)

Let us sketch some important elements of R. Ingarden’s phenomenol-
ogy. According to him, philosophy is divided into ontology and metaphysics.
In our case philosophy of nature is also divided into its own ontology and
metaphysics. Every being is a triple unity of matter (content), form (of the
matter) and existence (in a certain mode). In this way ontology (a theory of
beings) is divided into material, formal and existential ontology. R. Ingarden
considers four spheres of beings: absolute (supratemporal), ideal (timeless),
real (temporal). He considers the following modes of existence: real, ideal,
intentional and absolute. The physical world is of course real. Moreover, it
is possible that behind the real world there are some different worlds. Philo-
sophical phenomenology consists in an analysis without any assumptions. It



26 Introduction and General Remarks

means, we should reject any assumptions on the world and start an anal-
ysis from obvious sentences. Further discussion on philosophical realistic
phenomenology is beyond the scope of this essay.

The work has been divided into fifteen chapters. The field theoretic ap-
proach in physics and its relation to geometry is shown in the first one. The
second chapter deals with the problem of classical electrodynamics when
seen as the task of geometrizing and unifying of electrical and magnetic in-
teractions. The problem of geometrization of physics is being considered
in the third chapter on the example of General Relativity Theory (GRT).
The fourth chapter touches on the interactions in the light of quantum chro-
modynamics (QCD), gauge fields, Glashow–Salam–Weinberg model and the
unification of all physical interactions. Extensive elaboration was devoted
here to topics such as: theory of Kaluza–Klein type, nonsymmetric field the-
ory, spontaneous symmetry breaking etc. In the fifth and sixth chapters,
we write about the relationships between geometrization of physical inter-
actions and the dialectical notion of matter and ideas proclaimed by Latin
Averroists. In the seventh chapter we consider a geometrizability criterion as
a practical one; also some thoughts about the very notion of praxis in physics
are being offered. P. Feyerabend’s ideas and the topic of geometrizing physics
are taken up in the eight chapter. The ninth chapter reflects upon problems
concerning symmetry in theory of elementary particles and also the attempts
aims at linking of the internal and space-time symmetries. The tenth chap-
ter deals with hidden symmetries and the supersymmetric algebras. Also
the theory of strings is touched upon. Anti-commuting coordinates and Lie
supergroups enter the scene in the eleventh chapter, also the supermani-
folds are being considered, while in the twelfth our attention is focused on
the problem of supersymmetric gauge transformations and supersymmetric
gauge fields, The topics of supergravity and supersymmetric (supergravita-
tional) extension of the Kaluza–Klein theory conclude the twelfth chapter.
Chapter thirteen is devoted to the relationships between holism and reduc-
tionism in contemporary physics. Holism in physics of nonlinear phenomena
and in cosmology constitutes the subject of the fourteenth chapter, followed
by a summary of the whole work sketched against the broader background in
the history of physics as well as the history of philosophy in the last chapter.

We give in the work four notes concerning Laplace’s cosmic mind, Non-
symmetric Kaluza–Klein theory, first philosophers and reduction of all nat-
ural sciences to SM (Standard Model) physics.

We have abstained from citing of the original bibliographic references
since due to their sheer number doing so would take more space than the
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whole work offered here. Except some sporadic original papers only ref-
erences to available collections of original papers and to monographs were
retained in order to keep a form of an essay.

In this essay we use the notion of a Higgs’ mechanism or a Higgs–
Kibble mechanism. Moreover, there are more researchers who had im-
portant ingredients in the discovery of this mechanism. The full name of
the mechanism should be as follows: Anderson–Brout–Guralnik–Hagen–
Higgs–Kibble–t’Hooft (ABEGHH’tH)–mechanism (the notion proposed by
P. Higgs). Moreover, we add also Y. Nambu, L. D. Landau, N. N. Bo-
golyubov and maybe more.
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1 Field Theoretic Worldview and Geometry

The question of the relationship between field theory and geometry is being
considered in this chapter.

In a physical world there occur four types of interactions: gravitational,
electromagnetic, weak and strong ones. Recently there is also the possibility
for the existence of the fifth type of interaction being mentioned; this one
would be very weak and capable of modifying the gravitational one. We
shall also comment here on some problems connected with the fifth force.
Gravitational interaction is the most wide-spread in nature and the most
universal. It is responsible for the fall of a stone onto the earth as well as
for the cosmological properties of the Universe. Celestial mechanics, black
holes, neutron stars — these are but a few of the forms of gravity.

Electromagnetic interactions are also very wide-spread; they govern a
lot of physical phenomena. They are responsible for chemical bonds, plasma
properties, light properties etc. All applications of electric current, that
is electronics, electrical motors etc. constitute the forms of appearance of
electromagnetic interactions. The weak and strong interactions reveal them-
selves in the domains of nuclear physics and elementary particles, they govern
e.g. beta decay, are responsible for the fact that nucleons inside the nucleus
are being kept together. All these interactions are known in the so called low
energy area, that is within the energy area accessible without the recourse
of special machines, which serve the purpose of accelerating elementary par-
ticles (accelerators). Energy ranges accessible with the help of accelerators
are being called middle and high energy ranges. Within these ranges and
especially in the range of high energies the physicists envisage lot of new
interactions, which cause effects observable within that domain of energies.
Sometimes some of these predictions might have great importance in the de-
scription of the early phases of the Universe and could serve for the creation
of new cosmological models. These model in turn might be tested on the ba-
sis of observations. In general, however, the predictions of new interactions
within the high energy ranges do not have any influence onto the low energy
physics and also onto our everyday’s life. It would be utmost interest to find
some traces of these high-energetic interactions in our everyday’s life, and it
is quite certain that such an interaction would be called the fifth one or the
fifth force.

There is only one question — what phenomena would be revealing this
new interaction. Now, it is the fact that for some time already, reports about
this types of interactions appear in the low-energy physics and even in the
everyday physics. One type of such a report which had focused the attention
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of physicists all over the world was one by Fischbach and collaborators about
the reexamining of data from a famous experiment by Eötvös, Pekar and
Fékéte. Let us recall that in this experiment the equivalence of inertial and
gravitational mass has been checked with very great precision, as well as the
independence of the relationships between the inertial and gravitational mass
from the chemical composition of the body. Already Newton has adopted the
assumption about the equality of the two masses, and later it became the
foundation of General Relativity Theory (GRT) (Wald 1984; Papapetrou
1974; Kopczyński & Trautman 1992; Roseveare 1982; Will 1981). To tell
the truth, Galileo was already aware of the fact, when he mentioned that all
bodies fall in a vacuum in the same way. In his times this claim constituted
the abandoning of an out-dated view of Aristotle, which held that the heavier
bodies fall quicker. E. Fischbach et al. maintain that the bodies do not fall
equally in a vacuum, and that this depends on their chemical composition.
It is supposedly following out from a reinterpretation of experimental data
published by Eötvös already in 1922. The author named above has explained
the original Eötvös experiment, while many others had tried to explain the
same phenomenon.

Alternative theories of gravity (other than GRT) were called for the as-
sistance and also traces of high-energy interactions were being spotted as
likely explanations of this type of falling bodies behaviour. Simultaneously
attempts are being made finding other appearances of this phenomenon by
examining geophysical, oceanographical or astronomical data, or in other
experiments. Others convinced as to the equivalence of inertial and grav-
itational mass keep trying to find other consistent interpretations of this
historic experiment. The question of the fifth force as we see is still being
scrutinized and discussed. Since the emergence of General Relativity Theory
and Maxwellian electrodynamics, theories of the electromagnetic and gravi-
tational interactions are available. The interactions are being carried across
the physical field according to a scheme particle-field-particle. Therefore a
particle interacts via the fields with another particle and becomes a source
of the field. The mediating agent located between interacting particles, that
is to say — field carries the interaction over with a finite speed, equal to the
velocity of light. Until the creation of Maxwell’s electrodynamics there were
no physical theories which would describe the interactions among the bodies
with the help of some mediating agent — the field.

Newton’s theory of gravitation introduced the mysterious action at-a-
distance. Coulomb interactions between the electric charges and magnetic
masses are constructed similarly as in Newton’s gravitation theory. There
were Maxwell’s equations which managed to make a breakthrough in the
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hitherto understanding of the physical interactions. They introduced a new
material object, equally important as the charges — the electromagnetic
field. This object acquired autonomy with respect to charges-sources of this
field. A situation even become possible where the field alone would remain
without sources. The equations admitted ondulatory solutions — electro-
magnetic waves and it turned out that light is just an electromagnetic wave.
Already at Maxwell’s times, repeated attempts had been undertaken towards
the creation of a similar field theory for gravitation. Maxwell himself under-
took some unsuccessful attempts. It turned out that the gravitational field is
not easily amenable for this type of procedures. A certain intermediate step
was necessary which failed to occur; namely the creation of Special Relativ-
ity Theory. Maxwell’s equations possess certain internal symmetries which
while transforming among themselves the fields, left the form of the equation
invariant. In addition to that Maxwell’s equations are not invariant with re-
spect to Galileo transformation. Attempts at supplementing the Maxwell’s
equations with additional terms in such manner that they become invariant
with respect to Galileo transformation had inevitably led to contradiction
with experimental evidence.

On the other hand, it was known that Newton’s equations are invariant
with respect to this group. The study of symmetries of Maxwell’s equations
led to discovery of special Lorentz transformation (instead of special Galilean
transformation) and Lorentz group (instead of Galileo group). Later it was
found that the relationship between Galileo group and Lorentz one is very in-
teresting. Namely Lie algebra of Galileo group is a contraction of Lie algebra
of Lorentz group. In a sense one might consider this as an example of corre-
spondence between the relativistic mechanics and Newtonian one expressed
in a very precise language dealing with symmetries of Newtonian space-time
(Galilean) and relativistic one. We shall refer in the sequel to the relation-
ship between different theories of space-time and of gravity. The discovery
of special Lorentz transform and Lorentz group as a space-time symmetry
group provided direct impulse for the revision of views about the space-time
nature, and later on has led to the creation of relativistic mechanics. I would
like to stress at this point that it is not without any support that I am using
here the notion of Newton or Galileo space-time and of its geometry because
is in itself interesting and throws light onto the correspondence between the
subsequent mechanics from Aristotle to Einstein. Perhaps it shall allow us
to understand the complicated paths which lead towards still better — more
adequate models of Nature. In fact it is possible to establish interesting links
between the space-times of Aristotle, Newton, Einstein or Weyl.
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We shall write more about these and many others interesting relation-
ships, connected with this problem, but for a while we shall devote to it
the following comments. Namely a widely spread conviction that with the
advent of Special Relativity Theory the absolute time and absolute space had
gone and that new notion, that of relativistic space-time continuum was born
— is false. I would like to emphasize the fact that although undoubtedly
the abandonment of Newtonian views about absolute space and absolute
time, which would exist independently and originate out of itself has really
taken place (Newton even called them God’s sensorium). It does not signify
the birth of some brand new notion. We could speak about the Newto-
nian space-time, having in mind the space-time endowed with a geometry
different from that characterizing the Minkowski space-time. Within that
geometry, some privileged geometrical objects shall exists — absolute time
and a space — like hypersurface — the absolute space. Of course in such
a space-time, Galileo group should act. Nonetheless Newton’s space-time
and Minkowski’s one shall have the same absolute character, in spite of their
different geometrical structure.

They shall play the role of a background, fixed and invariant for the
events taking place. In both the above named cases it shall be different
background, but anyhow — a background. Here it is worth stressing that
the Newton’s standpoint in his dispute with Leibniz by offering new evidence
on his behalf — that of an absolute space-time. Let us only recall that in
this dispute Newton defended (in Clark’s spelling) the absolute character
of time and space as a background for events — whereas Leibniz held the
view about he relative nature of space. Namely is was to be a “material”
space associated with a given body and moving together with it, and as such
existing only in connection to the said body. There were repeated attempts
aimed at advancing a paradoxical claim to the effect that supposedly Special
Relativity Theory would confirm Leibniz position overturning the idea of an
absolute nature of space. Of course it is true that we abandon the notion of
an absolute space, but it is not at all to say that we thus accept Leibniz view,
since we are introducing an equally absolute concept — that of a relativistic
space-time. Now, recalling that there is something of a kind as Newton’s
space-time, we are able to see that there occurs a passage from one absolute
space-time to another, with a due change of the geometrical structure from
a Galilean to that of Minkowski.

The point of this fact seems to me very important since in the theories
of the type like Aristotelian, Galileo, Minkowski or conformal mechanics,
the space-time geometry is absolute and invariable. It is not a dynamical
variable, one cannot associate with it interactions of any kind. Therefore
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there arises the contradiction of a sort between the background space-time
and the matter which fills it. There arises a need to formalize the space-time,
associating its structure with physical interactions. This is only possible
within the General Relativity Theory which turns the geometry of space-
time into a dynamical quantity and thus associated it with gravity. Let us
note that the Newton’s space-time with “non-flat” geometry might be taken
for an analogy of General Relativity Theory with regard to Galileo’s space-
time and is interesting enough — a Newtonian gravitational theory. Let
us return to Maxwell’s electrodynamics. As we have said above, Maxwell’s
equations turned out to be invariant with respect to Lorentz group acting
in Minkowski space-time. It turned out also that one might connect certain
physical quantities to tensors or vectors defined on the Minkowski space-
time. Namely, electromagnetic fields by making first the so called “four-
quantity” defined on the space-time and capable of covariant transformation
upon changing of the system of coordinates. It was possible to construct in
a similar manner out of current and the charge a four-current and the other
relativistic quantities. It was also possible to build the invariants, scalars
— quantities which remained invariant upon changes to the system of four-
coordinates, the so called electromagnetic field invariants. These invariants
of course are invariants of Lorentz group and would loose that property once
this group would be extended.

The Maxwell equations in a vacuum have a wider symmetry group than
Lorentz group — it is the so called the conformal group. It is a very intrigu-
ing property and it enables associating with this group of a new mechanics,
new space-time — the conformal one. It was already done and the result-
ing one is analogous in its appearance to Galileo and Minkowski space-time.
Returning now upon completion of this digression to the main thread of our
reasoning, let us note that the development of Einstein’s mechanics leads
to the construction of four-quantities on Minkowski space-time, which is
endowed with a constant — invariable geometry generated by Minkowski
tensor and Lorentz symmetry group. In accordance with Klein’s programme
of studying geometry with the aid of groups, one might say that the geometry
of Minkowski space constitutes a set of invariants of the Lorentz group and
more precisely — Poincaré group. By analogy we may refer also to the ge-
ometry of Galileo, Aristotle and the conformal one. Let us emphasize at this
point one very important moment on the passage between Maxwell’s elec-
trodynamics in a traditional vector rendering (with the aid of field strength
and current vectors) and the very same electrodynamics expressed in terms
of the Minkowski space formalism. Namely we had constructed the electro-
magnetic field strength tensor defined on the space-time — with the help
of electric and magnetic field vectors (usual ones) in a three-dimensional
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space in a certain coordinate system. The transformations of electric and
magnetic fields upon changing of the coordinate system turned out to be
equivalent to a covariant transformation of an antisymmetric electromag-
netic field strength’s four-tensor.

We have constructed a four-dimensional quantity out of the three-dimen-
sional ones, which had turned out to be a geometrical one (in Schouten’s
sense) on a four-dimensional space-time. We shall employ this kind of a
procedure several times more in the sequel, therefore it needs emphasizing
and term it is a crucial one. To further narration we could say that this
kind of procedure shall appear in the context of geometrization of physical
interactions during the associating of them with Yang–Mills field theories,
with connections on multidimensional differential manifolds and also during
the different attempts aimed at the creation of a theory unifying physical
interactions. In the sequel we shall try to describe a general scheme of
this procedure which turns out to be at the same time the unifying and
geometrizing one.
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2 Classical Electrodynamics as an Example of the
Unification of the Electric and Magnetic Inter-
actions

This chapter explains the geometrization of electric and magnetic interac-
tions on the example of classical electrodynamics.

Let us return to Maxwell’s theory casted in the language of Minkowski
space geometry, that is with the aid of two electromagnetic field tensors Fαβ,
Hαβ and the current density four-vector jµ. According to what was said until
now, the tensor Fαβ shall decompose upon the adoption of a certain system
of coordinates into the three-dimensional vectors ~E, ~B, the tensor Hαβ into
~D, ~H, whereas the four-vector jµ could be expressed by the current density
~j and charge density ρ. From the equations

∂[λFµν] = 0
∂µH

µ
ν = 4πjν

(2.1)

we derive as a corollary the continuity equation of jν , ∂νjν = 0, that is
electrical charge conservation law. This is interesting since as we shall notice
in the sequel, it is no accident that the conservation law is a corollary from
the second pair of Maxwell equations. More generally — conservation law
from the equations of motion for the fields. From the differential geometry
point of view, it is simply Bianchi identity for a certain connection, the topic
to be dealt in the sequel.

There are material relations between the quantities Fαβ, Hαβ when we
deal with relativistic electrodynamics of continuous media, or there is a
deeper one, once we pass to the nonlinear non-Maxwellian electrodynamics.
There, the relationships between Fαβ, Hαβ are more complicated and involve
the nonlinear electrodynamical Lagrangian L(S, P ) (Plebański 1970) where

S = 1
4 FµνF

µν

∗
Fµν= 1

2 εµνλρF
λρ

P = −1
4 Fµν

∗
F

µν

(2.2)

where εµνλρ is a Levi-Civita antisymmetric symbol, e1234 = 1.
There are lot of interesting attempts at generalizing the electrodynamics

onto the nonlinear cases. The most successful one being that of Born–Infeld;
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nonetheless the experiment is not able to detect any significant nonlinear ef-
fects which would be associated with classical electrodynamics (not a quan-
tum one). In addition to this, nonlinear electrodynamics has no conformal
symmetry (even in a sourceless case). In Maxwellian case, to which we shall
be limiting for a while, we have:

Fαβ = Hαβ (2.3)

The equations of Maxwell’s electrodynamics written above admit some
interesting and very deep symmetries called electromagnetic field gauge sym-
metries. Namely it turns out that one might introduce the quantity Aµ —
the four-potential in such a manner that

Fµν = ∂µAν − ∂νAµ (2.4)

and to perform the transformations

Aµ → A′µ = Aµ + ∂µχ. (2.5)

These transformations constitute just the electromagnetic gauge trans-
formations. As a result of this transformation, Maxwell equations do not
change. The quantity Aµ could only be determined up to the choice of gauge.
It seems therefore that this quantity does not have any physical meaning.
Its existence follows from the first pair of Maxwell equations, which might
be written by using the dual tensor:

∂µ
∗
Fµν= 0, ∂µFµν = 4πjν . (2.6)

Let us note here that there is a certain asymmetry between the two
“pairs” of Maxwell equations, the first pair is sourceless. Its sourcelessness
— lack of magnetic charges — constitutes the immediate reason for the
existence of the four-potential. There is also possible the theory of mag-
netic monopoles within the Maxwellian theory, that is — theory of Dirac
monopoles with a discontinuous four-potential.

Let us return to Maxwell equations in the form just written. There are
sources jµ for them, which might be expressible via complex scalar fields,
spinor ones, etc., carrying charges. These fields couple themselves with the
electromagnetic field on the basis of the least coupling. We could also con-
sider these fields, their Lagrangians, in separation from the electromagnetic
field. It would turn out then that their Lagrangians are invariant with re-
spect to gauge transformations of the first kind, that is

Φ→ Φ′ = Φe−iχ

Φ∗ → Φ′∗ = Φ∗e−iχ,
(2.7)
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the so called phase transformation, x = const. In accordance to E. Noether
theorem we could construct the quantity jµ fulfilling the continuity equa-
tion. It is just the principle of charge conservation. Should we however
require χ(x) to be a function of a point in the space-time (the so called
rotations with point-dependent phase) we shall introduce the compensating
field Aµ, which would covariantly transform in such a manner, as the elec-
tromagnetic field potential would do. This field should be coupled to field Φ
in conformance with the minimal coupling scheme. Maxwell equations —
with sources stemming from the field Φ — would follow from the variational
principle. Simultaneously these equations shall be invariant with respect to
the transformation

Φ→ Φ′ = Φe−iχ

Φ∗ → Φ′∗ = Φ∗eiχ

Aµ → A′µ = Aµ + ∂µχ,

(2.8)

called gauge transformations of the second kind, or transformations with
point-dependent phase. Let us notice here the characteristic fact: starting
with the theory of a charged field which was invariant with respect to phase
transformation (gauge of the first kind) and assuming the dependence of
phase of the point in space-time, we end up with the notion of a compensating
field associated with the gauge transformations of the second kind. This field
is responsible for the interactions of the charges, whose conservation law is
a corollary via E. Noether theorem from the invariance with respect to the
gauge transformations of the first kind. The passage from the first kind
gauge transformation to second kind one, could be described physically as
the expression of the fact that the (conserved) charges become the sources
of the field strength lines. This field is a compensating one, in this case the
electromagnetic field. Let us notice that it is not always possible to extend
transformations of the first kind to those of the second kind as was the case
for electric charge. It turns out that for the case of baryon charge (we have
here the phase of baryon transformation) one cannot introduce the gauge
field similar to that of an electromagnetic one, for this simple reason that
these fields do not interact among themselves. There is no compensating
field which might be associated with the baryon charge. This claim is being
recently questioned and one introduces the gauges of the second kind for
baryon or hyperion charges and hence gets a new compensating field of the
electromagnetic type. This is related to the so called fifth force (mentioned
above). Similar considerations apply to isospin, strangeness, lepton charge
etc. With such quantities of the charge type there are associated gauge
transformations of the first kind leading to symmetries which are termed as
global ones. To put it from a historical point of view, there were attempts
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at associating the gauge field (compensating one) with isospin. By the way,
it was the first case of introducing into physics the gauge fields with non-
Abelian gauge groups. After the names of their creators we call them Yang–
Mills fields. This was an unsuccessful attempt because at that time the role
of isospin within the theory of elementary particles was not yet understood.

We are aware today that the group SU(2) is not to be linked with any
single compensational interaction. This is a group of the first kind (phase)
gauge transformation appearing only due to the fact that there are two
quarks “u” and “d” where difference of mass is very small. The relation
between occurring in the physics of elementary particles groups of global
and local symmetries is not completely clear. Let us return to the gauge
transform of the second kind of the charged field and of the electromagnetic
one, decoupled to it and compensating the phase change. We shall try to
find the geometrical sense of these transformations and also the geometrical
meaning of the electromagnetic field’s four-potentials.

It turns out the theory of electromagnetic field interacting with the
charged fields has a clear and simple geometrical form, given the theory
of fibre bundles as our mathematical tool. Within this approach the elec-
tromagnetic field turns out to be a connection of the principle fibre bundle
over the space-time with a structural group U(1). Under this picture the
gauge transformations of the second kind turn out to be the changes of bun-
dle cross-section. Taking the bundles associated with the electromagnetic
bundle (e.g. a spinor one), we could (by a covariant derivative in the bundle
connection) obtain the scheme of minimal coupling for the electromagnetic
field.

All hitherto known properties of electromagnetic field shall be obtained.
Namely from the connection we can get the potential form in any gauge. The
bundle curvature form will turn out to be an electromagnetic field strength
form. Introducing the covariant derivatives of the fields carrying the electric
charge we will obtain the coupling between them and electromagnetism.
The compensation field — the electromagnetic one will appear to us as non-
integrable bundle connection. This is an extremely interesting and intriguing
picture. In fact, it turns out that certain quantities defined on the space-time
such as Fµν , Aµ, Φ, Φ∗ etc. become the geometrical ones — the curvature
connection, the field on the bundle, provided we take into account not the
space-time itself, but a bundle defined over the space-time. It calls for the
introduction of an additional (the fifth one) gauge dimension connected with
the U(1) group. The four-potential is a basic quantity as one associated with
the connection, while the strength of an electromagnetic field is a derived
quantity — the bundle curvature.
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This theory of electromagnetism presented here cursorily bears the name
of Utiyama since he was the first who had introduced it, emphasizing the role
of gauging and the gauge derivative. The geometrical casting of Utiyama’s
idea is due to A. Trautman and W. Tulczyjew. At its core lies the fact that
a certain physical quantity, the electromagnetic field has been substituted
by a connection on a certain manifold — on the principal bundle. In this
manner a geometrization of electromagnetic interactions has been achieved.
Clearly, should our aim be obtaining Maxwell’s theory, we have to attach
here also the second pair of Maxwell’s equations. Summing up we might
conclude that the electromagnetic field — its model, became identical with
the geometrical structure of a five-dimensional manifold. All the quantities
had obtained clear interpretations. In this sense the strength of an electro-
magnetic field turns out to be a curvature in the fifth dimension, while the
bundle connection — an electromagnetic field in an arbitrary gauge. This
is to say that with the aid of an operation of cross-section we could ob-
tain an arbitrary electromagnetic gauge. This kind of representing of the
electromagnetic theory clearly establishes the meaning of four-potential and
singles it out from among the remaining quantities. It becomes a basic one.
In classical electrodynamics it was without any significance, but turned out
to be very important in quantum mechanics.

Namely, in the famous Bohm–Aharonov experiment the interaction of
electromagnetic field with electrons was obtained, which caused the dis-
placement of the diffraction pattern. The resulting displacement was de-
pending upon magnetic flux grasped within the electron trajectories. In the
place where the electrons were moving, the strength of electromagnetic field
was equal to zero. In contrast the four-potential was different from zero.
R. Feynman considers this experiment as an evidence supporting the view
about the primacy of four-potentials in electrodynamics. One should agree
with this opinion since otherwise it would be necessary to abandon the field
theoretical picture and return to the action at-a-distance one. The theory
of electromagnetism in its geometrical form using the bundle (named also as
Utiyama theory) solves this controversy.

This picture is quite standard and in the case of gravity and other inter-
actions, will retain this structure. Namely, we should try to represent the
physical interactions as connections on the respective manifolds or certain
other geometrical elements. In our attempt at achieving the unification of
physical interactions, we are going to build from the existing geometrical
elements describing e.g. the gravitational and electromagnetical interactions
— the new geometrical quantities comprising the interactions being unified.
Due to some requirements of the mathematical-geometrical nature, one will
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expect some interference effects between various interactions which would
not follow from the previous theories. This kind of heuristic approach might
lead towards the unified theory of physical interactions, with the simulta-
neous geometrization of them. This approach is an interesting one and is
undergoing wide-spread development, as evidenced by theories appearing re-
cently, aimed at unifying electromagnetic, weak and even strong interactions.
Maxwell equations in vacuum have an additional symmetry. It is a conformal
symmetry in Minkowski space-time. The conformal group is locally isomor-
phic to SO(2, 4) of SU(2, 2). The space of Maxwell field equations solutions
has additional symmetries, e.g. SU(2, 2) ⊗ O(2) and so on. After 150 years
of discovery of Maxwell equations they still have very unknown interesting
properties to be discovered.



40 3 General Relativity Theory

3 General Relativity Theory and the Programme
of Geometrization of Physics

In this chapter we will discuss General Relativity Theory within the frame-
work of geometrization of physics.

When seen from the historical view-point General Relativity Theory was
the first geometrical theory of space-time and gravity. It originated from
Special Relativity Theory in such a way that the fixed invariable geometrical
background of Minkowski space-time had been made a variable one. It was
only assumed that this geometry is a Riemannian one, locally Minkowskian
(a choice of the metric tensor signature). Einstein adopted a view that space-
time geometry represents the gravitation itself. Components of the space-
time metric tensor became gravitational potentials, while the non-vanishing
space-time curvature indicated the occurrence of gravitational forces. At the
same time it was Einstein who introduced the so called generally covariant
invariance, which postulated the equivalence of all coordinate systems. This
principle is often being rightfully seen as an analogue of gauge invariance
for gravitation. Simultaneously Einstein assumed that free falls of bodies
that more solely under the influence of gravitation and inertial forces re-
veal themselves in space-time as the geodesics. At this point the issues like
equations for the space-time geometry (gravitation), their relationship with
a weighting mass and the remaining fields was left behind.

In this way according to Albert Einstein we can summarize the theory of
relativity in one sentence: time and space and gravitation have no separate
existence from matter.

In this year we have 100th anniversary of General Relativity and we are
close to 100th anniversary of Kaluza’s idea.

After examining several possibilities, Einstein selected the one which we
call today Einstein equations. They are second order hyperbolic nonlinear
differential equations. At the same time they constitute generally covariant
relationships between geometrical quantities and the “material” ones. This
last notion will occupy us in the sequel, but now let us review some impor-
tant aspects of General Relativity Theory, which are distinguishing it from
other ones. Namely in all the theories mentioned thus far, that is in Galileo’s
mechanics, Special Relativity Theory, Maxwell’s electrodynamics (in its clas-
sical, non-geometrical casting) we were dealing with an absolute space-time
with its absolute geometry suitably selected. This geometry served as an in-
variable background, non-dynamical one. In General Relativity Theory the
situation has been changed, since the gravitational forces were substituted
by a suitable change of geometry, its deviation from Minkowski geometry.
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Mass had “curved” the space-time. At the same time, what is of great im-
portance, the bodies should be moving along the geodesics. In the case of
Minkowski space, these lines were straight ones and were describing the mo-
tion in accordance with the Galileo principle (the first principle of Newton).

Their generalization in a curved space become just the geodesics as the
simplest lines on the Riemannian manifold, that is such lines passing along-
side it, whose tangent vector is being paralelly transported with respect to
the connection. The important innovation consisted in preserving the sim-
plicity of the motions taking place under the in influence of gravitation via
the significant change of the background — the space-time within which the
motion was occurring. All the couplings between the gravity and the remain-
ing fields were introduced via the substitution of ordinary derivatives with
covariant ones in Riemann’s connection. Let us notice here the deep analogy
between General Relativity Theory and the Utiyama’s theory of electromag-
netic field. There, also the geometry of an electromagnetic bundle was a
dynamical quantity, and the connection’s curvature was also associated with
the strength of the field of interactions. In Utiyama’s theory it was associ-
ated with the strength of the electromagnetic field. In both cases, in order to
introduce the interaction with the gravitational or electromagnetic field one
had to take covariant derivatives. The only fundamental difference would
appear to be the occurrence in Utiyama’s theory of an extra dimension as-
sociated with the electromagnetic gauge. This difference is, however, only
superficial. Namely as we had described it above, the general Einsteinian
invariance serves in General Relativity Theory as an analogue of gauge in-
variance. Due to that, one might view the General Relativity Theory as
the theory of connection of the bundle of orthogonal repers in the sense of
Minkowski metric over the space-time. This bundle is a principal one with a
structural group SO(1,3), i.e. the Lorentz group. Its dimension is 10, because
the number of parameters in Lorentz group is 6.

In both cases a physical world — the space-time — is a four-dimensional
one. There is no fear of having more than four-dimensional space. The
bundles are constructed over the space-time.

Let us now turn our attention onto general characteristics of Einstein’s
equations. A. Einstein has postulated them in the form

Rαβ −
1
2 gαβR = κTαβ

κ = 8π GN
c4 .

On the left side of this equation there are geometrical quantities whereas
on the right-hand side, the “material” ones. In this manner the massive



42 3 General Relativity Theory

matter and the remaining non-gravitational fields become sources for the
space-time geometry. Let us note that these equations have a structure very
much like the second pair of Maxwell’s equations in Utiyama’s theory. There,
the non-electromagnetic fields also become the sources of geometry. Let us
observe as well that Bianchi identity leads to the covariant conservation
laws. In the case of General Relativity Theory — to the energy momentum
conservation principle. This is very interesting.

To continue further along the lines included here, let us consider a certain
theory, namely that of Einstein-Cartan. It represents the generalization of
classical Einsteinian gravitational theory in a sense. We introduce here into
the space-time the Cartanian connection, metrical one, but not necessarily
Riemannian. As a source of torsion there appears the spin of material fields.
We obtain additional equations, that of Cartan. They relate spin with the
space-time torsion and are of the similar form as was the case of General
Relativity Theory and Utiyama’s theory. On the right side we have the “ma-
terial” quantities, on the left the geometrical ones. The matter becomes a
source for geometry. For the sake of completeness of this picture let us add
that from Bianchi identity for Cartanian connection we get covariant conser-
vation laws: that of energy-momentum and angular momentum. From the
theories enumerated above, a certain very brave idea follows, interesting from
both heuristic as ontological points of view. Perhaps all the fundamental in-
teractions have model as connections on certain fibre bundles? Could it be so
that conservation laws in all these cases are corollaries from Bianchi identity
for the said connections? Maybe all field equations should have the form:
geometrical quantities on the left side, whereas the “material” ones on the
right? There is yet another question associated with this type of questions.
Should all these cases be OK, therefore one might conclude that gauge fields
are the same as the fields of physical interactions. It is known however that
the theory of principal fibre bundle connection is a gauge theory. Therefore
it appears here something of the emerging unified language for a field theory
— the language of theory of physical interactions. Differential geometry con-
stitutes this language. We are going to identify the programme leading to
the creation of this type of theory as the fundamental physical interactions
geometrization programme. We therefore see that such a programme has
led to a complete success in the case of gravitational and electromagnetic
interactions. In the case of weak and strong interactions in the physics of
elementary particles, it is just in the process of being implemented, and leads
towards the unification of all physical interactions not only what concerns
the language being employed, but in the theory describing physical inter-
actions as well. Such a theory is already implemented for the case of weak
and electromagnetic interactions in the so called Glashow–Salam–Weinberg
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model. It has in turn taken the form of Kaluza–Klein theory for the case
of electromagnetical and gravitational interactions. Before we embark on
reviewing these theories and their role, we are going to deal for a while with
Yang–Mills field theory. These fields are very similar in their structure to
the electromagnetic field in Utiyama’s form. The difference consists mainly
in a gauge group different than U(1). In the case of classical Yang–Mills
it was a group SU(2). These authors had introduced this field in order to
explain the strong interactions. In their theory, the gauge field had to be
identified with meson fields, which in Yukawa theory are hypothetical carri-
ers of the nuclear interactions between the nucleons. Yang–Mills fields, very
much like the electromagnetical ones are massless. The mesons have the rest
mass. Because of that Yang and Mills had to introduce mass terms break-
ing the gauge symmetry associated with SU(2). In spite that the general
idea remained correct it has however turned out that one cannot associate
with isospin the compensating — gauge field, which was already mentioned.
Yang–Mills equations are identical in their structure to Maxwell equations.
Let us notice that their form agrees with the postulate: on the left side the
geometry, on the right side the “matter”. By a suitable choice of gauge group
we might try to describe other physical interactions — the weak and strong
ones.

For the case of electromagnetic field we are able to obtain the gauge of the
second kind by changing the phase transformation in the global gauges into
the function dependent on point of space-time. In that manner we extend
the gauge transformation of the first kind. In accordance with the Noether
theorem we have a charge conservation principle which is a corollary from
invariance with regard to the gauges of the first kind. The introduction of
the second kind gauges will cause a significant change. Namely an additional
field will arise, to be called a compensating one. The interactions between
the charges would be described by this field; the charge conservation prin-
ciple here has been obtained via the Noether theorem from the invariance
with regard to gauges of the first kind. In the case of U(1) gauge group this
is the electromagnetic field, and the photons should function as its carriers
(quanta). There are just photons, and more precisely their exchanges which
are responsible for the repelling of charges of the same type, and the attrac-
tion of the charges of the opposite type. The appearance of the gauge field
will cause various complications. In fact the field undergoing the gauge of
the first kind should be interacting with this field. This will reveal itself in
the change of field derivative appearing in Lagrangian or in the equations of
motion. Here, the gauge derivative should appear, describing in accordance
with the minimal coupling scheme the interaction between this gauge field
and the original one. This original field could be a spinorial field, complex
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vector, or complex scalar one. Real fields (real-valued ones) are out of the
question here, since the charges (carried by them) and currents are equal
to zero. In the case of U(1) based gauge, there will be usual currents and
electrical charges. Here, the gauge derivatives will be the ones well known
for the electromagnetic field.

In such a case, the Lagrangian of the original field would change as a
result of introducing new derivatives. The total Lagrangian here should
comprise the gauge field Lagrangian. In the case of electromagnetic field
we have Maxwell’s Lagrangian. By changing gauge group we have another
gauge field. Taking G = SU(2) we get Yang–Mills field. The cases of most
interest represent here the fields with non-Abelian gauge groups such as
SU(2), SU(3) etc. Groups of this kind lead to the other charge and current
conservation principles. These charges create the gauge group (of the first
kind) Lie algebra. The compensation field (Yang–Mills) describes the in-
teractions between the charges, their repulsion or attraction. The so called
intermediate bosons will be the carriers of that field’s interactions. These
particles are massless like photons and the number of their various kinds
is equal the number of independent parameters in gauge group G. For the
case G = SU(2) we have three such bosons, whereas for G = SU(3) eight.
Of course for U(1) it is clearly seen that there would be one. The interac-
tion between charges consists of exchanging this type of particles which has
been given the name of intermediate bosons: There is however a certain very
significant difference between the electromagnetic case and the general one
(with an arbitrary gauge group). In the case where the gauge group G is
non-Abelian the gauge field equations are nonlinear. Thus a self-interaction
of the field would appear. It is easy to understand why this is so, since
for the electromagnetic case the photon has not carried any electric charge,
whereas in the gauge field case the intermediate bosons could be charged.
In other words the field strength lines of Yang–Mills field might attract or
repeal themselves.

The Yang–Mills fields due to the masslessness of their carriers have an
infinite range. The fundamental static solution for them has also to be
Coulomb solution. These equations in the vacuum will possess a conformal
symmetry, similarly like the ones of Maxwell. There is a very natural and
elegant gauge field description in the language of differential geometry. This
is a description based on the fibre bundle theory. We consider here the
principal fibre bundle with a structural group G and with the base being a
space-time. The connection on such a bundle will be simply Yang–Mills field,
while the connection’s curvature is equal to the strength of Yang–Mills field.
The bundle cross-sections will become the choice of the gauge (of the second
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kind). The covariant derivative of the bundle in a given connection shall
be the gauge derivative. Bianchi identities for the connection’s curvature
would constitute one pair of equations (Maxwell, Yang–Mills). These will
follow from the existence of the four-potential. As we see, all the physical
quantities obtained have the natural geometrical interpretations. In this way,
Maxwell’s theory of electromagnetism has been geometrized and analogously
to it the Yang–Mills field theories with an arbitrary gauge group G.

It is a fact that the greatest achievement thus far on this path was the
Glashow–Salam–Weinberg model. That model unifies the electromagnetic
and weak interactions. From this moment onwards we should be speaking
about the weak-electromagnetic interaction. It turned out that these two
interactions became the two sides of the same medal, quite like electricity
and magnetism in Maxwell’s theory. They could be separated only under
special circumstances, which might be compared to magnetostatics or elec-
trostatics in Maxwell’s theory. Curiously enough we could observe that the
difference masses between the proton and the neutron is of the weak origin
and not of the electromagnetic one, due to the links between both types of
interactions. We know from experiments however that the weak interactions
(e.g. those associated with the beta decay) are of the finite range. This in-
dicates that the intermediate bosons responsible for carrying through this
interaction have non-vanishing rest masses. On the other hand however, we
know that the introduction of massive terms will break the gauge symmetry.
The only way of introducing (generating) intermediate boson masses with-
out breaking gauge symmetry is the spontaneous symmetry breaking and
the Higgs–Kibble mechanism. In this place we are not going to enter into
the details of these interesting phenomena. We have only to say that this
is associated with the introduction of the additional fields — the so called
Higgs fields and also with a degeneration of the ground state. Glashow–
Salam–Weinberg model uses SU(2)L ⊗ U(1)Y gauge group, due to which
there appear the neutral currents detected experimentally. We obtain two
charged intermediate bosons W+, W−, one neutral Z0 and a photon γ in
this theory. Bosons W±, Z0 have masses endowed upon them via Higgs
mechanism (Mohapatra & Lai 1984; Ynduráin 1983; Lai 1981; Commins &
Bucksbaum 1983; Cheng & Li 1984; Lee 1984; Aitchson & Hey 1983; Zee
1984; Herman 1978; Konuma & Maskawa 1981; de Sabatta & Schmutzer
(eds.) 1983).

We have also leptons e, µ, νe, νµ in this model. One could also add a new
sequence τ, ντ . The leptons are also massless and they also assume masses
by Higgs mechanism. The geometrization of Higgs mechanism appears to
be an extremely interesting problem. There are attempts under way to do
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this. Some successes have been reported. It seems that Higgs fields are of the
similar nature as Yang–Mills ones, hence they are geometrizable in the above
described sense. Observe therefore that the unified weak-electromagnetic
interactions turned out to be a connection on a principal bundle with a
structural group SU(2)L ⊗U(1)Y over the space-time. In spite that there is
no complete geometrization of this model in the lepton sector, one is entitled
to speak about a success on the road to the geometrization of all interactions.
One might speak at this moment about a full experimental confirmation
of this unification. The neutral current predicted in this theory has been
discovered. The due price of that success was the awarding of the Nobel
prize in physics for 1979 to the creators of the unifying models: S. Weinberg,
A. Salam and S. L. Glashow. Several years later the intermediate bosons
W±, Z0 had been discovered with the masses predicted by the theory. This
was also honoured with the Nobel prize in physics for the year 1984.

The Higgs boson also has been discovered in 2013 and also honoured
with the Nobel prize in physics. Peter Higgs and François Englert had been
awarded the 2013 Nobel Prize in physics.

There are some extensions of the GSW model with more than one Higgs’
doublet. In general we can have n-doublet model. The most popular are
2-doublet models (sometimes 3-doublet models). Very popular is an inert
doublet model (2-doublet). Additional doublet of selfinteracting scalar fields
are not really Higgs’ fields, because we have not a spontaneous symmetry
breaking and Higgs’ mechanism connecting to these fields. Moreover, in
general additional doublets of scalar fields can complicate a structure of a
vacuum going to some experimental predictions. The additional Higgs’ fields
can serve as a source of “dark matter” particles. Those models are far away
from our considerations of geometrization of physics.

In this way we can define a Standard Model (SM) as GSW model and
QCD with fermions in 3-generations including of course also quarks:
(e, νe, u, d), (µ, νµ, s, c), (τ, ντ , b, t). In the model all neutrinos are mass-
less. Masses for massive fermions are obtained due to Yukawa mechanism.
Moreover, they are not really massless (except maybe νe). They are oscil-
lating. In this way νµ and ντ should be massive. The oscillations among νe,
νµ and ντ have been discovered in solar, atmospheric and reactor and accel-
erator neutrino (or antineutrino) sources. This has been honoured with the
Nobel Prize in physics. T. Kajita and A. B. McDonald have been awarded
the 2015 Nobel Prize in physics.

Mixing between neutrinos is described by PMNS (Pontecorvo–Maki–
Nakagawa–Sakata) matrix. There is still a controversy: are neutrinos Dirac
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particles or Majorana particles? Neutrinoless double β decay (ββ0ν) is still
not confirmed.

In neutrino physics we have flavour states νe, νµ, ντ and massive states
(states with defined masses) ν1, ν2, ν3. In this way νe, νµ, ντ are mixtures of
ν1, ν2, ν3. During a motion a definite flavour state oscillates due to different
velocities of massive states which compose it. Thus we get a mixture of
flavour states which can be distinguished by detectors. In some sense to
speak of masses of νe, νµ, ντ is an abuse of nomination for they have not
definite masses. The real puzzle in neutrino physics is also a mass hierarchy.
Is it normal or reversed? We are still looking for PC violation in neutrino
mixing, the so-called δCP phase.

The important investigation in physics of fundamental physical inter-
actions is to look for parity and CP non-conservation in strong interac-
tions. There are theoretical predictions to get some traces of P and PC
non-conservation in heavy ions collisions. These traces are some correlations
in scatterings which can be tested in experiments. Up to now we do not
see such phenomena. The only one place to see PC breaking is a Cabbibo–
Kobayashi–Maskawa matrix with nonzero δ-phase coming to K0 and K0

and also to B0 and B0 mixing. An additional prediction is a nonzero dipole
electric moment of a neutron (extremely small). In the case of quark-gluon
plasma (after a deconfinement) we can get very strong CP violation effects
due to an additional term in QCD lagrangian which is a full divergence.
This term is important only on quantum level due to tunnel effects between
degenerate states of a vacuum. The mentioned term is purely hypothetical.

It is worth to mention of G. Zoupanos higher-dimensional unification with
continuous and fuzzy coset spaces as extra dimensions. The best model in
this approach is based on N = 1, 10-dimensional E8 gauge theory reduced to
nearly Kähler manifold. The corresponding programme is considered with
fuzzy coset spaces as extra dimensions. The interesting programme is to
include here a nonsymmetric gravity.
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4 Quantum Chromodynamics, Gauge Fields and
the Unification of the Fundamental Interactions

In this chapter we will consider the applications of the gauge fields in the do-
main of strong interactions, and attempts in unifying all interactions. Quan-
tum chromodynamics provides another interesting example of gauge fields
application in the theory of elementary particles. This theory (QCD) is a
likely candidate for becoming a recognized one in the domain of strong inter-
actions. It is a field theory with SU(3)c as a gauge group. Its intermediate
bosons, the so called gluons are being interchanged between the strongly
interacting particles but they do not occur in the asymptotic states. They
glue quarks inside the hadrons, which explains their name.

The gauge group SU(3)c is the so called colour one and has nothing in
common with the group SU(3) known from Gell-Mann classification.

At this point we would like to emphasize that all the groups classify-
ing the hadrons via irreducible representations, that is SU(2), SU(3), SU(4)
etc. according to predominant views have nothing in common with the sym-
metry of the strong interactions. They express rather the fact that at the
base of hadron mass spectra one finds 2, 3, 4 etc. quarks of different kinds,
with different “flavour”. Each of these quarks might appear in one of the
three different colour states i.e. red, blue, green. However in accordance
with the hypothesis of quantum chromodynamics the hadrons are white and
thus they could only appear in singleton states with respect to colour. The
additional quantum number — the colour has been introduced in order to
preserve Fermi statistics for the quarks without the need of substituting it
with a parastatistics of order 3. Quark Lagrangian is symmetric (i.e. in-
variant) with respect to SU(3)c group, that is with respect to gauges of the
first kind. The introduction of the second kind gauges and the compensat-
ing fields associated with them, constitutes just the chromodynamics. The
fundamental theorem of this theory not yet adequately proven is the quark
confinement hypothesis; more generally the colour quark confinement. Ac-
cording to this hypothesis, the forces which bind quarks together increase
proportionally with the distance and that is why we cannot observe free
quarks. Quantum chromodynamics is a renormalized theory like that of
Glashow–Salam–Weinberg. It is also asymptotically free. That is to say,
at small distances quarks behave in such a way as they were free. Hence
we have the infrared confinement and ultraviolet freedom. The predictions
of Quantum Chromodynamics in the domain of weak coupling near the ul-
traviolet freedom, could be considered as gluonic corrections to the parton
model.
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According to recent views, we have inside this region good agreement
with experiment. What concerns the infrared confinement (big distances
small energies) no decisive results have been obtained thus far, in spite of
great efforts, using of instantons and methods of algebraic geometry. The
majority of experts favours the opinion that Quantum Chromodynamics con-
stitutes a proper foundation for the theory of strong interactions. It might
turn necessary the complementing of this theory with some additional el-
ements. Let me remark also that the efforts are under way aimed at the
so called Grand Unification of the weak electromagnetic and strong inter-
actions by introducing of gauge theories with different gauge groups: E6,
SU(5). This work is however not been accomplished as yet. The evidence
supporting the idea of a linkage between the strong interactions and weak
electromagnetic ones follows from the relationship which constitutes a corol-
lary from Glashow–Salam–Weinberg model. Namely, the number of leptons
has to be equal to the number of quark flavours. It is exactly due to this fact
that the prediction of ‘charm” and “beauty” originated within this model.
At present there is also the so called “truth” being included. The models of
Grand Unification try to get this relationship as a corollary from the theory.
Theory of this type with certain gauge group G includes the correspond-
ing multiplet of Higgs field in such a way that the spontaneous symmetry
breaking might leave massless only the photon and the gluons. Therefore the
symmetry breaking occurs from G toward its subgroup SU(3)c⊗U(1)el. One
of the more successful models within this category (called GUT — Grand
Unified Theories) is the one based on SU(5) group. In a certain way it is a
minimal model. It predicts proton decay. Such a decay has not as yet been
experimentally observed. This does not mean that the very idea of GUT
is an improper one. Probably we have to pass to other groups e.g. SU(10)
and find the new predictions amenable for experimental verification. Let us
notice that in a lot of instances we have obtained the physical interactions
as connections on the respective fibre bundles.

The equations of motion for these fields obtained the form: the geometri-
cal quantities on the left, whereas the “material” ones on the right. It seems
quite natural to pose a question, which had been posed by Einstein himself,
whether it would be possible to move e.g. in the equations for gravity the
most of the terms from its right side to the left. The ideal situation would
be having all terms on the left side. This would amount to a complete ge-
ometrization of the interactions. A. Einstein always maintained that only
the left side of this equation is completely trustworthy for him and what re-
gards the right one, he would put identically zero there. It would follow from
all this that the ideal situation should be the vacuum equation for the geom-
etry describing all interactions. This idea provided the basis for the concept
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of Unitary Field Theory. This concept in its extreme form called for the
creation of such equations for gravity and electro-magnetism. The so called
Nonsymmetric Field Theory was the last version of his theory, published by
Einstein in 1950. He did not manage to show, whether the equations for
gravity and electromagnetism would follow from the equations of his theory.
The Unitary Field Theory also required the solving of the field equations in
the interior of the elementary particles themselves. This would mean that
the particles ceased to be considered as singular points of the field and had
to belong to the solutions of these equations. In this sense, the Unitary Field
Theory proposed the geometrical field theoretical description of all physical
interactions and elementary particles. A. Einstein hoped that due to cer-
tain interference effects between the electromagnetic field and a gravitational
one he should obtain a new phenomenon amplified due to the non-linearity
of the equations. That new phenomenon could be responsible for stabil-
ity of the elementary particles and in this way the “sufficiently dense” field
might describe the “matter” on the right side of equations for gravity and
electromagnetism in their classical form. This type of an extreme geometro-
unification programme has failed. Simply — other interactions were missing
here — the weak and strong ones; without them, one is hardly in a position
to imagine the theory of elementary particles. However such an approach
was further to be continued in Wheeler’s geometrodynamics. It has turned
out that the geometrical structure of space-time is too poor in order to de-
scribe all the interactions. In recent times we observe a kind of return to
the mathematical structure of a Nonsymmetric Field Theory, the so called
Einstein–Strauss and Einstein–Kaufman theory. Some investigators use it
as a generalized (the so called nonsymmetric) gravity theory, the others as
a macroscopic theory of gravity and electromagnetism. Happily, there was
still another unifying, geometrical approach, which postulated the descrip-
tion of the electromagnetic and gravitational fields with the aid of geometry
on manifolds of more than four dimensions. Here belong the five-dimensional
Kaluza–Klein and Jordan–Thiry theories.

Weyl’s theory, which used projective geometry in space-time was also
of a similar kind. From historical standpoint, these theories considered
five-dimensional manifolds, where no physical effects depend on the fifth
dimension. They were assuming the appearance of Killing vector and have
linked the electromagnetic four-potential with gα5. On the basis of vac-
uum analogues to Einstein equations for the five-dimensional theory, Ein-
stein equation with energy-momentum tensor for electromagnetic field and
also Maxwell’s equations in the vacuum were obtained. In this way, a uni-
tary theory of the gravitational and electromagnetic fields was arrived at,
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in which both fields were generating the Riemannian connection on a five-
dimensional manifold. This theory had suffered from the inconvenience that
the space-time (four-dimensional) was the hyper-surface in a five-dimensional
“cylinder”. Possibilities exist of introducing sources into this theory in such
a manner that the equations for electromagnetism and gravitation would be
written as one five-dimensional equation with sources. Bianchi identity for
Kaluza–Klein connection provided here the covariant energy-momentum and
charge conservation laws. Such an approach, computationally quite difficult,
turned out to be equivalent with Utiyama’s one as shown by A. Trautman
and W. Tulczyjew. It turns out that there is a natural metrization of the
electromagnetic bundle. The connection generated by this metric tensor is
identical with Kaluza–Klein connection. In this way, the geometrical theory
of gravity and of electromagnetism was obtained as a theory of the connection
for the bundle of bases over the metrized electromagnetic bundle. The equa-
tions of course remained the same as in the classical version of this theory.
One could extend the principal fibre bundle metrization procedure without
the slightest obstacles to the case of arbitrary gauge group G (semisim-
ple). The geometrical theories of gravitation and of Yang–Mills fields were
obtained in this manner. From this theory resulted the equations of Yang–
Mills fields and Einstein equations with a source in the form: gauge field
energy-momentum tensor plus a cosmological term. The cosmological term
used always to appear whenever the theory has a non-Abelian gauge group.
There was a possibility of introducing the external sources and obtaining of
the covariant conservation laws from Bianchi identity for Riemannian con-
nection generated from metrics obtained in a canonical way. Gravity and
Yang–Mills theory turned out to be the connection theories of a bundle of
bases over the metrized principal bundle with a structural group G on a
space-time. The interference effect appeared also — the cosmological term
in the non-Abelian case. Kaluza–Klein theory described above admitted the
extension to a Kaluza–Klein with torsion. Resulting extended theory consti-
tutes geometrical unification of Kaluza–Klein and Einstein-Cartan theories.
We obtain it introducing metric connection onto the metrized electromag-
netic bundle. This connection needs not to be Riemannian; it might possess
the non-vanishing torsion. Assuming certain natural properties of the con-
nection — invariance with respect to U(1) and the horizontality of curvature,
plus by introduction of sources into it, we will obtain the interpretation of
the torsion linked with the fifth dimension — as an electromagnetical polar-
ization of the sources. There is going to appear an additional equation of
the type described above. Namely, on the left side we shall obtain a geomet-
rical quantity — the torsion in the fifth dimension and on the right side, a
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physical quantity — the electromagnetic polarization. This type of theory
(with torsion) could be extended to an arbitrary gauge group G.

Then the gauge (Yang–Mills) field polarization will become the source
of torsion in higher dimensions. From Bianchi identity for the connec-
tion in question we will obtain the covariant conservation laws for: energy-
momentum, angular momentum and electrical charge in the five-dimensional
case, or colour charges for arbitrary gauge group G. The interpretation of
the equations for the geodesics in Kaluza–Klein types of theories is an in-
teresting topic, both in the case with and without torsion. As a matter of
fact, it turns out that these equations reduce themselves to the equations
of motion of a material point in the gravitational and electromagnetic field.
There appears in these equations a term associated with Lorentz force. In
the formula for Lorentz force (the case with torsion) there appears a full
electromagnetic field (polarization included). The extending of this theory
onto the case of an arbitrary gauge group G, introduces a term analogous
to Lorentz force for Yang–Mills field. The case with torsion generalizes the
formulas via the occurrence of a complete gauge field — together with polar-
ization. The equations for the geodesics in all the cases enumerated above
have the first integrals. They have the interpretation of electric charges or
the colour ones for test particles. Let us note that the usage of the equa-
tions for the geodesics on the multi-dimensional manifolds in the suitably
constructed connections, has provided us with the description of the test
particles motion under the influence of gravity and of the gauge field. These
equations include the terms with Lorentz force plus the feature that test
particles have constant charges during the motion (the first integrals). This
is a remarkable fact, since the geodesics provide the simplest paths on a
manifold. They are analogous to straight lines for the flat spaces. Similarly
as it was in the case in General Relativity Theory, “the geometry became a
physical interaction”. Now this concerns not only the gravitational but also
the electromagnetic or gauge ones, with preservation of a postulate about
the maximal simplicity of the test particles trajectories.

This is in sharp contrast to the situation we had in Newton’s theory,
where the force is considered to be a measure of motion’s deviation from the
uniform one — thus the motion occurring along straight lines with constant
velocity and the simplest possible. Here we change the space-time geometry
and also that of the manifold, but still have the test particles trajectories
identical with the simplest possible paths. This represent a viewpoint ac-
cepting the assumption to the effect that the interaction is “geometry”. The
condition requiring that the test particle paths be identical with geodesics,
makes the search for a geometry suitable for describing a given interaction
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— a unique enterprize in a certain sense. Due to this it seems that the
programme aimed to geometrize all the interactions appears to be relatively
uniquely defined and maybe it is going to decide the dispute between various
phenomenologies in the area of elementary particles. These phenomenologies
often bring similar experimental predictions within the given range of mea-
surements. The choice performed among these phenomenologies or perhaps
certain modifications of the existing ones, when carried along the geometri-
cal guidelines, might contribute to the discovery of a suitable theory. The
choice or modifications of this type could be compared with Maxwell’s de-
cision about the introducing; of a displacement current into the theory of
electromagnetism. As we know, Maxwell was helped by the charge conser-
vation idea. Precisely this idea has made unique the choice between great
number of theories (phenomenologies) predominant in the times of Maxwell.
Later on it has turned out that this was a theory of geometrical character,
and Maxwell’s choice represented in fact geometrization of the electromag-
netic interactions. Let us notice that there is not too many phenomenolo-
gies, which would be equivalent to a certain geometrical theory of physical
interactions (in a sense given above). This explains why the postulate of
geometrizability could be a very convenient heuristic hint during the con-
struction of theories capable of unifying the physical interactions. At the
same time it could become an ontological hypothesis. According to it, the
physical world becomes a geometrical one. The “matter” vanishes and there
remains only geometry. The “vanishing” of the matter need not necessarily
be interpreted in an idealistic sense. The matter need not to vanish, simply
its range gets extending. Geometry unifying physical interactions constitutes
this sort of extending the notion of matter.

Let us try to present a general scheme of unifying two physical theories
T1 and T2 in accordance with the ideas put forward thus far. Let T1 com-
prise the theoretical notions U1, U2, . . . , Un while T2 include V1, V2, . . . , Vm.
The first step would consist of finding such a description of the theories
T1, T2 that on the theoretical notions occurring here one could find their
geometrical counterparts such as: connections, metric tensors, curvatures
on certain manifolds etc. Let us assume that in G(T1) such quantities are
G(U1), G(U2), . . . , G(Un), and G(V1), G(V2), . . . , G(Vm) — in G(T2). The
second step would consist of constructing a new theory T out of the geometri-
cal elementsK1,K2, . . . ,Kp in turn composed from G(V1), G(V2), . . . , G(Vm)
and G(U1), G(U2), . . . , G(Un). While the first step is relatively simple to a
certain degree, the second one in contrast includes lot of the unclarified is-
sues. Thus, we could only offer some examples of implementing the second
step. This step contains in itself a substantial progress when compared to
G(T1) or G(T2); the theory T is not equivalent to the theories G(T1)∪G(T2).
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One is entitled to expect some interference effects, between the interactions
described by the theories G(T1), G(T2). We are going to follow through
the scheme sketched above on the exemplary construction of Kaluza–Klein
theory and Kaluza–Klein with torsion. In the first case General Relativity
Theory plays the role of T1, whereas Maxwell’s electrodynamics in vacuum
is to play the role of T2. In the second case Einstein–Cartan theory will
become T1 whereas Maxwell electrodynamics (taking into account the elec-
tromagnetic polarization of matter) is going to become T2.

Let us begin with usual Kaluza–Klein theory. General Relativity Theory
is already a geometrical one and hence G(GRT) = GRT. In the case of T2 =
Maxwell’s electrodynamics in the vacuum, the geometrization consists in the
introducing of the electromagnetic bundle. We have described this earlier.

Hence G(T1) contains the theoretical notions being simultaneously ge-
ometrical quantities; gµτ — metric tensor of a space-time E, ωαβ — linear
Riemannian connection compatible with gµτ , Ωα

β — curvature of the con-
nection, θα — fundamental forms on E. These quantities describe the fields
in GRT and have the interpretation which is known. We might say that T1
is a certain theory of the connection ωαβ on a bundle of orthogonal (in the
sense of Minkowski metric) bases over E. In the case of existence of grav-
itational field, the curvature of this bundle is different from zero, but the
torsion vanishes, which is an assumption adopted in GRT. Thus GRT might
be presented in a fold manner. As (E,ωαβ , gαβ, θα) or (M,ωαβ ). M denotes
a 14-dimensional principal bundle of bases over E with Poincaré structural
group. In either of these descriptions (in accordance with general Einstein’s
invariance) there is no privileged coordinate system.

Of course the first and the second description, represents only the “kinet-
ics” of gravitation. Its “dynamics” is to be determined only by the equations
linking the geometry with the external sources — heavy matter. Einstein
equations play this role for the case of GRT. In the variational setting, the
choice of a suitable dynamics will be associated with the choice of the La-
grangian for gravity. Then Euler–Lagrange equations will become the dy-
namical ones for gravity. In the case of GRT, scalar curvature constitutes
Lagrangian density, and Einstein equations follow from the Hilbert principle.

In a case when the electromagnetic field is a source for gravity, we will
put the energy-momentum tensor for the electromagnetic field on the right
side of Einstein equations.

Rαβ −
1
2 gαβR = κT emαβ (4.1)

where
T emαβ = − 1

4π
(
FαµF

µ
β −

1
4 gαβFµνF

µν
)

(4.2)
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and Fαβ satisfies Maxwell equations for vacuum. The electromagnetic field
and its interaction with gravity are given in a phenomenological, non-geo-
metrical way. Clearly, in Maxwell equations one has to substitute the partial
derivatives with the covariant derivatives in the connection ωαβ . Since the
connection wαβ is Riemannian, the relationship between the four-potential
Aµ and the field strength Fµν remains intact. Gauge invariance of the four-
potential is also going to be preserved. Therefore the scheme of least cou-
pling plus Einstein equations with an electromagnetic source describe the
interaction of electromagnetism with gravity. Let us notice that electromag-
netism has become here a source for gravity, but the gravity has not become
a source for electromagnetism. A certain quantity is missing, which would
become a gravitational source in the second pair of Maxwell equations, in
a manner reminiscent of T emαβ being an electromagnetic source in Einstein
equations. The minimal coupling scheme has not introduced such a source
— the gravitational current. The full symmetry between the interactions
would call for the existence of such a quantity. Hence, summing up we have
a geometrical theory T1 of gravity and its application to electromagnetic
sources. Only the quantities associated with gravity are geometrized here.
The electromagnetic field is treated phenomenologically. On the other hand,
we have the theory T2, Maxwell’s electrodynamics and its geometrization
G(T2) in the sense of Utiyama–Trautman–Tulczyjew. A pair (P, α), where
P = P (P, F,U(1),U(1), π) constitutes a principal bundle with a structural
group U(1) and the connection α on P describes a kinetic part of the theory.

The dynamical part: the choice of Lagrangian or the second pair of
Maxwell equations. In this place there is a possibility of using a nonlinear
dynamics. The choice of dynamics means exactly the choice of a Lagrangian
L (S P ). The choice L = S introduces the Maxwellian (the second pair
of Maxwell’s equation in the vacuum), whereas the decision that L = R

introduces the Einsteinian dynamics, the General Relativity Theory. Hence
we have got two geometrical theories of interactions T1, T2.

We shall perform a unification procedure by constructing a theory T — in
this case Kaluza–Klein theory. Therefore we have the structure
(E,ωαβ , gαβ, θα) and (P, α). This procedure could be uniquely defined here.
We metrize P in a natural way given by Trautman and introduce on P the
Riemannian connection, generated by the metric adopted. We also introduce
a frame on P . In this fashion we obtain a kinetic part of the theory T .

(P, ωAB, γAB, θA) (4.3a)
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where

γAB =
[
gαβ 0
0 −1

]
, θA = (θα, λα), λ > 0, (4.3b)

D̃γAB = 0. (4.3c)

D̃ is the covariant differentiation in the connection ωABγAB is represented in
a frame θA. In this way we have obtained a theory, where a kinetic part is
described with the aid of a certain connection ωAB. Similarly as in the case of
General Relativity Theory there is a description using the bundle of bases:

(M,ωAB) where M is the principal fibre bundle of orthogonal bases
in the sense of de Sitter metric (the signature −++++) over P .

De Sitter SO(1, 4) group plays here the role of Lorentz group in General
Relativity Theory. The frame θA for the non-vanishing electromagnetic field
(the non-integrability of a connection α) is a non-holonomic frame.

In the holonomic frame

dxA = (dxα, dx5)

we have
γAB =

[
gαβ + λ2AαAβ −λAα
−λAβ −1

]
(4.4)

where Aµ is a four-potential.
In the classical Kaluza–Klein approach, the geometrization had taken

place via the introduction of a five-dimensional metric tensor defined in the
manner given above.

Let us occupy ourselves with the dynamics of the theory T–Kaluza–Klein.
In accordance with a traditional approach we introduce a five-dimensional
Lagrangian. It is a curvature scalar in the connection ωAB. From the Hilbert
variational principle extended onto the five-dimensional case we obtain the
equations for gravity and electromagnetism. It turns out that they are Ein-
stein equations with an electromagnetic source T emαβ and the second part
of Maxwell’s equations. The interesting fact is that the second part of
Maxwell’s equations appears here with taking into account the minimal cou-
pling scheme. For the case of absence of any external sources we do not
obtain any new interference effects linking gravitational field to the electro-
magnetic one, which were not known in General Relativity Theory. Once we
introduce the external sources described by other fields e.g. Dirac spinors we
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could obtain interesting predictions. To that end one has to define the spino-
rial fields ψ and ψ over the metrized P . Then it turns out that the fields ψ are
going to carry a dipole electric moment, the breaking of PC will occur. The
dipole electric moment will have a value expressed by the elementary con-
stants and its magnitude is of order 10−32 q[cm]. The PC symmetry breaking
brings very interesting consequences. It is equivalent (on the assumption of
the PCT symmetry existence) breaking of the symmetry T . This in turn
means that we could discern the past and the future at microscopic level.
Hence we get the “arrow of time” in a unification theory. This effect is due to
the taking into account of SO(2, 3) as a symmetry of a local five-dimensional
manifold. There appears a certain structure of fermionic charge, which does
not result as a corollary from General Relativity Theory, Maxwell’s electro-
dynamic or Dirac’s equations. Thus Kaluza–Klein theory with Dirac sources
predicts the effects which are new in comparison to the previous ones. Here
belong the interference effects previously described. Summing up: it turned
out that the theory T described by a “kinetics” (P, ωAB) upon transition to
the theories G(T1) and G(T2) will break down into two kinetics:

(P, α), (E,ωαβ ) (4.5a)

following the scheme

θA = (θα, λα)
ωAB = (ωαb , Fαβ)
γAB = (gαβ, Aα)

P = P (P,E,U(1),U(1), π)

(4.5b)

Therefore starting from the quantities defined in the last instance on the
space-time E one managed to construct a connection on a multi-dimensional
bundle P describing simultaneously the gravitational and electromagnetic in-
teractions. The spinors ψ and ψ and Dirac’s Lagrangian on P had been sim-
ilarly constructed. We obtained thus an illustration of a general geometrico-
unifying scheme put forward previously. The unification might be similarly
carried through in the case with torsion, too. Here T1 is Einstein–Cartan
theory whereas T2 — Maxwell’s electrodynamics with the polarization of
matter. The scheme presented below will illustrate us its place among the
theories involved.
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It is interesting to notice that W± and Z0 have been discovered in an
experiment. Also a Higgs’ boson has been discovered in an experiment. For
a Higgs’ field can be geometrized as a part of Yang–Mills fields, this strongly
suggests that geometrization and unification of fundamental physical inter-
actions is a right direction in looking for an arche of the world. It is a
geometry.

The idea of a unification through geometrization could also be applied to
gauge fields models (non-Abelian ones) by unifying them with Higgs fields.
In this manner a model with spontaneous symmetry breaking is described by
a connection on a certain multi-dimensional fibre bundle and Higgs fields as-
sume the natural geometrical interpretation. Spontaneous symmetry break-
ing and the generation of masses for the intermediate bosons also occur
within this framework. This scheme has fulfilled its role for the case of a
bosonic part of Glashow–Salam–Weinberg model, the theory for the weak-
electromagnetic interactions. By compiling the Kaluza–Klein idea and the
Higgs mechanism geometrization we are in a position, by using the scheme
described above to obtain a geometrical unification of gravity (GRT) and
gauge field models (Abelian and non-Abelian ones) with a spontaneous sym-
metry breaking and the Higgs mechanism. Still further this leads toward the
geometrical unification of gravity with other interactions that is with the
weak, the electromagnetic and the strong ones.
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This supergravitational (supersymmetric) extension of the presented
scheme allows one to hope for a natural inclusion of fermions and of their
mass generation mechanism. The interference effects and the new predic-
tions of the unified theory (appearing here) could be verified experimentally
in certain extremal conditions. Let us observe some characteristic properties
of this type of unification. Firstly, they leave relatively few possibilities, due
to the rigidity of the geometrical theories’ construction rules. Secondly, ev-
ery single possibility from among those selected offers very precise answers
with regard to the particle masses, coupling constants, mixing angles etc.
These two features taken together prove that theories of this type nicely
fit the picture of a good theory in Popper sense. In fact such a theory is
easy to falsify, and consequently to abolish. It does not represent (in spite
of a very abstract, geometrical appearance) something completely contem-
plative, fully separated from the realm of experiment. Let us consider for
example that in a geometrical (6-dimensional) Glashow–Salam–Weinberg
model we predict a correct (experimentally confirmed) value of Weinberg
angle (it is a phenomenological parameter in this model) and Higgs parti-
cles masses (for the time being beyond the reach of experimental checking).
Let us stress also that the using of other geometries (non-Riemannian ones)
within Kaluza–Klein scheme could lead to the effective alternative theory of
gravity (different than GRT), e.g. to Nonsymmetric Gravitation Theory put
forward by J. W. Moffat (Moffat 1982). A scheme of this type has been im-
plemented and interesting effects were obtained of the interference type, that
is: removing the singularity from a Coulomb-type solutions (Coulomb poten-
tial) and a natural dielectric confinement model. This approach combines
in itself two (completely independent and considered hitherto as orthogo-
nal) unification schemes: Einstein’s Nonsymmetric Field Theory and that of
Kaluza–Klein (Jordan–Thiry). The geometry defined on multi-dimensional
manifold constitutes the multi-dimensional counterpart of a geometry from
Einstein’s Nonsymmetric Field Theory. On the space-time we have the ge-
ometry (known from literature) from the Nonsymmetric Field Theory. The
unification is similar as was the case of Riemannian, classical approach. The
case of Jordan–Thiry, where a scalar field appears is also considered. This
field as usually is a component of the effective gravitational constant.

Of interest here should be the presentation of motivations for using non-
Riemannian connections on the bundle manifold and on a space-time. This
is dictated by troubles of a Riemannian Kaluza–Klein theory, prominently
occurring in the non-Abelian case. The using of the non-Riemannian ge-
ometry on a space-time is associated with the passing from the General
Relativity Theory to an alternative theory for gravity, the so called Non-
symmetric Gravitation Theory. In principle the topic under consideration
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presents a natural extension of a corollary from Kaluza–Klein theory with
torsion, where on the space-time we would have defined the theory of Ein-
stein–Cartan whereas on a multi-dimensional gauge manifold — the multi-
dimensional counterpart to the geometry of this theory. In the present case
we deal with another theory for gravity and another geometry. We substitute
General Relativity Theory with another gravitational theory (the selection
criteria are to be given later), generalize the geometry of this theory to a
multi-dimensional case and apply it to a multi-dimensional gauge manifold.
Further we continue with the whole procedure à la Kaluza–Klein (Jordan–
Thiry). We compute the curvature, the torsion and investigate the equations
for the geodesics, in search for their interpretation. We write down the La-
grangian of a theory (scalar curvature) and derive the field equations from
Palatini principle. We look for the interpretations of new elements of the
theory. One important property is the fact that obtaining the same physical
interpretations of the higher torsions in the theory as before. They equal
the electromagnetic polarization. The only difference being, that whereas in
the previous case there was the electromagnetic (Yang–Mills) polarization of
the sources, now it is caused by an antisymmetric part of a tensor gµν , from
the Nonsymmetric Gravity Theory. In this fashion the torsion propagates
in this theory.

The Nonsymmetric Gravity Theory is an alternative theory for gravity
basing on the non-Riemannian space-time geometry. Two types of gravita-
tional field sources occur in this theory, that is two kinds of “gravitational
charges”. They are-mass and fermionic charge. Because of that, this the-
ory predicts gravitational acceleration of a test body in a gravitational field
other than that from Newton’s theory. It is given by the formula:

GN = c = 1

~a = m~r

r3 + 2m2~r

r4 + 2l2~r
r6 −

l2pl
2m~r

mpr6

(4.6)

where
m — mass,
l2 — fermion charge,
mp — test body mass,
l2p — test body fermion charge.
The case is also being considered containing the spontaneous symmetry

breaking and Higgs mechanism, by using the dimensional reduction tech-
nique for a principle fibre bundle constructed over the extended space-time.
The usage of geometry from the Nonsymmetric Field Theory of A. Einstein
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is a new idea, and is associated with the new interpretation of the formal-
ism contained in this theory. Nonsymmetric Gravitation Theory constitutes
this new interpretation. Without that interpretation the whole procedure
would be meaningless. For the case of the five-dimensional Kaluza–Klein
theory using the same geometry with the old interpretation, we would get a
redundancy. The electromagnetic field would be described two times, once
as a part of Nonsymmetric Field Theory and the second time as the connec-
tion on a fibre bundle. But using the new interpretation of a Nonsymmetric
Field Theory as an extended gravitation theory we avoid that type of in-
conveniences. Due to on that, we have obtained the unification of the Non-
symmetric Gravitation Theory, Yang–Mills theory, spontaneous symmetry
breaking, Higgs mechanism and of the scalar field responsible for the effec-
tive “gravitational constant”. Even if we should adopt the vanishing gauge
field, the pure theory of gravitation thus obtained will be different from the
nonsymmetric theory of gravity, due to the possibility of considering the
effective gravitational constant, as for instance in Brans–Dicke theory.

In order to explain the merits and advantages of the approach adopted
here, let us note that there are two basic schemes for the geometrical uni-
fication of gravity (described by GRT) and electromagnetism. The first of
them is based on five-dimensional extension of GRT and is universally known
as Kaluza–Klein theory. The second scheme comes from A. Einstein, uses
non-Riemannian geometry defined on a space-time with the aid of a nonsym-
metric tensor. It is universally called a Nonsymmetric Field Theory. The
first scheme, in its modern version uses a fibre bundle as a mathematical
model of a gauge field and by performing the metrization of this bundle,
brings classical Kaluza–Klein results. Kaluza–Klein principle as a matter
of fact is based on Riemannian geometry defined on a 5-dimensional man-
ifold space and a structure generated by the electromagnetic bundle plus
Riemann geometry on a space-time. At the heart of the Kaluza–Klein the-
ory lies the reduction (unification) of the two basic physical invariance laws,
that is gauge invariance and a generally covariant Einsteinian invariance.
The first of them is fundamental in electrodynamics, the second in General
Relativity Theory. Such a reduction is possible in a five-dimensional world,
what has been used in an original Kaluza–Klein approach. At present we
are aware that gauge invariance plays a fundamental role in weak inter-
actions (Glashow–Salam–Weinberg model) and the strong ones (QCD). In
both cases mentioned it is a principle based on non-Abelian gauge groups.
In GUT (Grand Unified Theories) we also have to deal with a non-Abelian
gauge invariance. Therefore the creation for a Kaluza–Klein theory seems
to be something very interesting. Under the term “realistic” we mean one
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containing the physical interactions occurring in nature and giving the in-
terference effects between the gravitational and gauge fields. Non-Abelian
Kaluza–Klein theory, basing on the natural metrization of the principal fibre
bundle (serving as a model for a gauge field) was created relatively long ago.
This is in a matter of fact a multi-dimensional ((n + 4)-dimensional, n —
dimension of the gauge group) General Relativity Theory with the equations
for vacuum. It has two fundamental inconveniences. For one, it predicts too
big cosmological constant (10127 times bigger than the upper limit of the
experimental data) and in addition to that fails to introduce some new ef-
fects in comparison with General Relativity Theory and the theory of gauge
field (Yang–Mills). Both inconveniences are undoubtedly strictly associated
with the using of Riemannian geometry on a multi-dimensional manifold
(bundle of bases over the metrized fibre bundle). Taking into account here
of the naturally metrized fibre bundle à la A. Trautman and W. Tulczyjew
seems fundamental, nonetheless Riemannian geometry assumption should
be discarded. There are a lot of approaches which resign from Riemann ge-
ometry and are thus able to avoid too big a cosmological constant, reducing
it down to zero. In other approaches one had resigned from Riemann geom-
etry even for the case of electromagnetism, substituting it with a geometry
from Einstein–Cartan theory. This resulted in composition of the two known
extensions of the classical General Relativity Theory: Einstein–Cartan and
Kaluza–Klein theories. In this fashion, additional predictions not envisaged
neither in Einstein-Cartan nor by Kaluza–Klein mentioned earlier had been
obtained. Here belong new Cartan equations linking the torsion in the fifth
dimension and the electromagnetic polarization of the sources, additional
contact terms in the energy-momentum tensor of the (electromagnetic mo-
ment) × (electromagnetic moment) type, electric field’s energy-momentum
tensor in the form given by W. Israel and the additional electric current as-
sociated with spin. This approach could be without obstacles extended onto
a case of arbitrary gauge group. It has been called Kaluza–Klein theory
with torsion. We were discussing more widely this topic during our remarks
concerning the geometrical unification of the two theories T1 and T2. One
gets the feeling therefore that taking into account non-Riemannian geome-
tries in the generalized Kaluza–Klein theories is reasonable and interest-
ing. Kaluza–Klein theory has very simple and natural generalization based
on Riemannian geometry too. At its heart lies the abandoning of the so
called Kaluza Ansatz, that is the condition g55 = −1, assuming instead that
g55 = φ(x), where φ(x) is a scalar field defined on a space-time. This gener-
alization is called the Jordan–Thiry theory and results in coupling between
the electromagnetic field, scalar field and General Relativity Theory. The
scalar field enters in a non-trivial manner to the equations and reveals itself
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as an effective “gravitational” constant independent on the space-time point.
This theory is very much like the Brans–Dicke scalar-tensor theory with the
electromagnetic sources. Its extension for the case of non-Abelian gauge
group is easy to come by. Then the scalar field couples itself with cosmo-
logical constant. Hence, there the same problem arises as was the case with
Riemannian Kaluza–Klein theories. Jordan–Thiry theory has yet another
drawback. Namely, the scalar field φ in some approaches is the so called
“ghost” — that is, it has a negative kinetic energy in the Lagrangian of this
theory. It seems also that this inconvenience might be avoided by passage
to the non-Riemannian geometry on multi-dimensional manifold. Thus, the
search for a realistic Kaluza–Klein theory should be based mainly on the
choice of a suitable non-Riemannian geometry defined on multi-dimensional
bundle manifold. This geometry is to be of a type similar to that on a space-
time. One might see therefore that Kaluza–Klein theory with torsion, which
was mentioned above, fits this criterion.

Other approaches modify geometry on a multi-dimensional bundle keep-
ing Riemannian geometry on a space-time. The change of geometry on a
space-time means the abandoning of General Relativity Theory and substi-
tuting it with one of the alternative theories for gravity. There are however
not so many alternative gravitation theories which could be “valiable” ac-
cording to a classification put forward by C. Will. In addition to that, it
has to be a theory of gravity with a Lagrangian linear in curvature, since
otherwise we would have been forced to take into account e.g. quadratic
Lagrangians in Kaluza–Klein, which would eliminate the so called “Kaluza–
Klein miracle” — that is the appearance of a Yang–Mills field Lagrangian.
The majority of the alternative theories for gravity (those with quadratic
Lagrangian included) are only partially geometrical theories. They comprise
certain non-geometric elements, which spoil the General Relativity Theory’s
elegance and most often contradict the observations or experimental data.
Alternative theory of graviton will include in itself General Relativity The-
ory as a limit or special case and be identical with it in these instances
where General Relativity Theory fits the observational data. The examples
of Einstein–Cartan and Kaluza–Klein with torsion prove that it is possible.
An additional criterion to be fulfilled by such a theory is this: it should pos-
sess additional sources for geometry, capable of being interpreted in terms
of interactions other than gravitational ones, that is to say — there should
be conserved currents, associated with internal (non-space-time) symmetries.
The gravitational theory with a tele-parallelism which might have been taken
into account upon carrying through of such a procedure mentioned above,
does not satisfy this criterion.
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Einstein–Cartan theory by introducing spin as an additional material
source also fails to comply with the said conditions, in spite of the fact that
spin is very closely associated with the properties of the elementary parti-
cles. Nonetheless spin constitutes a purely space-time — like quantity. The
supergravitational extension of GRT is of the same type as Einstein–Cartan
theory. It is even equivalent to this theory when we limit ourselves to Rarita–
Schwinger sources (a spin 3/2 spinor field). One should rather look for su-
pergravitational extension of the alternative gravity theory just mentioned,
or look for its Einstein–Cartan type extension. The only theory suitable for
that purpose is Nonsymmetric Gravitational Theory put forward by J. W.
Moffat, or to be precise, its geometrical foundation, being a reinterpretation
of a geometry from Einstein’s Nonsymmetric Field Theory. Because of this,
it has well defined geometry, displaying certain common features with Rie-
mannian geometry. This theory has a Lagrangian linear in curvature and
introduces an additional material source for the space-time geometry — the
current associated with the fermion charge. The adoption of a Lagrangian
linear in curvature for a gravitational field is dictated by a kind of simplicity
rule. Once adopted in this form, the Lagrangian is linear (and hence the sim-
plest) interaction of gravitational potentials gap with space-time geometry
and also covariantly invariant. In a search for a realistic Kaluza–Klein theory
(Jordan–Thiry) one has to geometrize the spontaneous symmetry breaking
and Higgs mechanism in its language. This is possible once the extension of
the space-time with the additional manifold of degenerated vacuum states
is performed and after applying the dimensional reduction on a gauge group
principal bundle with the extended space-time being its basis. Further one
has to endow the bundle manifold with Riemannian geometry, in our case
it will be a geometry from Einstein’s Nonsymmetric Field Theory in its real
form. In order to understand why we could use this geometry in our ap-
proach, let us go on to characterize the second scheme for the unifying of
gravity and electromagnetism. This scheme, put forward by A. Einstein uses
non-Riemannian geometry defined on the space-time. As a basic quantity,
this geometry comprises a nonsymmetric tensor defined on the space-time.
This tensor induces in a unique fashion a linear connection on the space-
time. This is a nonsymmetric connection (torsion is not zero). Also the
Ricci tensor is nonsymmetric. One gets the equations of this theory from
Palatini principle for the curvature scalar obtained as a result of contracting
Ricci tensor with a nonsymmetric tensor gµν .

There is a problem of quantization of such theories. This can be achieved
by an extension of the Ashtekar–Lewandowski method or using nonlocal
quantization method by Efimov or Yukawa.
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The relationship between the connection and the tensor gµν could be
obtained as an equation of motion on the basis of the variational principle
mentioned. Traditionally, this definition is taken as a definition of connec-
tion in the theory under consideration. There is a large bibliography, a
purely mathematical one devoted to the investigation of properties of geom-
etry defined in the above fashion. Two possibilities were analyzed. Under
the first, the tensor g was complex Hermitean (as a matrix) while under the
second it was purely real. In both these cases, the quantity refereed to above
has two independent components: the symmetric g(µν) and the antisymmet-
ric one g(µν). According to the established tradition, the first of them is
being called Einstein–Strauss theory, while the second Einstein–Kaufman.
The hope which inspired the creators of both the theories was to obtain the
equations for electromagnetism and gravity from the vacuum equations of
the theory. The unification programme has also assumed the obtaining of
the equations of motion via a method similar to Einstein–Infeld–Hoffmann
for the charged particles and the derivation of Lorentz force. The basic
problem which appeared from the very outset here, was the question how to
construct the space-time metric (the metric tensor familiar to us in GRT)
and the electromagnetic field tensor Fµν starting from an original quantity,
that is the nonsymmetric tensor gµν . A lot of possibilities were considered
and the obvious choice of g(µν), as the space-time metric and of gµν as F[µν]
was not an only one. Summing up, all of these approaches had had some
drawbacks. It looked like this theory could not describe electromagnetism.
Currently one has managed to overcome these difficulties by adopting ad-
ditional assumptions concerned with the nonsymmetric connection. They
enable us to interpret the above theory as a macroscopic theory of gravity
and electromagnetism. The relationship between the space-time metric and
the nonsymmetric tensor gµν reveals itself through a complicated first order
differential equation, which only makes sense for a certain subclass of tensors
gµν . The electromagnetic field tensor Fµν is being identified here with R[µν]
— the antisymmetric part of Ricci tensor.

There is however yet another attempt to applying the scheme of Ein-
stein–Strauss or Einstein–Kaufman theories. This approach relies on a cer-
tain new achievement in physics, unknown in A. Einstein’s times. This is a
Nonsymmetric Gravitational Theory put forward by J. W. Moffat. In his in-
terpretation the gravitational field is more complicated and described by two
kinds of potentials: g(µν) — the metric and g[µν] — the antisymmetric tensor.
This antisymmetric tensor has nothing to do with the electromagnetism. It
was proved that in a linear approximation of the equation, the spinor com-
position of the theory is (2, 0), that is a graviton plus a particle with a spin
zero called “skewon”, associated with g[µν]. There is no room here for the
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electromagnetism since a photon caries a spin of 1. The notion of sources for
the gravitational field obtains an extended sense in this theory. Two types
of gravitational charges — mass and fermion charge, usually determined as
F = B − L, where B — the baryon number, L — the lepton number. In
classical gravitational theory mass as a measure for the quantity of matter,
is a source of the gravitational field. However, we know from investigations
in the area of Grand Unified Theories (GUT) for the elementary particles,
that there is yet another “measure of the quantity of matter”. It is just the
fermion charge. It is a conserved quantity, and as scalar, that is additive
quantity assumes non-zero and significant magnitudes for the macroscopic
bodies consisting of matter, that is from fermions (without anti-fermions).
Roughly speaking, the fermionic charge of a macroscopic body will be pro-
portional to the quantity of neutrons in this body. The universal nature of
gravitational interactions is being conserved here, because both gravitational
charges are measures of the quantity of matter. In this way there appear
two sources in the theory mentioned above: energy-momentum tensor (in
general nonsymmetric one) and the fermion current. The introducing of the
second type of gravitational charge — the fermion one is associated with the
appearance of an additional coupling constant similar to Newton’s constant.
The theory satisfies the Birkhoff theorem. Spherically-symmetric solution of
the field equations (reinterpreted spherically-symmetric solution of the field
equations in Einstein’s Nonsymmetric Theory, found by A. Papapetrou and
J. R. Vanstone) provides corrections to the motion of a test particle in a
gravitational field. These corrections could be associated with the relativis-
tic corrections to GRT in Schwarzschild field. The difference comes from the
new post-Newtonian correction, associated with the fermionic charge. It is
a higher order correction. In Einstein’s Unitary Field Theory it was one of
the fundamental obstacles. For by interpreting the solution as a geometrized
field — the gravitational field and the electrical one of a charged body, one
had hoped to get a term with Lorentz force stemming from Coulomb field
acting onto the test particle. Here it is rather a merit, since otherwise we
would be led to contradiction with the experiment. As a matter of fact we
do not observe long-range Coulomb forces proportional to the quantity of
neutrons inside a body. The correction mentioned above has a noticeable
influence onto the perihelion advance of Mercury, provided that we employ
the Nonsymmetric Theory of Gravitation for Solar System description. This
enables us to evaluate the new coupling constant occurring in the theory.
By associating this with the new data concerning the quadrupole moment of
mass of the sun, we could get an approximation of that constant. Additional
terms could play a significant role only in a very strong gravitational fields
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e.g. in closed binary systems, gravitational collapse and the early cosmologi-
cal phases. It had in fact been used in such cases and has managed to clarify
certain discrepancies between the observation and theory for DI Hercules
case (closed binary), X — ray bursts, etc.

In the case of cosmological models it gives interesting outcomes for the
problems of the inflationary Universe and cosmological horizon. This the-
ory has a well posed Cauchy problem. J. W. Moffat and collaborators have
managed to elaborate the PPN formalism for this theory. They examined
also the models of stars described by it. A major issue here is the problem of
predicting the gravitational radiation in this theory. It turns out that in its
linear version there is only the quadrupole radiation, given by the same for-
mula as in GRT. The dipole radiation occurring here, is being only obtained
for higher order of the coupling constant. For that reason the theory remains
in a complete agreement with the observational data originating from the
pulsar (closed binary) PSR1913 + 16. As we know, these data had falsified
many from among the alternative theories for gravity e.g. Rosen’s bimetric
theory. One significant thing which makes the Nonsymmetric Gravitational
Theory similar to GRT is the fact that the test particles and light move
according to it along the Riemannian geodesics generated by a symmetric
part of the tensor g(µν). One could obtain this result provided that suit-
able assumptions about the energy-momentum tensor are made. Using the
non-Riemannian geodesics also leads to the successes. It seems that these
geodesics are nearer the generalized Galileo principle and that one should
modify this theory in this spirit. There is also an attempt to extend this
theory onto the cases of sources with spin similar to the Einstein–Cartan the-
ory. The black hole in this theory also has been the subject of consideration
by methods similar to these of Hawking and Wald in GRT. It is interesting
to note that this theory in one of its formulations uses the hypercomplex
metric. This version is equivalent to one where gµν is nonsymmetric, but
real. In the original versions of it also the complex case was considered. It
was abandoned because of the following reasons. In a linear approximation
there appeared in this case the so called “ghosts” that is the particles with
negative energy or tachyons. Only the purely real case or hypercomplex one
allows to avoid these contradictions. The hypercomplex version could not
be extended in a consistent way to Kaluza–Klein case.

The behaviour of an antisymmetric part of the tensor g[µν] presents an
interesting phenomenon in this theory. In linear approximation this field
behaves like a generalized Maxwell field, that is Abelian gauge field with
two subscripts. It is described by a massless two-form h = h[µν] dx

µ dxν and
its strength F = dh = h[µν,λ] dx

µ ∧ dxν ∧ dxλ. The Lagrangian of this field
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F ∧F is similar to Kalb–Ramond Lagrangian in string theory. This justifies
the hope that this theory has something in common with strings or even
superstrings. In nonsymmetric Kaluza–Klein theory one obtains the action
of a generalized Maxwell field with non-Abelian gauge fields (Yang–Mills).

We see therefore that the alternative gravitation theory based on the
formalism of Einstein’s Nonsymmetric Field Theory has a lot of interesting
properties. It is undoubtedly a “valiable theory” to use C. Will’s terminology
concerning the alternative theories of gravitation. It seems however that
there are questions in the theory, which one cannot satisfactorily answer
exclusively within the theory itself. These questions are associated with the
very nature of the second gravitational charge, i.e. the fermion charge. This
charge comes from a theory of elementary particles within GUT framework
and e.g. in a theory based on SO(10) group is one of its generators. The local
gauge symmetry which corresponds to this charge is being spontaneously
broken by Higgs mechanism. This symmetry is: U(1)F = U(1)B−L. To this
symmetry there corresponds a massive intermediate boson AFµ , the part of
Yang–Mills field with gauge group SO(10). Of course it is possible to consider
groups of higher rank. The relationships between a non-Abelian gauge field
could not be explained by a formalism based only on the nonsymmetric
connection defined on the space-time. Therefore the need arises for extending
it to a kind of geometric scheme which would naturally include nonsymmetric
geometry and gauge fields. Nonsymmetric Kaluza–Klein theory (Jordan–
Thiry) constitutes the extension of this sort.

During the last several years the nonsymmetric Kaluza–Klein theory
has been elaborated together with its extension to a nonsymmetric Jordan–
Thiry theory. Also were found the non-Abelian extensions of nonsymmetric
Kaluza–Klein and Jordan–Thiry theories. The nonsymmetric Kaluza–Klein
theory has been extended for the case of non-vanishing external sources (in-
cluding also spin). Spontaneous symmetry breaking has been introduced as
well as the Higgs mechanism (the method of dimensional reduction). Lin-
ear versions of both theories, that is nonsymmetric Kaluza–Klein and non-
symmetric Jordan–Thiry were found. Also the first exact solutions of the
equations of Kaluza–Klein theory were given. The results of the preced-
ing works were also successfully extended onto the case of a nonsymmetric
Kaluza–Klein theory, that is the obtaining of a dipole momentum of electric
fermion and the breaking of CP. Nonsymmetric Kaluza–Klein theory (Jor-
dan–Thiry) implements the real unification of gravitation and gauge fields in
the following sense. In this theory we obtain interference effects between the
gravitational field and gauge fields (electromagnetic one, in a 5-dimensional
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case) which are missing in a traditional approach. We have the interference
effects as follows:

1) Additional term in a Lagrangian of an electromagnetic field equal
2(g[µν]Fµν)2 (for the gauge field 2(habHaHb), Ha = g[µν]Ha

µν , where
Ha
µν is the Yang–Mills field strength, the bundle curvature).

2) New energy momentum tensor for electromagnetic field (gauge field).
There are several equivalent forms of that tensor.

3) Two electromagnetic field strength tensors (gauge field), that is
Fµν′Hµν(= Ha

µν′L
a
µν). One of them represents a usual strength (bundle

curvature) constructed from ~E, ~B ( ~Ea, ~Ba). The second in turn is a
tensor with taking into account of polarization ~D, ~H ( ~Da, ~Ha). The
relationship between the two tensors could be considered as generalized
material relationships and given a formula (for the first case).

gδβg
γδHγα + gαδg

δγHβγ = 2gαδgδγFβγ . (4.7)

It is clear that for gαβ = gβα we have Hµν = Fµν . This is is going to
prove that a gravitational field described by a nonsymmetric theory of
gravity serves as a polarization source. The gravitational field there-
fore behaves like an electromagnetic polarization conserving medium
(Yang–Mills in general case).

4) The source (current) for the second pair of Maxwell’s (Yang–Mills)
equations that is the current iµ(iαµ). This current for the electromag-
netic case is being identically conserved which proves that it might
have been associated with certain topological properties (topological
current).

5) Vacuum polarization (due to the gravitational field)

Mµν = − 1
4π (Hµν − Fµν)

(Mα
µν = − 1

4π (Laµν − Ha
µν), in a general Yang–Mills case). This polar-

ization has the interpretation of torsion in higher dimensions.

Q5
αβ = 8πMαβ

Qaαβ = 8πMa
αβ

(4.8)

Equation (4.7) can be solved with respect to Hνµ

Hνµ = Fνµ − g̃(τα)Fανg[µτ ] + g̃(τα)Fαµg[ντ ].
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However the form of Eq. (4.7) is easier to handle from theoretical point
of view. We get

Q5
µν = 8πMµν = 2g̃(τα)(Fαµg[ντ ] − Fανg[µτ ]

)
, and

Lnωµ = Hn
ωµ + µhnakadH

d
ωµ +

(
Hn

αω g̃
(αδ)g[δµ] −Hn

αµg̃
(αδ)g[δω]

)
− 2µhnakadg̃(δτ)g̃(αβ)Hd

δαg[τω]g[βµ] − 2µhnakadg̃(δβ)g̃(ατ)Hd
β[ωgµ]τg[δα]

+ 2µ2hnahbckackbdg̃
(αβ)Hd

α[ωg[µ]β]

Qnωµ = −2
(
µhnakadH

d
ωµ +

(
Hn

αω g̃
(αδ)g[δµ] −Hn

αµg̃
(αδ)g[δω]

)
− 2µhnakadg̃(δτ)g̃(αβ)Hd

δαg[τω]g[βµ] − 2µhnakadg̃(δβ)g̃(ατ)Hd
β[ωgµ]τg[δα]

+ 2µ2hnahbckackbdg̃
(αβ)Hd

α[ωg[µ]β]
)

in a general Yang–Mills case.
6) Additional term in the equation of motion of the test particle, that is,

one of the form of Lorentz force in the electromagnetic case.

(Kalinowski 1990, 1991, 1992, 2014, 2015a, 2015b, 2016)
This term has the interpretation of the reaction force for the non-holo-

nomic constraints. In the non-Abelian case, we get a comparable term mod-
ifying the Kerner–Wong equation. In the Jordan–Thiry case we obtain also:
1. Lagrangian for the scalar field ψ. 2. Energy momentum for that field
(ψ). 3. Additional scalar forces, modifying the motion of a test particle
(generalized Kerner–Wong equation). The scalar field ψ is associated with
the effective gravitational constant via the formula

Geff = GN exp(−(n+ 2)ψ) (4.9)

where GN is Newton’s constant, and n is the dimension of the gauge group.
Scalar field energy momentum sensor has a non-vanishing trace, which tes-
tifies that this is probably a massive field, acquiring the mass in time conse-
quence of its interactions with other fields.

These additional effects, labelled as interference ones, do not lead to con-
tradictions with either experimental or observational data for the weak fields
case. They bring instead interesting effects at the level of exact solutions.
It was due to these effects that one managed to find nonsingular solutions
(in the electromagnetic and gravitational fields), which asymptotically ap-
proached towards the solutions known from the nonsymmetric gravitational
theory. The search is under way to find the stationary axially-symmetric
cosmological solutions.
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Let us return to the dynamics of the geometrized theories, or to the
means of obtaining Einstein type equations of motion or the second pair
of Maxwell’s equations. In the case of Maxwell’s equations; it consists in
choosing the suitable Lagrangian L(S, P ). We consider here the nonlinear
electrodynamics. The relationship between Fαβ and Hαβ is given by

Hαβ = − ∂L

∂Fµν
= ∂L

∂S
Fµν + ∂L

∂P
F ∗µν . (4.10)

This relationship is very interesting since Fαβ has the meaning of curvature
and in the kinetic picture of the theory is related to a four-potential Aµ
(a connection). This relationship might be extended for the case of grav-
ity by choosing instead of Fαβ the curvature of the bundle associated with
gravity and taking in place of L — the corresponding purely gravitational
Lagrangian, e.g. the quadratic one.

Let us return now to the nonlinear electrodynamics and note that the
arbitrariness in choice is in principle unlimited.

Born–Infeld choice

L(S, P ) = b2
(

1−

√
1− 2S

b2
− P 2

b4

)
, b = const (4.10a)

and Maxwell’s
L = S (4.10b)

are in a sense privileged. Namely, they are the only Lagrangians which do not
result in bireffraction of the vacuum. What does the bireffraction of the vac-
uum mean? In general for the nonlinear electrodynamics there are two types
of electromagnetic radiation with two different light cones. One of this cones
is inside the Minkowski cone, the other is outside it. Therefore one type of
radiation gets propagated with the superluminal velocity. This phenomenon
is similar to a bireffraction of the cristals (e.g. icelandic spat), whence the
name. It is an interesting thing to investigate the solutions of GRT with
electromagnetic sources described by Born–Infeld electrodynamics. It turns
out that we arrive at solutions without singularities in a gravitational field,
asymptotically of Schwarzschild type. These solutions also do not have sin-
gularities in the electric field. At this point let us observe that there is an
interesting relation between Born–Infeld electrodynamics and the Nonsym-
metric Field Theory. Namely L(S, P ) from (4.10a) could be rewritten in the
form √

det(ηµν + bFµν)−
√

det(ηµν)

where ηµν is a Minkowski tensor.
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Let us note also that the Lagrangian of a Maxwell’s electrodynamics is
quadratic in the fields and confront this fact with the linearity of gravita-
tional Lagrangian in GRT. From this point of view we shall compare the
dynamics of the gravitational and electromagnetic fields. To that end we’ll
try first to inquire whether one could consider the theory of gravity as a
gauge field theory. In accordance to what was said above, the changes of co-
ordinate system-general Einsteinian invariance constitutes the counterpart
of gauge transformations of the second kind. What concerns the gauge group
— it should be Lorentz or Poincaré one. It turns out that this problem is not
unique and depends on what we decide to take as a basic quantity, metric
tensor gαβ or connection ωαβ(Γαβγ). In the case when we take gαβ as basic
quantity and formulate the theory with the help of tetrad hαb .

gαβ = haαh
b
βηab (4.11)

(ηab = diag(−1,−1,−1,+1), ηab — Minkowski tensor). Then it shall turn
out that the gauge group is A4-translation group in 4-dimensional space.
Here we might associate with haβ the Yang–Mills field in accordance with
Kibble’s Ansatz.

haβ = δaβ +Aaβ (4.12)

Under certain assumptions about the form of a Lagrangian, one could obtain
GRT out of this. Let us note that the choice of A4 as a gauge group for
the gravitational field confirms the observation in linear theory of gravity.
Namely the transformation

hµν → hµν = hµν + 2∂(µξν) (4.13)

constitute a natural generalization of the electromagnetic gauge for the ten-
sor hµν . This transform could be obtained in a linear approximation of
GRT from Einsteinian invariance: Here from Einstein equations we obtain
d’Alembert equation for

hµν = hµν −
1
2 hηµν , h = hαα

−�hµν = 2κTm,
∂hµν
∂xµ

= 0
(4.14)

Thus, linear theory of graviton is analogous to Maxwell’s electrodynamics.
Another ground for considering the gravity as gauge field would be adopting
of ωαb as a connection on a bundle of orthogonal bases over the space-time.
Then Lorentz group in a natural way will become a gauge group for the grav-
itational field as Yang–Mills field. Of course, the simultaneous adoption of
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both view-points together would be possible. Namely, let the tetrad haα and
connection ωαβ describe gravitation at the same time. The relation between
the metric tensor and connection given by the condition of its metricity could
be considered as a condition for constraints. In the latter case, we need not
to require the vanishing of the connection’s torsion. Under such circum-
stances Poincaré group becomes the gravity gauge group. In this case let
us notice that there are fundamental differences between the gravitational
gauge theory and any other gauge group theory e.g. the electromagnetic one.
Poincaré gauge group is a symmetry of space-time and everything is sub-
ordinated to it, whereas the phase transformation generated by U(1) group
applies only to the charged fields. Of course this follows from the universality
of gravitational interactions. On the other hand the bundle of frames over
the space-time is a natural bundle, in contrast to the electromagnetic bundle,
where the fibres are arbitrarily glued to the space-time (it does not follow
from the bundle structure). Let us note that from the gauge theory point
of view vanishing of torsion in GRT appears as something very arbitrary.
The generalization of GRT to Einstein–Cartan theory seems to be from this
point of view very natural. This generalization might also be dictated by the
fact that we need two parameters, mass and spin to mark Poincaré group
irreducible representations. In GRT mass constitutes a source for geometry,
while in Einstein–Cartan theory a linear Lagrangian was chosen, leading to
Einstein’s equations and Cartan ones through Hilbert’s variational princi-
ple. Of course other Lagrangians nonlinear in curvature are admissible, too.
Here belongs Yang theory of quadratic gravity with a Lagrangian

Lgrav = RαβR
αβ. (4.15)

Due to the quadraticity of Lgrav in Rαβ this is a theory corresponding to that
of Yang–Mills, where the Lagrangian is quadratic. In accordance with on
what we have said while discussing the nonlinear electrodynamics, we might
associate with gravity a “second strength tensor” analogous to Hαβ as a
derivative of the Lagrangian with respect to the curvature associated with
a gauge group-Poincaré one and write down the equation of motion for this
tensor as well. It turns out that in a natural manner there are two curvatures,
namely one associated with the tetrad haα and the other with the connec-
tion ωαβ . We get in this way two tensors Hαβ and two equations of motion,
the details of which depend on the form of the gravitational Lagrangian. One
of these equations also leads to energy-momentum conservation law while the
other — to the moment of momentum conservation law. Both conservation
laws follow from the Bianchi identity. In the case where the Lagrangian of
Einstein–Cartan theory is adopted as our Lagrangian — we get the equations
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of Einstein and Cartan. Under quite special choices of Lagrangians, we ob-
tain the torsion propagation instead the algebraic relationship which we have
in Einstein–Cartan theory. In spite of the great arbitrarity in choosing the
gravitational Lagrangians, it looks like GRT and E.C. with their linear La-
grangians are similarly distinguished as are Maxwell’s electrodynamics and
classical Yang–Mills theory among the other gauge theories. Nonsymmetric
Gravitation Theory is also a remarkable one among such other theories. At
this point, I would like to note that Brans–Dicke scalar-tensor gravity be-
longs to the same class as GRT and E.C. in spite of the introducing of an
additional element — the scalar field of the gravitational “constant”. This
quantity might obtain the geometrical interpretation in Jordan–Thiry type
of unifying theories, as a part of a metric tensor on the multi-dimensional
manifolds. There are some approaches which try to explain the 5-th force
with the aid of a scalar field associated with a gravitational constant. Should
this field assume mass, we could obtain a correction to Newton potential with
Yukawa (exponential) behaviour; therefore it is finite-range one.

It is interesting to notice that A. Poincaré was in some sense a precursor
of a geometrization of physics. However, even if he considered a geomet-
rical language as appropriate for physics, he was very much tied to the
Euclidean geometry of space and did not try to geometrize physical inter-
actions. His philosophical attitude for geometry is possible to deduce from
his conventionalism. H. Poincaré understood a difference between a mathe-
matical 3-dimensional space and a physical one. A. Lubomirski (Lubomirski
1974) considers Poincaré’s ideas in his book Henri Poincaré’s philosophy of
geometry (in Polish).

To conclude the above considerations, I would like to pay attention to
a difference between the application of geometry in the theoretical physics
and the unifying geometric schemes. The problem of geometrization of the
fundamental physical interactions has arisen once General Relativity Theory
was created, in spite of earlier attempts of using the geometrical methods in
the theoretical physics. Namely, in the theoretical mechanics (the classical
mechanics of Newton) certain the least action principles could have been
expressed in the geometrical language. For that purpose certain abstract
Riemannian manifolds were constructed in such a way that the principle of
the least action would become a principle of the minimal (extremal) dis-
tance separating two points on this manifold. This could be achieved by
introducing a suitable metric tensor associated with a given problem (e.g.
a quadratic form of the kinetic energy). The physical system implemented
the motion by choosing (from among on possible paths linking the starting
and the terminal point) such a path, the motion along which would occur
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without any forcing. To put it simply, this motion presented a free-fall case
on a given parametric manifold of independent coordinates. It was taking
place along geodesic lines. Clearly the form of metric tensor depended on the
choice of physical systems and varied quite widely. In addition to that, in
a specific problem, the metric tensor was not a dynamic quantity, it played
the role of a certain background. This metric tensor and the Riemannian
connection associated with it had nothing to do with fundamental properties
of the space-time. It remained Newtonian like the mechanics which was at
the core of this whole theory. I would like to note that the idea of intro-
ducing a curved space (I discern it here from the space-time) originated due
to Riemann himself, who was also interested with gravity, more specifically
with the perihelion advance of Mercury. The attempt of fitting theory with
the observational data, via the introduction of other gravitational potentials,
the so called Riemann–Weber potentials is also due to him. This was, as
we know, an unsuccessful attempt and we could refer to it as an anecdote
at least due to the fact that this theory was in agreement with Mach prin-
ciple. Therefore we see that A. Einstein was not the pioneer of geometrical
methods in physics. One of his teachers H. Minkowski has introduced to the
Special Relativity Theory the tensor and the space-time named after him.
The contribution of D. Hilbert to General Relativity Theory is also worth
mentioning here. He was the first who observed that the Lagrangian used
by A. Einstein is equivalent to a scalar curvature R, and had formulated the
variational principle in General Relativity Theory, bearing his name. The
idea of associating the equivalence of the inertial and gravitational forces
(plus of the general Einsteinian invariance) with the covariance of General
Relativity Theory equations is also due to Hilbert. General Relativity The-
ory was the first attempt towards geometrization of the physical interactions.
It was a conscientious geometrization, for the fact of an earlier geometriza-
tion of the electromagnetic field in Maxwell’s electrodynamics remained for
a long period unnoticed. This was after on caused by the nonexistence of
suitable mathematical methods at the times of C. Maxwell’s life. One has
to admire the geniality of Maxwell’s intuition, making such a choice among
the different electromagnetic phenomenologies.

Recently some extensions of General Relativity to Aether existence ap-
peared. It means, some researchers added to the theory a vector field (an
Aether). In this way there is a preferred system of coordinates. This Aether
is a dynamical field. These theories are called Einstein–Aether theories.
These theories are geometrized from the very beginnings.

Let us give some remarks on Standard Model of fundamental interactions
and elementary particles. The bosonic part of the model is based on Yang–
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Mills fields with a gauge group SU(3)c (QCD) and Glashow–Salam–Weinberg
(GSW) model of electroweak interactions. The first part (QCD) describes
strong interactions. GSW model contains SU(2)L⊗U(1)Y Yang–Mills fields
and a doublet of Higgs’ field. After a spontaneous symmetry breaking and
Higgs’ mechanism we get U(1)em — gauge field, an electromagnetic field and
massive W±, Z0 boson. We get also massive Higgs’ boson. The bosonic part
of SM model can be easily geometrized. Yang–Mills field with SU(3)c de-
scribing strong interactions is mathematically a connection on a fibre bundle
over a space-time. GSW model with Higgs’ fields can be described as a con-
nection with G2 group over E×S2 where S2 is a two-dimensional sphere and
E is a space-time. Supposing a SO(3) symmetry of the connection we get
SU(2) × U(1)-gauge field and a doublet of scalar fields with double quartic
selfinteraction potential coupled to SU(2) × U(1) — Yang–Mills field. We
get a spontaneous symmetry breaking and a Higgs’ mechanism in the theory.
This procedure, known as a dimensional reduction, geometrized GSW-model
(a bosonic part of GSW). Thus geometrization and a SM model are strongly
combined. One can get the further unification using Kaluza–Klein approach
in the nonsymmetric version.

The Nonsymmetric Kaluza–Klein Theory is an example of the geometriza-
tion of fundamental interaction (described by Yang–Mills’ fields and Higgs’
fields) and gravitation according to the Einstein program for geometrization
of gravitational and electromagnetic interactions. It means an example to
create a Unified Field Theory. In the Einstein program now we have to do
with more degrees of freedom, unknown in Einstein times, i.e. GSW model,
QCD, Higgs’ fields, GUT. Moreover, the program seems to be the same.

One of the directions in geometrization and unification is to use more
general lagrangian than (4.15), i.e.

Lgrav = f(R,Rαβ). (4.16)

In this case we should consider higher order field equations. Moreover, there
is a different approach to such a theory. Due to Legendre transformation
(advocated by J. Kijowski) we get ordinary General Relativity with addi-
tional scalar fields. This approach can be generalized to use a scalar field
(as in Brans–Dicke theory) and also to higher dimensional theory. These
scalar fields can be considered as a source of a dark matter (scalarons)
and dark energy. J. Kijowski considers also more general lagrangians f(R),
f(RαβRαβ), f((RαβµνεµνλρRβαλρ)2) where Rαβµν means a curvature tensor
(not necessarily Riemann–Christoffel tensor), εµνλρ being a Levi-Civita pseu-
dotensor. One can consider also some different lagrangians, i.e. f(gµν , Rαβ).
f means here an arbitrary function. It is possible of course using Legendre
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transformation techniques to define a new metric (symmetric) tensor and
a Levi-Civita connection compatible with this tensor. The interpretation
of this new connection and new tensor can be complex. They could not
have clear physical interpretation. L. M. Sokołowski (Sokołowski 2007) is
using f(R), f(gµν , Rαβλδ) gravity theories in cosmology. He concludes that
it is impossible to recover nonlinear Lagrangian gravity from pure cosmo-
logical observations because Friedmann Universe is so special. He concludes
that Solar System observations are also blind for a difference between GRT
and nonlinear gravities. Thus we cannot get correct theory of gravity from
cosmology.

In GRT we have gravitational wave solutions (e.g. Robinson–Trautman
solution). Such solutions describe very strong gravitational field. Moreover,
we are looking for gravitational waves from linear theory of gravity (lin-
earized version of GRT) using several very sophisticated detectors. These
gravitational waves are very weak and we are up to now not successful.

In the Nonsymmetric Kaluza–Klein (Jordan–Thiry) Theory we can find
gravito-electromagnetic waves (e.g. generalized plane waves). We are looking
for more sophisticated solutions, i.e. spherical waves and cylindrical waves.
We are looking for axially symmetric stationary solutions in the electromag-
netic case and in non-Abelian case. Also we are looking for such a solution
in the case of Nonsymmetric Kaluza–Klein Theory with Higgs’ mechanism
and spontaneous symmetry breaking. They give us models of elementary
particles (e.g. an electron). This is a holistic aspect of the Nonsymmetric
Kaluza–Klein Theory. Let us give the following remark on classical Kaluza–
Klein Theory. This theory unifies all known classical Physics, i.e. General
Relativity and Maxwell–Lorentz electrodynamics. This unification is geo-
metrical.
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5 Dialectical Notion of Matter and the
Geometrization of the Physical Interactions

This chapter is devoted to the geometrization of physics as interpreted from
the dialectically-materialistic standpoint. There is a feeling that the idea
of geometrization and unification of physics, developed in the preceding
chapters, has an idealistic nature in the philosophical sense. However, a
dialectically-materialistic interpretation of the very same notion seems also
reasonable. Therefore we will bring the supporting evidence from the stand-
point of dialectical materialism. In a matter of fact, the ideal geometrical
forms of (Euclidean) geometry are found at the foundation of Plato’s ide-
alism. Plato and his followers were well aware that a triangle, a straight
line, a point etc. in Euclid’s geometry are not identical with the triangles,
straight lines occurring in nature, or ones drawn on sand. They were equally
aware that this has nothing to do with the appearance of the drawing. The
same conviction is shared with them by contemporary draftsmen. That is
why the ancient thinkers felt it necessary to create the notion of the ideal
geometrical forms non-perfect counterparts of which are the forms appear-
ing in nature. The furthering of the same notion lies at the very core of the
famous story about the slaves in the cave. The linking of Plato’s idea with
the geometrization and unification programme presented thus far — would
be unreasonable for at least two reasons.

For the first one, it is a fact that since the ancient times the geometry has
come along evolutionary way and we no longer rely on drawing the elements
of contemporary geometry on sand, as it might have been the case for Thales,
Plato, or Archimedes. There is no approximate correspondence between the
non-ideal geometry of everyday life and an ideal one within the realm of
mathematical abstraction, where proven theorem would be exactly satisfied.
One of Plato’s arguments therefore becomes invalidated. Currently, the ge-
ometry is far more abstract and most often it has very little in common with
the simple spatial relations of everyday life. Similar case as the information
extraction about the properties of a right-angled triangle inscribed into the
circle via the inspecting of the architectural forms will no longer be possi-
ble. It is highly unlikely that we shall get a theorem of algebraic geometry
on the basis of this type of observations. This example with the triangle
is associated with Thales; supposedly it was he who had come to the idea
of proving of the said theorem just on the basis of the observation of this
sort. At present, geometry is very much distant from the architectural forms.
Nonetheless, there is in contemporary geometry still something left from this
ancient geometry. This thing is constituted by a certain kind of geometric
intuition, to such a degree different from the general mathematical one that
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we are still separating geometry from other branches of mathematics. We
often adjoin to it such adjectives like analytical, protective, topological, dif-
ferential or algebraic. Then it is being dictated by the fact that the problems
being formulated in a given theory find this expression in a language very
much like the geometrical one used in ancient times. It seems like the lan-
guage in question has been derived from certain generalizations of everyday
experience concerning the relationships between figures in space. The fact
that contemporary geometry is able to describe successfully the physical in-
teractions at the level of very deep structures of matter testifies only for the
unity of matter, which admits the descriptions using similar means at the
quite different level of its structure.

Another misconception is the one mentioned by V. I. Lenin in his work
Materialism and Empiriocriticism. Namely, analyzing the problems accumu-
lated as a result of “revolution in physics” and adopting a skeptical position
against the exclamations envisaging “the crisis of materialism” V. I. Lenin
chiefly emphasized the fact that it is completely inappropriate to mix this or
other theory of matter with the concept of matter as a philosophical notion.
Dialectical materialism is by no means to be reduced to a certain theory
of matter. These theories could be variable and relative. Unchanging are
however in dialectical materialism the claims to the effect that the matter
constitutes the objective reality given to us in the perceptions. The matter
is given to us in experiment and constitutes the objective source for human
perceptions. It exists independently from human consciousness and finds
its reflection in this consciousness. In this way, a fundamental difference
between materialism and idealism, that is the issue: what is more basic —
matter or thought, does not depend on the theory of physical matter. This
issue could not be tackled solely on the basis of the structure of matter. Ac-
cording to this view, light, electromagnetic waves, fields and the elementary
particles are all material. In this sense geometry is material, since it is being
identified with the fields of physical interactions and probably could also be
identified with the elementary particles, once they turn out to be exact solu-
tions of the field equations. In this manner, geometry appears to be material,
objective reality. It becomes material which is after on in consonance with
the intuitive understanding of objective reality. Of course the interpretation
of geometry along the lines of Plato’s philosophy or neo-Platonism could still
be possible and consistent. One should not follow a dialectic point of view
if fells that the idealistic one fits better the reality.

The approach developed by dialectic materialism is now a part of history
of philosophy as also Lenin’s work Materialism and Empiriocriticism (Lenin
1967). Moreover, the problem and the work of V. I. Lenin were criticized by
many prominent dialectic philosophers and politicians in Soviet Union, e.g.
by Ï. V. Stalin. He called it “a storm in a teacup”. Presently this work is in
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the history of philosophy (in particular, philosophy of natural sciences, i.e.
physics) and in such a way it should be considered.

From the scientific point of view it is necessary to reject historiosophy
(philosophy of history) by K. Marx, F. Engels, V. I. Lenin and Ï. V. Stalin
and a brutal and criminal political practice deduced from it as nonscientific
and false. Moreover, it is not necessary to reject all dialectical material-
ism which is connected to the critical rationalism and to a realistic trend in
contemporary philosophy of science (philosophy of physics). In this way we
agree with the last philosophical views by W. Krajewski (one of the great-
est experts in marxist philosophy), see Contemporary scientific philosophy:
metaphilosophy and ontology (in Polish) (Krajewski 2005). His last philo-
sophical views are part of the so-called scientism.

The fundamental error committed in marxism historiosophy is as follows.
They created a theory of development of human society. They supposed that
after a revolution they would be able (being in a power, as leaders of dic-
tatorship of the proletariat) to change the society using only administrative
decisions (some of the leaders of the revolution were very skilled administra-
tors) to communist society. This was a fundamental assumption (a dogma) of
the so-called scientific communism. Simultaneously this was a fundamental
error which goes to the brutal and criminal political acts (as in the October
Revolution in Russia, after in Soviet Union). All these acts were justified
by this error in assumption that they know laws of this development, as we
know laws of thermodynamics. In this way marxism historiosophy is unsci-
entific and false even if some of partial conclusions can be valid (of course
without any political implications). The best way to call it is to say it was
(political) utopia in a power. This could be considered as ridiculous if it were
not tragic.

To be honest in our critique of marxism historiosophy we should men-
tion two philosophers, i.e. Mao Zedong (also a leader of the revolution in
China and a political leader—the Chairman Mao) (Mao Zedong 2009, 2014)
and H. Marcuse. Mao Zedong added to marxism historiosophy a theory of
a revolution as a fight of world’s village against world’s town (city) or the
poor South against the rich North with a role of nuclear weapon (Little Red
Book and Mao Zedong’s Thought). H. Marcuse was a philosopher criticiz-
ing capitalism and so-called entertainment culture (One-dimensional Man)
(Marcuse 1964). Simultaneously he wanted to add sexuality to marxism
philosophy (Freudo-Marxism, Frankfurt school) in his work Eros and Civi-
lization (Marcuse 1955). Both approaches by Mao Zedong and H. Marcuse
in historiosophy seem to be unscientific and false. How they were important
in a social life in the West (especially in USA) is explained by the slogan
propagated by students: MaMaMa (three Ma—Marx, Mao, Marcuse).
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6 Latin Averroists and the Geometrical Unifica-
tion of the Physical Interactions

In this chapter we are going to compare the views of Latin Averroists to
the geometrization of the physical interactions. I would like to stress cer-
tain similarities between the idea of multi-dimensional geometrical unifica-
tion of physical interactions and some systems of medieval philosophy. Here
we mean the systems of Arabic followers of Aristotle, like: Avicenna (Ibn
Sina), Averroes (Ibn Rushd) and the Jewish ones, like M. Maimoun and the
Latin Averroists: Siger de Brabant, Boetius from Dacia (Copleston 1964;
Tatarkiewicz 2011; Kuksewicz 1968, 1971, 1973, 2005), etc. These systems
originated as a result of mixing the system of Aristotle with the neo-Platonic
ones (emanational) e.g. that of Plotynus tried to combine Aristotle with Pla-
tonism. Their creator’s failed to realize that what they considered to be the
original works of Aristotle or Plato — were in fact a mixture of both, ob-
tained as a result of invasions and disorders. They were convinced that what
they read and commented upon — were original ideas of Aristotle. They
themselves held a view that following the essence of Aristotelian philosophy,
according to these (Latin) authors, Averroes was the major commentator
of Aristotle. Creating comments of their own with respect to the supposed
works by Aristotle, they have managed to build original philosophical sys-
tems, which might be of interest until this day. It is worth noticing that the
hierarchical structure of the Grand Unification and of Kaluza–Klein models
is very much like the structure of an ontologic system put forward by Aver-
roes, provided that we recognize the following analogies. To a space-time of
today, one shall relate a sub-lunar region and to each successive supra-regions
one shall relate the groups and homogenous spaces in the unification models.
To the regress from a most ideal being down to a one most charged with mat-
ter inside a sub-lunar world, there is to correspond the passing from a higher
to lower symmetries. With the emanation of being there will correspond a
spontaneous symmetry breaking subject to the shrinking energy scale. To
a matter (in the sense of Aristotle) — the geometry describing the physical
interactions, to a form (in Aristotelian meaning) — there should correspond
an exact solution of the field equation. To a composition of matter and
form (that is — the being) — the elementary particle. To the Absolute — a
state with the highest symmetry (gauge group) before the compactification
and the spontaneous breaking of it. To the naturalness of the emanation of
being, there corresponds a spontaneity of symmetry breaking. This is not to
say that because of the above analogies we shall have to reinterpret idealis-
tically the Grand Unification. It is not necessary; after on we are confronted
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here with something; that in his time T. Kotarbiński called the principal
oppositions’ contact point. Geometry describing physical interactions is a
material one, there is no room here for the duality of the soul and matter
coming from Averroes. The structural similarities occurring mere are proba-
bly not accidental, and might be associated with some archetypical cognitive
categories of a human being. These parallels might bring us a lot of stuff
for thought, particularly once we would embark onto their materialistic ex-
planation on the basis of Kant’s philosophy; I mean here the materialistic
casting of Kant’s philosophy according to the school from Baden. Natu-
rally we have also the dialectically-materialistic explanation. According to
on these view-points, all theoretic concepts take their root in nature itself.
Due to this, we might conclude from the principle of uniqueness (Unity) of
matter that a system similar to the geometrization of physical interactions
might be discovered independently, and used in other applications for the
description of the world. Let us note that in the models under consideration
we use very involved mathematical apparatus, not only in the computational
sense, but in the conceptual one, too. Contemporary mathematics provides
us with a great variety of concepts; contemporary geometry is particularly
productive in this regard. All these concepts get applied very, quickly. One
of the latest achievements in the theory of finite groups might best explain
this: the so called F group (called also friendly giant, monster, or Fischer–
Griess group). This group and its representations have found an immediate
application in the multi-dimensional string model. Another example of im-
mediate applications to physics of new mathematical results is provided by
the algebraic classification of knots, recently obtained. The knots are the
usual ones, known e.g. from sailing. They found applications in the topo-
logical quantum field theory. Hence, we see that almost all mathematical
theories, the old (those from XIX century) ones and new alike, find applica-
tions in the geometrization and the unification of the physical interactions.
This is so remarkable that there are lot of those, who ask whether we will
find enough mathematics to describe the world, whether some gap has been
created between the mathematics (language of description) and the objective
reality. Are we approaching the limits of our capability of creating formal
models? Should this be the case, then perhaps our existing approaches and
methodology are in the need of change. Gnosis from Princeton (a leading
scientific center in the USA) is one such answer to these questions. The
role of philosophy at this moment is growing, and the attention paid by the
outstanding physicists to the philosophies of the East is by no means acci-
dental. They are looking there for inspiration, going to as they themselves
are saying, to translate the mysticism (idealism of the East) onto the math-
ematical formalism of the West. A lot of distinguished physicists have come
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to embrace the gnosticism claiming that the unification and the fundamental
questions in the area of elementary particles are “beyond our minds”. One
has to note that the problem of creating the geometrical unification of physi-
cal interactions is an extremely important cognitive problem. Its importance
could only be contrasted with the effort aimed at the creation of the great
philosophical systems of antiquity, middle ages, or modern times. Trying to
prolong this metaphor further, we might say that at present we are in the
period preceding the great system-elaborating phase, where the role of great
thinkers of antiquity is played by theoretical physicists. Contemporary Aris-
totle or Averroes would certainly be a theoretical physicist by profession and
would occupy himself with the problems of the unification of the physical
interactions.

Finally, I would like to return, for a while, to issue of Gnosis from Prince-
ton. Using here exclusively the philosophical systems of the East seems
not to be necessary. The parallels between the views of Averroists and the
geometrization and unification of the physical interactions sketched by us
above, speak for themselves. Let us note that there is a similar correspon-
dence between the geometrical unification mentioned here and the philosoph-
ical synthesis of St. Thomas the Aquinas. I mean mere chiefly the Thomistic
ontology. The adopting of any particular interpretation appears of course a
matter of taste. The only criterion would be the one of the interpretation’s
coherence over the widest possible application range.

The same we say in the case of Bonaventure (Giovanni di Fidanza) and
Albertus the Great (Albertus Magnus, Albert of Cologne). Contemporary,
after the year 1911 the Roman Catholic Church (Congregation of Studies)
came back to the original philosophy of St. Thomas the Aquinas (known now
as Neothomistic philosophy) and considered the Spanish Jesuit F. Suarez
as an authority only in canonic law (not in philosophy and theology). In
this way we can consider neothomistic philosophy as a place to develop a
geometrical unification of physical interactions. Neothomism is now under
rapid developments in many philosophical faculties on catholic universities
in all around the world, in particular at the Catholic University in Lublin
(e.g. Structure of a being, Metaphysics (in Polish) by M. Krąpiec) (Krąpiec
1963, 1985).

In our further investigations in philosophy of physics we can develop
holism and geometrization and unification of fundamental physical interac-
tions within Neothomism, according to Metaphysics by M. Krąpiec (or see
(Gilson 1994)). This can be achieved according to the ideas from this section.
In this way an arche of physics geometry will be purely idealistic. Moreover,
going according to the ideas advocated by W. Krajewski the interpretation of
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a fundamental arche of physics—geometry—will be materialistic. Geometry
will be here material (an extension of a definition of matter). Moreover, ac-
cording to Neothomism matter disappears as an independent (self-contained)
being (there is only a geometry behind physical interactions). This is in some
sense a priority of a spirit over a matter. R. Ingarden’s phenomenology af-
ter some important improvements gives us something in between. Matter
and geometry behind it have a realistic existence. Geometry means really a
matter (with a realistic existence).
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7 Geometrization Criterion as a Practical One.
The Role of Praxis in Physics

In this chapter we shall be presenting the geometrization criterion as one
dealing with practice. We might say that the scheme of geometrization and
the geometrical unification could be a very convenient way for the creation
of easily verifiable models and consequently — a very good physical method-
ology. In this sense it is a practically very convenient idea in the domain of
the unification of physical interactions, obtained also as an outcome of the
scientific practice in the domain of elementary particles. Let us note that
there are in physics a kind of two notable different types of notions for the
concept of praxis, working on two distinct levels. One of them works at the
level of constructing the theoretical models and according to the viewpoints
represented here, the methodology of geometrization of physical interactions
constitutes the outcome of the mentioned praxis. This is a practice praxis
of the theoretical work, applying the mathematical methods.

The experimental practice, leading to the rejection (or acceptance) of
a given theoretical model — constitutes the other type of practice. I am
expressively using the notion of praxis, and not the simple experimental ver-
ification, since this is much more complicated than it usually is believed.
Let us reflect for a while how we usually accept or reject a certain model
in the physics of elementary particles. For example let us consider the so
called standard model. This model is a generally accepted for the weak, elec-
tromagnetic and strong interactions. It includes Glashow–Salam–Weinberg
model the electro-weak interactions and QCD (Quantum Chromodynamics,
a model for strong interactions). The standard model comprises lot of phe-
nomenological (not determined by a theory) parameters and confronts us
with a lot of questions about the number of fermion generations, certain
internal relationships and the consistency issue. These features are not yet
understood by the theoreticians. Because of that, lot of competing models
was created, which in spite of having the same basic structure, bear in this
or another way on these questions and sometimes give definite values for the
phenomenological parameters.

Sometimes the competing models do introduce additional structures or
elements missing in Glashow–Salam–Weinberg model or QCD. These new
elements might be translated into particular experimental predictions con-
cerning definite physical processes, e.g. cross-sections, particle lifetimes, their
mass, etc. From this point of view it appears practically useful the creation
of the so called standard supermodel or more particularly Glashow–Salam–
Weinberg supermodel (which of course does not constitute a supersymmetric
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extension of Glashow–Salam–Weinberg model). This new model consists of
the following: all its phenomenological parameters are arbitrarily indepen-
dent and create a certain (multi-dimensional) abstract space of parameters.
Every model (in particular, the standard one, too) has its point (one could
better say: a region in this space). The experimental practice from many
years determines the appropriate region in the space of parameters and thus
eliminates the subsequent models, the progress in the reduction (narrow-
ing) of the admissible region or shifting of it as a result of discovering the
systematic errors. Let us note also that a very similar procedure has been
employed for the case of testing the alternative theories of gravity. This is
the so called PPN formalism (Parametrized Post Newtonian) put forward
by C. Will. An interesting outcome of this practice has been ruling out of on
theories for gravity except GRT and the Nonsymmetric Gravitation Theory.

Finally, let us reflect for a while upon the experimental practice verifying
the standard model e.g. in Geneva (CERN). For one, there are large groups
of experts in many areas, from physicists to technicians, computer scientists
and mechanicians. Secondly, there are theories of measuring devices, e.g.
detectors, accelerators with the independent practices for these instruments.
At the same time we have the theory and practice of processing the exper-
imental data on computers with the possibility of the so called computer
artefacts. The latter appear lately quite often. Let us notice that we are
checking the standard model modulo theories of instruments. In the case of
accelerator it is the classical electrodynamics, whereas for the testing of the
accelerator, even the quantum electrodynamics will be necessary. Simulta-
neously in the case of so numerous research teams there shall be considerable
psychological effects, some reports from the theory of small groups (here we
mean the groups of people in the sociological sense), sociology of manage-
ment, sociology of science etc. All of these elements might become sources
of the systematic errors. Such errors in turn might lead to the acceptance
or rejection of the improper theory. Such accidents had already happened,
e.g. the affair of the monojets in high energy physics. The question of more
general nature becomes important at this moment. Namely, how much in
the adopted theory of interactions is there of the following:

1) description of objective nature
2) experimental apparatus
3) our own (as cognizing subjects) cognitive categories.

All these three elements as we have seen, must appear and the only
way to eliminate the remaining two, leads through the scientific practice
understood as a social, activity of a general cultural character. In accordance
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with what was said above, this will be a hierarchically understood practice;
from the theoretical one, down to the praxis of an enterprize like CERN.
In this way the practice becomes the criterion for the truthfulness of the
unification theories and the geometrization criterion is a very convenient
tool for choosing the appropriate phenomenology in the area of fundamental
physical interactions.

It is very interesting to notice that teams of international collaboration
(ATLAS, CMS, etc.) are very numerous. They are publishing many huge
papers every year. Such teams are multinational and multicultural which
makes some interpersonal interactions very hard to manage. In such nu-
merous teams some sociological (or socio-psychological) problems are very
important and because of this the role of practice is even rising and will be
rising.
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8 Paul Feyerabend and the Geometrization
of Physics

This chapter is devoted to a discussion of Paul Feyerabend’s views. Paul
Feyerabend has an established place in contemporary philosophy of science
and methodology (Feyerabend 1984). He has been labeled with terms such
as “anarchist” and the “debunker” of science. His claim that “anything
goes” and the idea of non-commensurability of concepts in many theories
are widely known and appreciated. Feyerabend uses many case studies from
the history of science, and especially physics. His way of proceeding in
“Against Method” seems justified, since they are rooted in the realm of gen-
uine physical and astronomical concepts. Feyerabend refers to a great deal
of notions still operational in physics, he does not invent examples in order
to prove the a priori enacted thesis. This explains why his considerations
appear to have such the convincing thrust. We are well aware: for a con-
temporary man, science constitutes one of many domains of activity like:
common knowledge, politics, ideology, religion, art, philosophy. We are sim-
ilarly aware that one cannot separate these domains completely. Naturally
this is not to say that we do not know what constitutes science in its typical
subvarieties nor that we are unable to develop something like philosophy of
science and methodology. The very fact what Feyerabend is doing, speaks
for itself. His ideas make one to reflect how really the things are: what
forces us for accepting a new theory and abandoning the old one. Are the
concepts of one theory translatable into the ones present in another theory,
or perhaps they are completely incommensurable? May be Newton’s theory
and GRT are like the “monads without windows” of Leibniz? Could it be
that the words described by the two theories are without any common de-
nominator? Let us try to delve a bit deeper into all of this. Let us notice at
the outset that science as one of the social fields of human activity is subject
to the historical development and constitutes one of the cultural elements of
the given historical period. Feyerabend seems in a sense to understand this,
although stops short of saying it expressis verbis. In the above sense, the
concepts used in any scientific theory are in a variety of ways intertwined
with the notions ruling in the given historical period in either ideology or
common knowledge. They are impossible to extract from one another. Writ-
ing about the incommensurability between the “impetus” and a momentum
or the kinetic energy, Feyerabend is in fact writing about the incommensu-
rability of the medieval and modern cultures. Once we have agreed that the
cultures are like “monads without windows” then the incommensurability
between the principle of inertia in the mechanics of “impetus” and Galilean
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law of inertia becomes apparent. A. Gurevich (Gurevich 1985) in his mag-
nificent book Categories of Medieval Culture writes about the concepts of
time and space in the Middle Ages in such a way that the creation of their
modern counterparts seems very strange phenomenon indeed. The medieval
and modern cultures become mutually non-translatable. Each one of them
requires own set of notions, appropriate for investigating it. Should we start
from the assumption of the interdependence of all cultural phenomena in
the given epoch, and accepting the claim of non-translatability of the var-
ious cultures (that it is impossible to study one culture with the help of
notions proper to another one), we would easily come to the conclusion that
also the physical concepts in different theories are incommensurable. How-
ever, there is a kind of framework, limiting on the one hand the arbitrarity
of the scientific notions — this famous “anything goes” and on the other
hand introduce a commensurability of some sort. Experimental facts and
the cognizing subject, creating a theory — constitute this framework. In-
vestigating various concepts we always experience the illusion to the effect
that there are exclusively the differences, we very often overlook the things
which are common. Feyerabend also suffered from this illusion, and like his
predecessors had looked everywhere for “discontinuities”, which he termed
incommensurability. Kuhn (Kuhn 1970) has called this discontinuity “the
scientific revolution” — a paradigm change, whereas M. Foucault (Foucault
2002) “change of discourse”. They all were overlooking that “paradigm”,
“discourse” constitute parts of the developing social being and the disconti-
nuity detectable at one level might easily reveal itself as continuity upon a
closer and more detailed scrutiny. Let us note that according to a model put
forward by Z. Cackowski we have discontinuity at the level of experimental
facts and the theories aim at explaining them, provided that we consider
these two levels separately, but once we combine these levels together — the
discontinuity would disappear. Together we get a continuous development;
the discontinuity at one level gets compensated at the other one. Of course,
Feyerabend could have immediately claim that his idea concerns solely the
physical theories, where undoubtedly one could notice “incommensurability”
or even jumps. Let us try to challenge his notion of incommensurability ex-
actly there, where he appears to be the strongest, when he passes from one
mechanics to another. Namely, let us ask whether the mechanics of Aristotle,
Galileo and Einstein are in fact completely incommensurable? Feyerabend
writes that momentum in Newtonian (Galilean) mechanics and the relativis-
tic one represents completely different concepts, having nothing in common
except the name. In fact, the notion of absolute rest is employed in Aristotle
mechanics, in Newton’s one we have an absolute time, while in relativistic
mechanics the time and space become relative. The mechanical concepts
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preserve their names — we speak about force, momentum, energy, velocity,
the coordinate system. All of this in Feyerabend’s opinion is not reflected in
a real meaning of these concepts, when they become relativized to a given
theory. According to him this is nothing more than a mere linguistic conven-
tion, confirming at best the power of our habit, providing thus a proof of our
conservatism. This is not my aim to diminish the impact and importance of
a definite conservative attitude in the society of scientists, defending them
against the change of notions, nor to deny the comfortability of using such
convention. Nonetheless, I think this alone would constitute too weak a jus-
tification for retention of the names. Namely even the superficial analysis is
able to reveal that there is after all something in common in these concepts,
in addition to the simple fact that they constitute the adequate description
of a physical reality in some respects. There is something more in common.
All those dealing with the correspondence principle perceive that and try to
formalize it, aware of the continuous passage between theories at the level
of their numerical outcomes. This perfectly fits the observations, since these
theories, in spite of being different, are claiming something about the reality
after all, and enable to predict. Feyerabend questions the claim to the effect
that the predicting means the understanding of the process. Nonetheless
one could not agree with him in this regard.

Now I will embark on describing the theories of Aristotle, Galileo and
Einstein in a language proper to them, encompassing them as special cases
of the more general notions. These theories in this language are becoming in
a certain sense equivalent, but at the same time they create a chain of the-
ories interrelated closely and mutually. Simultaneously, the corresponding
mechanical concepts within this framework, get related as well. This rela-
tionship establishes in a proper way the principle of correspondence. Namely,
geometry constitutes this language, and it is the geometrization procedure
responsible for bringing these three theories to a common denominator. All
mechanical quantities have to become geometrical ones of a similar nature,
although in different geometries. The relationship between the geometries
will be visible and easy to grasp. The transition from one mechanics to
another will be occurring via the change of a space-time symmetry group.
Within the idea of geometrization, we introduce the space-time, which is
a four-dimensional manifold and on this manifold we define certain struc-
tures, associated with the given mechanics (kinematics). First of all — the
symmetry group. The four-dimensional manifold, a space-time constitutes
an idealization of a set of all possible point-events, that is such which take
very short time and occupy very small space. It is the role of the symmetry
group to tell us how to obtain the mutually equivalent events. For the case
of Aristotle mechanics, on the four-dimensional manifold there acts a group
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O(3) of rotations, leaving one axis at rest. The absolute time constitutes this
axis. There is no mixing between time and space. Absolute rest is possible
— the absolute coordinate system. Clearly, Aristotle never formulated his
physics in this way. Nonetheless it is an instructive thing to express this in
the language of geometry. In the case of Newtonian physics we also have a
four-dimensional space-time, and within it Galileo group transforming the
inertial systems into itself. Here we allow mixing of space-like and time-like
coordinates. There remains a certain absolute element — time. Newton was
very much fascinated with the absoluteness of time and space. The rela-
tion between the group O(3) of rotations and Galileo group is very simple.
Namely — O(3) is a subgroup of Galileo group. Let us come now to the
relativistic mechanics: Here we have Minkowski space-time with Poincaré
group acting in it. This time both absolute time and space vanish and there
remains an absolute space-time — the background of all events. The rela-
tionship between the Newtonian mechanics and relativity is quite simple in
this language. Lie algebra of a Galileo group constitutes namely the con-
traction of a Lorentz group’s Lie algebra. This procedure is unique and it
establishes for us the correspondence principle between the relativistic me-
chanics and that of Newton. In all the cases brought in here, and more par-
ticularly in the two last ones, all mechanical quantities, that is momentum,
energy, force, velocity and acceleration become the geometrical ones, defined
on a space-time and related to each other respectively. They are nonethe-
less not incommensurable, in spite of being not identical. This is evident,
since there are here different space-time symmetry groups. Nevertheless the
space-time groups are not arbitrary even from time theoretical point of view.
The relationships between them are natural from the mathematical — that
is geometrical standpoint — and could be obtained in a certain sense in the
unique way. At the same time, the space-time concepts lying at the basis of
each of these mechanics constitute something which binds them very closely.
It is worth reaching at this point that Newton–Leibniz dispute concerning the
nature of the space-time is decided by the relativistic mechanics, in favour of
Newton. Let us remind that this dispute, conducted by Clark was devoted to
the relativeness of the space. Namely, Leibniz held that the space is relative-
associated with the body, whereas Newton (according to Clark) favoured the
idea of absolute space. Now in the relativistic mechanics (Special Theory of
Relativity) it is the space-time continuum which plays the role of this abso-
lute element. In the preceding chapters of this essay one might find more
details on these subjects. This absolute element permeates all the mechanics
mentioned here, and causes that they are not incommensurable, contrary to
what Feyerabend has claimed. The second example brought by Feyerabend
as justification for the incommensurability of various physical theories is one
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contrasting the quantum and classical mechanics. The quantum concepts
are seemingly incommensurable with the classical ones, in fact, the cursory
analysis would show that it has be that way. Hence for instance momentum
in classical mechanics is a number (vector), whereas in the quantum one
— a Hermitean operator, acting in a Hilbert space. Both these concepts
are completely incommensurable from the mathematical point of view. The
incommensurability of both world-views follows in fact from this. This is an
apparent truth from superficial point of view. Namely the investigations of
the axiomatic foundations for both mechanics at the level of the so called
logic of experimental questions reveal that the difference between the classi-
cal and quantum mechanics is associated only with the shutter of such logic:
quantum logic is a non-distributive lattice, whereas the classical one — is
a Boolean algebra. The evidence that the classical quantum concepts are
nonetheless commensurable relies on the occurring of the so called classical
fragments in quantum logic. These fragments constitute the sub-lattices of
the quantum logic and are being Boolean algebras as well. Thus we see that
the claim to the effect, that the quantum and classical mechanics are incom-
mensurable follows exclusively from the imprecise taking into account the
analysis of the foundations for both theories. It is worth noticing here that
there are a lot of possibilities for choosing other logics than the quantum
and classical one. This might lead, as some maintain, toward the general-
ization of quantum mechanics and the introduction of a nonlinear quantum
mechanics.

Finally I am going to offer an example of the extreme “leveling” of the
incommensurability between concepts. Namely, let us bring together the
gravities of: Aristotle, Newton and General Relativity Theory. Everyone
seems to be convinced that the difference between the theory of a curved
space-time of Einstein and Newton’s gravity is so large that it might be the
excellent case for the incommensurability of concepts. This is however not
so. It turns out that the gravities of Newton and Aristotle are associated
with curvature of Galileo’s and Aristotle’s space-time within the geometrical
language of both theories. Thus we see, from the above brief critical appraisal
that the ideas of “anything goes” and of incommensurability could not be
defended any more, and this is true not only with regard to the external
formulation of both.

In this way, the geometrization could become a very convenient tool, re-
moving the discontinuities between the pictures brought by various physical
theories. It seems that due to living in a cultural quasi-reality (as R. Ingar-
den used to qualify our world), we need this type of approach at least for
the sake of psychological comfort.
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9 Symmetries in the Theory of Elementary Parti-
cles. Attempts at Unifying of the Internal Sym-
metries with the Space-time Ones

Problems of combining the internal and the space-time symmetries are to be
discussed in this chapter.

Super-symmetries constitute the extension of ordinary symmetries known
in the theory of elementary particles. These symmetries, such as the SU(2),
SU(3), SU(6) and the newer ones SU(4), SU(5) served and are still being
used for the classification of elementary particles, and more precisely the
strongly interacting ones, or hadrons. Let us recall first what rules govern
these classifications. The Hamiltonian of the interactions responsible for
the hadronic interactions (and their structure) is invariant with respect to a
certain symmetry group. This means that it commutes with the generator
of Lie algebra for this group. In this way to every generator of a group there
corresponds a conservation law. The conserved quantities obtained in this
way create a Lie algebra identical with the symmetry group Lie algebra. Of
course, in a real situation, these symmetries are broken (the higher ones are
more strongly broken). The breaking of these symmetries is responsible for
the hadronic mass spectra. The irreducible representations of the symmetry
(partly broken) groups serve the purposes of particle classification, whereas
the corresponding mass formulas e.g. those of Gell-Mann–Okubo carry the
magnitudes of mass spectra dispersions. In the case of an exact symmetry
the particle masses belonging to the same irreducible representation would
be identical. Let us note one characteristic thing. As a matter of fact the
symmetry groups are not necessary for hadron classification, since their Lie
algebras will do. After all we are using the irreducible representations of Lie
algebras, not of Lie groups. This is very important, since this fact allows
us to abandon the analogy of the Hamiltonian invariant with respect to a
Lie group. It will suffice to say that a Hamiltonian is commuting with the
elements of a certain Lie algebra. The irreducible representations of this
algebra will enable us to classify for us the elementary particles. We know
that to every Lie group there corresponds one and only one Lie algebra. On
the other hand, to a single Lie algebra there could correspond several Lie
groups. These groups are of course locally isomorphic.

Now, since in the classification, the essential role is being played by al-
gebras and not by groups, it is difficult to say which one is concerned. Such
a decision seems to be arbitrary. Hence we have a Lie algebra, whose irre-
ducible representations classify the elementary particles. We “integrate” this
structure to a Lie group. The choice of a specific group is arbitrary up to
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a discrete subgroup. One might make it a little more unique by demanding
that it should be a connected one. There are however no physical indica-
tions to perform this choice. Therefore the structure of a Lie group will be
fundamental for us, together with a Lie bracket (commutator) appearing in
it. The fact that only commutators occur in such structures disturbs a lot
of people. As a matter of fact, in quantum mechanics and quantum field
theory there appear quantities composed of commutators as well as of anti-
commutators. As we know, the boson creation and annihilation operators
are endowed with commutation rules, whereas the fermionic creation and
annihilation operators satisfy the anti-commutation rules. The appearance
of either the commutation or anticommutation rules is associated with the
boson or fermionic statistics. Let us note that the two fundamental brack-
ets of quantum mechanics and quantum field theory do not occur on equal
footing in the algebraic structures related to symmetries. In addition to the
symmetries of elementary particles mentioned above, there appear in physics
the symmetries tightly associated with the space-time.

Among the space-time symmetries we have those of Lorentz, Poincaré
and Galileo. To them there correspond the Lie groups of Lorentz, Poincaré
and Galileo. The appropriate Lie algebras correspond to these groups. The
combining of the space-time symmetries with those of elementary particles
constituted one of the most interesting questions in physics. The efforts
to achieve this failed. Only the results without physical sense or trivial
ones were obtained. Let me recall what was the stake involved in these ef-
forts. Namely, one had looked for a certain wider group (Lie algebra) so
that Poincaré group and a group SU(n) (which could be one of the internal
symmetry groups) would constitute its subgroup (Lie algebra). The wider
symmetry group (algebra) of the said type was presumably able to reflect
more deeply the structure of a physical world picture. We will for instance
describe a certain extension procedure (of finding a wider symmetry group),
which has managed to find applications in physics. This procedure is called
an extension of a group A with respect to a group B. In this case we are
looking for a certain group G for which A would be an invariant subgroup
(normal divisor) whereas B would be a quotient of G by A, B = G/A. This
problem is not unique as one might see from examples. Now, under the as-
sumption that the group A is Abelian, we could obtain the classification of
all the extensions with A and B fixed. The most simple case there would be
one of projective symmetry, that is, A = U(1), the group B here is arbitrary.
We get here the projective representations of the group B occurring in quan-
tum mechanics. Group B acts in a Hilbert space along the radius-vectors.
This corresponds to the extending of the group G = U(1)⊗B. In crystallog-
raphy and solid state physics we encounter a more complicated situation. In



9 Symmetries in the Theory of Elementary Particles 95

this case the group A is a group of translations (a discrete one) whereas the
group B is a crystallographic group of the lattice symmetry constructed by
the action of a group A. The extension G in this case may not be a trivial
one, that is to say, not always G = A ⊗ B. In certain cases the group G
is wider than A ⊗ B. The elements of the group, which are not the prod-
uct of a translation belonging to A and of a rotation or reflection belonging
to B, constitute just this non-trivial addition. In the case of crystallogra-
phy these additional elements represent the sliding planes or the symmetry
screw lines. The crystals of this type do occur in nature and are called the
symmorphic ones. In addition to this, there is an interesting classification of
these symmetries which uses the methods of cohomology. Namely, it turns
out that to every non-isomorphic extension there corresponds a cohomology
group H2(B,A) element. The unit element of this group corresponds to a
trivial extension G = A⊗B. The classification shown enables us to find all
the extensions and to check whether there are any non-trivial extensions. It
is just due to this method, which enables us to find in a very elegant way
all the symmorphic crystals. For our purposes the most interesting is the
case when one of the groups is Lorentz and the second is SU(2), SU(3). In
a particular case we take a connected component of a unity from Lorentz
group and more specifically its universal covering SL(2,C). It turns out that
there are only trivial extensions here, that is semi-simple products or simple
ones SL(2,C)⊗SU(2), SL(2,C)⊗SU(3). This demonstrates that such a pro-
gramme is going to fail. In a similar way one might extend Poincaré group
by examining higher jet-extensions of that group. As a solution we obtain
here a semi-simple product of Poincaré group and a certain solvable group.
This result shows that this way leads nowhere. It is not only trivial but non-
physical, since we do not have solvable groups as internal symmetries in the
theory of elementary particles. On the other hand, we do not meet a failure
in theory of elementary particles in the case when we extend the remaining
symmetries. In the case of a symmetry SU(2) (isospin one) and a hyper-
charge U(1), we first have SU(2)⊗U(1). We extend easily that symmetry to
a known unitary symmetry SU(3). Similar is the situation for the case of the
SU(3) symmetry and the group SU(2) (non-relativistic spin). We obtain first
SU(3) ⊗ SU(2) and later SU(6). Of course this symmetry is very strongly
broken, but offers interesting indications fitting quite well with the exper-
iment. The symmetry SU(6) constitutes a symmetry of 3 non-relativistic
quarks. It assumes the mixing of spin and of the unitary spins. Its multiples
contain the particles with different half-integer and integer spins. Let us
recall that, in the case of SU(2) and SU(3), each of the multiples contained
solely the particles with one value of spin. Therefore the symmetry SU(6)
mixes among themselves in a certain specific manner the space-time and
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internal degrees of freedom. This is of course a non-relativistic symmetry,
which constitutes its (not isolated, by the way) drawback.

The symmetry SL(6) constitutes a relativistic counterpart to the SU(6)
symmetry. This symmetry corresponds to the three relativistic quarks. The
group SL(6,C) similarly as SL(2,C) is non-compact and this causes that the
theory of representations of such groups does not have an agreeable interpre-
tation. All its unitary representations are infinitely-dimensional. In the case
of SL(2,C) which is a purely space-time symmetry this was not an obstacle.
It meant only this that all values of spins (relativistic ones) are possible.
In the case of SL(6,C) the issue is more difficult to interpret. Here the
multiples corresponding to the irreducible representations of SL(6,C) shall
comprise infinitely many particles. We are not observing these particles in
nature and surely it is unlikely that we will detect them at all. One sees
also that this approach fails to reach our goal of extending the symmetry
with the simultaneous linking of the space-time symmetries with the inter-
nal ones. Extending the internal symmetries (broken each time more and
more) presents no problems. We know the transition from SU(3) to SU(4)
by introducing a new internal degree of freedom, the so called “charm” and
further from SU(4) to SU(5) via introducing of “beauty”. Both the proce-
dures are standard and proceed in a similar manner as the one described for
transition from SU(2) to SU(3). The introduction of new internal degrees
of freedom was dictated by experimental facts, namely, the discovery of the
particles ψ,ψ′, ψ′′ not fitting the SU(3) classification scheme, and also of the
particles B not able to fit the scheme SU(4). The new classification schemes
do predict new particles. Some of them are observed, which presents an ex-
cellent confirmation of the theory. For the time being, one is not able to see
the limits to the approach of this type. Even the next scheme has managed
to appear: SU(6), which is not to be confused with SU(6) analyzed before.
The previous symmetry SU(6) was one mixing the spin SU(3) of Gell-Mann
and the non-relativistic spin SU(2). It contained 3 quarks from SU(3) sym-
metry, u, d, s in both spin states. Assuming their equivalence we obtain a
SU(6) symmetry of the old type. In the ideal situation the quark states are
invariant with respect to rotations in a 6-dimensional complex space. It is
out of this that we obtain the new SU(6).

Summing up — in the first case we have the unitary spin degree of
freedom, that is isospin, hyper charge and ordinary spin, whereas in the
second isospin, hypercharge or strangeness, charm, beauty (bottom), truth
(top). In this way SU(6) becomes a group of six quark flavours. Clearly
such a procedure seems to be without end. There is no reason whatsoever
against the appearing of the symmetries SU(7), SU(8) etc. Happily there is
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an elimination of a sort, obtainable from the asymptotic freedom and from
the magnitude of the so called Weinberg angle. Weinberg angle determines
the mixing between the electromagnetic and weak interactions in the so
called Glashow–Salam–Weinberg model. An interesting feature of it is the
fact that this model associates the number of leptons with the number of
quarks. At present after the discovery of lepton τ and its neutrino ντ we have
six leptons aligned in three sequences: (e, ve), (µ, vµ), (τ, vτ ). Therefore the
minimal number of quarks shall be 6 and hence we have SU(6) with bottom,
b, and top, t, quarks.

Let us remind also a concept of the asymptotic freedom. Namely the the-
ories with the non-Abelian gauge have an interesting feature. The coupling
constant (a charge) decreases at small distances (large momentum trans-
fers). Therefore, should we use as the theory of interquark interactions the
QCD, that is gauge field theory with the gauge group SUc(3) (this group
has nothing to do with the group SU(3) from Gell-Mann classification), then
we will obtain an asymptotic freedom provided that the number of flavours
of the interacting quarks will not be excessively large. Namely, this matter
has to be smaller than 16, which is also in accordance with the estimates
for Weinberg angle. Therefore the maximum number of quarks is 16 (the
asymptotic freedom has a very good experimental confirmation). Because
of the relationship linking the number of quarks and the number of leptons
mentioned above, we shall also have the same number of leptons. These 16
leptons have to be combined into 8 sequences, out of which we have thus
far obtained the 3 nearest ones. Current experimental data indicate that
the number of quarks should not be greater than six. The sixth quark has
been discovered, therefore one could already clearly see that the symmetry
groups classifying the elementary particles SU(2), SU(3), SU(4) etc., are not
of too fundamental nature. They are simply related to the number of quark
flavours. This fact could explain a number of failures encountered while
attempting to combine these symmetries with the space-time symmetries.
The fact that these are all broken symmetries also ceases to be intriguing.
Simply the quark masses are not equal and that is why the symmetries are
only approximate. One could only wonder that they still give quite good
experimental predictions. According to the opinions currently prevailing,
the good predicting power of the SU(2), SU(3), SU(4) etc. theories is due
not so much to the insignificant differences of the quark masses, as rather to
the fact that they are not much greater than zero. This fact has still other
consequences associated with the possibility of extending the hadron clas-
sification symmetries. Namely, with the masses of quarks tending to zero,
the u and d symmetry of SU(2) could be extended to a chirial symmetry
of SU(2) ⊗ SU(2). This one in turn leads to the currents algebra and to
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the so called partial conservation of axial currents. The axial currents via
the so called Noether theorem are linked with a second item of the SU(2)
group and are fully conserved provided that the masses of quarks u and d
are equal to zero. The magnitude of the four-divergence for these currents
could be associated with the masses of the π, ρ, η mesons. Within the limits
of symmetry accuracy, they have masses equal to zero. The chirial symme-
try SU(2) ⊗ SU(2) could be extended to SU(3) ⊗ SU(3) or SU(4) ⊗ SU(4)
or even to SU(5) ⊗ SU(5) and SU(6) ⊗ SU(6). The latter ones are however
very strongly broken. Let us observe that all the symmetries of elementary
particles mentioned above, represent, within the limits of accuracy, the so
called global symmetries. They implement the gauge transformation of the
first kind, and could not be extended to the second kind gauges — local
symmetries. This fact follows from these discussed above, concerning the
nature of these symmetries (the number of quark types) and also from the
fact that there are no interactions associated with flavours. The interactions
in question are implemented by Yang–Mills field with a gauge group SUc(3).
Colour symmetry group SU(3) might be extended to a gauge group of the
second kind.

All the attempts to combine the internal and space-time symmetries
ended in a failure. This might be understood thanks to Coleman–Mandula
theorem (one of the so called “no-go theorems”). Namely, under very natural
and quite general assumptions about the S matrix in the quantum field
theory we get that the most general Lie algebra of the S-matrix symmetries
containing the momenta (generators of translations in Minkowski space) and
the generators of Lorentz rotation is a simple sum of Poincaré group Lie
algebra and a certain compact Lie algebra, such that the generators of the
this last algebra are Lorentzian scalars. Hence one might clearly see that in
order to combine the space-time symmetries and the internal ones, one has
to extend the concept of a symmetry that is — of Lie algebra.
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10 Hidden Symmetries and Supersymmetric Alge-
bras. Bosonic Strings and Strings with a Spin

Questions of hidden symmetries and of supersymmetric algebras are the
subject of this chapter.

Let us return to space-time symmetries, that is to Lorentz group SO(1, 3)
and Poincaré group. These symmetries are exact ones. There were attempts
of extending them toward certain higher symmetries called dynamical. The
groups implementing dynamical symmetries no longer operate in the space-
time but in phase space. In the case of Lorentz or Poincaré group there oc-
curs an independent operation of these groups on the space-time coordinates
and momenta. This is hardly of any interest. The interesting thing there
could be finding of symmetries mixing the space-time coordinates and mo-
menta. Such symmetries could constitute the non-trivial, proper dynamical
symmetries. The symmetries of this kind exist. There are de Sitter groups
SO(1, 4) or SO(2, 3) and a conformal symmetry SO(2, 4) [SU(2, 2)]. These
groups are linearly embedded (implemented) in the five- and six-dimensional
spaces, and are associated with the so called hidden symmetries. For exam-
ple we describe Kepler problem. As we know this problem has the obvious
symmetry O(3). This is an orthogonal symmetry in a 3-dimensional space.
There are the conserved quantities associated with it, the components of
the moment of momentum vector. They create a Lie algebra SO(3). As we
recall, Kepler problem has three independent solutions. Here belong: the
elliptic case, the parabolic and the hyperbolic one. Hidden symmetries of
various kinds reveal themselves in each of these 3 cases. In the elliptic or-
bit case (the energy is here negative) there appears an additional symmetry
O(3). A conserved vector, the so called Runge–Lenz vector is associated
with it. Components of this vector form an additional Lie algebra SO(3).
In effect the final symmetry is O(4) = O(3) ⊗ O(3). Let us note that we
have now 6, (and not only 3) integrals of motion (3 associated with the an-
gular momentum and 3 with Lenz vector). This enables us to determine
the motion without solving the equations of motion, solely on the basis of
algebraic relations. It turns out that the case of parabolic orbits (energy
equals zero) has a symmetry of a non-homogeneous orthogonal group in a
three-dimensional space (it is a group of rotations and translations in this
space). The hyperbolic case (positive energy) in turn has a symmetry group
O(1, 3). In both cases like in the elliptic one, it is possible to find the motion
without the need to solve the equations of motion. The first integrals are
sufficient to that goal, and the question reduces itself to the algebraic prob-
lem. The groups O(4), inhomogeneous O(3), O(1, 3) are here the dynamical
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ones. The coordinates and momenta here are manifestly mixed. One might
ask: what is the smallest group containing the group O(4), O(1, 3) and the
non-homogeneous one O(3)? The group O(2, 4) has this property and it is
called the concealed (hidden) symmetry of the problem. It is of course a
dynamical symmetry. The knowledge of such a symmetry enables one to
find the maximal number of first integrals (conservation laws) and in this
way to simplify the solution of the equation of motion (sometimes down to
pure algebraic problem). The group O(2, 4) operates in a phase space — a
6-dimensional one, mixes among themselves the momenta and the coordi-
nates. In a phase space there are 3 regions (the 3 submanifolds) for negative
energy, that equal to zero, and the positive one. The groups O(4, 2) : O(4),
the non-homogeneous one O(3) and SO(1, 3) are operating on these subman-
ifolds. The group O(2, 4) obtained as a hidden symmetry of Kepler problem
constitutes one of the implementations of a conformal group in Minkowski
space-time. The conformal groups acts in a nonlinear manner on the coordi-
nates of the Minkowski space. This is a significantly wider group than that
of Poincaré. In addition to the relativistic rotations and translations there
appear the transformations of acceleration and dilation. This group turns
out to be a Lie group. This is interesting, because in a 2-dimensional space
such a group is infinite. The holomorphic functions of one complex variable
implement it. The conformal group constitutes a very significant extension of
the relativistic symmetry. It turns out that Maxwell equations in vacuum are
invariant with respect to this wider group. The vacuum Yang–Mills fields,
massless Klein–Gordon and Dirac equation also has this symmetry. The re-
lation among the group O(2, 4) (which is locally isomorphic to a conformal
group) with a Poincaré group is very remarkable. Namely, Poincaré group
constitutes a small group of O(2, 4) group. By considering the cone in a 6-
dimensional space, we obtain a very simple and natural relationship between
Minkowski space and a 6-dimensional space, where the group O(2, 4) is op-
erating. It turns out that this cone if treated as a projective space (the space
of directions of the cone), could be identified with Minkowski space. Then
the contraction of O(2, 4) to this cone turns out to be Poincaré group. This
is very interesting property. The relation between de Sitter group O(1, 4),
Poincaré group and O(2, 4) is not so simple as between Poincaré group and
O(2, 4). Namely by considering the implementation of de Sitter group on a
hypersphere with a “radius” R and performing the contraction with R→∞,
we obtain Minkowski space-time with Poincaré group acting on it. On the
other hand, de Sitter group is a subgroup of SO(2, 4). SU(2, 2) constitutes
the universal covering of the group SO(2, 4). With this last group (SU(2, 2))
there are related the so called twistors, playing ever larger role in the gravi-
tational theory and in the so called Penrose programme. Roughly speaking
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twistors constitute spinors of a conformal group. The group SU(2, 2) op-
erates in a four-dimensional complex space, which might be considered as
a complexified space-time. Now, due to the fact that such a complexified
space-time could be in turn considered as a model of physical phase space,
we are able to obtain very strong results concerning the space-time itself.
This is associated with the using of Kähler geometry, which has very strong
properties.

Now, let us return to the origins of supersymmetry (Fayet & Ferrara
1977; Salam & Strathdee 1978; van Nieuwenhuizen 1981; Levy & Deser
(eds.) 1980; Freedman & van Nieuwenhuizen (eds.) 1981; Hawking & Roček
(eds.) 1981; Ferrara & Taylor (eds.) 1982; Ferrara et al. (eds.) 1983; Gates
et al. 1983; Wess & Bagger 1983; DeWitt 1984; Furlan et al. (eds.) 1986).
Supersymmetric transformations have taken their roots from dual models in
the theory of elementary particles and the so called strings in the theory of
strong interactions. We are not going to discuss here the dual models. We
will occupy ourselves only with strings. The string model uses an interesting
concept of hadron, baryon and meson. We assume in it that hadron con-
stitutes an infinitely thin relativistic string. The density of a Lagrangian in
this model is the surface element spanned by the string during the motion.
The strings move in conformance with the least action principle, obtained
with the help of a Lagrangian with a given density. The string coordinates
are described by Xµ(σ, τ) where σ is a parameter along the string and τ is a
proper time. We therefore have a certain possibility of changes, some gauges.
By selecting specific gauges we could reduce the number of variables to a
minimum of independent ones. There will appear here the infinite number
of the quantities Ln, which will identically vanish provided that a system is
chosen with a minimal, independent number of coordinates. The quantities
Ln form a certain Lie algebra. In addition to a structure considered here
we could analyze also a more complicated one. It will be a string with a
continuous distribution of spin. New quantities Sn would appear here, also
vanishing in a suitable coordinate system. The quantities Sn together with
the preceding ones — Ln — constitute Lie algebra. There are however quite
significant differences. The system Ln constituted a Lie algebra. We take
now the commutators

[Ln, Lm] = Cn+mLn+m (10.1)
In the case of objects S, we take anticommutators

{Sn, Sm} = Dn+mLn+m. (10.2)

In the mixed case we take commutators

[Ln, Sm] = En+mSn+m. (10.3)
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The algebra is closed with respect to commutators and anticommutators.
Let us note that this algebra has two types of elements, Ln and Sn, and two
types of brackets: commutator and anticommutator. This algebra represents
a generalization and the extension of Lie algebra of the elements Ln. This
is an example of a supersymmetric algebra, the so called supersymmetric
Virasoro algebra. Let us return for a while to the spineless strings. In
the system of minimal coordinates such a string has a conformal symmetry.
Lie algebra of the conformal group — the conformal algebra corresponds to
this system. In the case of the string with a spin this algebra undergoes
the extension via the inclusion of the anticommuting elements associated
with the spin. The algebra thus obtained is to be called a supersymmetric
one; more precisely — the supersymmetric extension of a two-dimensional
conformal symmetry. Here are two types of elements. The first ones are usual
generators of a conformal algebra Lie group. The second type of elements
constitutes a set of additional supersymmetric generators. In this case they
are Majorana spinors.

Majorana spinors anticommute with the elements of conformal group Lie
algebra, whereas the Majorana spinor and the generator of usual Lie group
are anticommuting with Majorana spinors. Hence we have obtained an alge-
bra, with commutators and anticommutators occurring in it. This algebra
has a closure property and constitutes an extension of the conformal group
algebra. We could obtain supersymmetric extensions of Poincaré and de
Sitter groups’ Lie algebras in a similar way. The supersymmetric extensions
of Poincaré group Lie algebra constitutes a subalgebra of a conformal group
supersymmetric algebra in four dimensions. Nonetheless we could not ob-
tain it in such a simple way from the conformal supersymmetry as before.
We have to perform some non-trivial transformations on elements of the
conformal supersymmetry and only then to choose a closed subalgebra. In
this subalgebra there occur the elements of both types: the commutators
and anticommutators. Let us recollect now all the properties of supersym-
metric algebra known from the examples above. The elements of such an
algebra are quantities of two types. We will call them even and odd. Even
elements define Lie subalgebra in this algebra. In this subalgebra the role of
the bracket is played by a usual commutator. The other types of elements
— the odd ones — do not form the subalgebra. Its product, the operation
defined for two elements, is an anticommutator. This operation gives as a
result the element of the first type, the even one. Between the elements of
different types we employ the operation — a commutator. The odd element
will constitute the result of this operation. The whole structure is complete
with respect to operations given. Let us think what advantage there could
arise from such an algebra in the theory of elementary particles in addition
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to the ones given above. We were using Lie algebras in the theory of ele-
mentary particles; more precisely, their irreducible representations were used
for the classification of elementary particles. Here we proceed in a similar
manner. We look for all irreducible representations of a supersymmetric al-
gebra at hand. With a representation selected we associate the multiplet of
particles. In such a multiplet we will have the fermions as well as bosons.
This is a very interesting fact, not encountered thus far. In this manner
the supersymmetry becomes Fermi–Bose symmetry. The generators of a su-
persymmetric algebra transform the bosonic states, with the integer spin,
into fermionic states with a spin of 1/2. In the previous classifications of
elementary particles there were in a single multiplet the particles with either
integer spin or that equal to 1/2.

Lie algebra generators for given symmetries of elementary particles were
not changing bosons into fermions and vice versa. They were operating ex-
clusively within the realm of bosons and fermions. This situation seems to
be to such a degree interesting that one should find some procedures leading
to the extension of the known Lie algebras to the supersymmetric ones. Such
procedures are known and lead to graded Lie algebras (algebras with gra-
dation). We could obtain in this way graded Lie algebras gsu(n), gsp(n, n),
gso(n), gso(p, q) and a lot of others. These could be used for finding new
elementary particles classification schemes. The multiplets obtained in this
way will turn out to be very large. It will not be possible to find enough par-
ticles in nature, to fill up the multiplet obtained. This constitutes one of the
drawbacks of supersymmetry. Even in the lowest irreducible representations
the number of particles is far in excess. There is an entire extensive branch
in mathematics, dealing with graded Lie algebras. In the case of these types
of Lie algebras, a set of elements of the algebra is divided into classes. In
the examples presented, they were two classes. In general there might be an
infinite but countable number of them. With every such class we associate
the element of a certain Abelian group. In the case given above this group
has two elements and consists of 0 and 1. Therefore it is the so called two-
element cyclic group Z2. In all examples it will be either the finite-element
cyclic groups or additive groups of the integers. An element of a group, cor-
responding to every class to which the element belongs, will be called index
of a class. All of the above has been introduced in order to define the bracket
for the elements belonging to different classes. Should the two elements have
the indexesm1,m2, then the index of the bracket’s result will be them3 such
that m3 = m1⊗m2 where ⊗ is an operation in the group of indexes. The el-
ements m1,m2,m3 are integer numbers; therefore one could define for them
the numbers. We will call them signs (−1)m1 , (−1)m2 , (−1)m3 . They will
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be necessary for defining the symmetry of the bracket introduced in this
algebra. Consequently, if a1, a2 ∈ A and m1,m2 are their indexes, then

[a1, a2] = −(−1)f(m1,m2)[a2, a1] (10.4)

where f(·, ·) is a certain function of m1,m2.
One could prove that in the case when Z2 is a group of indexes, then the

bracket taken on the elements corresponding to the index 0 is a commuta-
tor (has the features of a commutator). When the index is 1, the bracket
is an anticommutator and is symmetric with respect to the exchanging of
components. The outcome belongs to a class with index 0, since 1 ⊗ 1 = 0
in Z2. In the first case, 0 ⊗ 0 = 0 the result belong to a first class, with an
index 0. This agrees with the postulate that the zeroth class constitutes a
subalgebra. In the case when one of the elements has an index 1 and the
other 0, the result belongs to the class with index 1, 0⊗ 1 = 1. The bracket
here has the symmetry of a commutator and property of antisymmetry with
respect to the exchange of the components. In the structure just obtained,
there occurs one more property, namely the generalized Jacobi identity. For
the case of normal Lie algebras we find in this identity only commutators.
In the case of Z2-group of indexes we find commutators as well as anticom-
mutators, depending whether there shall appear elements of first or second
class. In a more general case, when the group of indexes is not Z2 the situ-
ation is going to be more complicated, since there are more indexes. Now,
there arises quite a natural question whether one is able to classify somehow
the graded Lie algebras. We mean here the classification similar to Cartan
classification for normal Lie algebras. It turns out that for the gradation
of the Z2 type gradation (the group of indexes of a graded algebra is often
called the gradation) this works and we get a classification similar to that of
Cartan. A lot of theorems from the theory of representation of Lie algebras,
are satisfied for the case of graded ones. Among others, we could introduce
matrix elements for the tensor operators. We could also define the so called
tensor operator’s reduced matrix element and prove Wigner–Eckart theorem
for the graded Lie algebras with the gradation Z2. Let us recall that this
theorem is of great significance for both atomic and nuclear spectroscopy.
Namely, it enables one (on the basis of information about the problem sym-
metry) to separate the operator-theoretic properties of matrix elements from
the purely physical ones. The physics of the problem rests in the reduced
matrix elements whereas Gordan–Clebsch (that is — Wigner’s in general
case) coefficients known from group theory, enable us to find all the matrix
elements.
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In this fashion a problem of finding all the matrix elements for the oper-
ator e.g. for Hamiltonian (and hence the spectrum of energy and also other
quantities and the probability of transfer between the two states) reduces
to two problems. The first one is purely mathematical and consists of find-
ing Gordon–Clebsch coefficients for a given group. One could consider it as
solved. The second problem is a physical one and consists in finding all the
reduced matrix elements. This problem is of a different nature and requires
a detailed knowledge of interactions between the particles constituting the
investigated system. The symmetry alone is not sufficient for finding these
quantities. An interesting feature here is that this theorem extends on super-
symmetric algebras and in this way the question of finding matrix elements
for tensor operators leads to two similar problems. There still remains the
problem of finding the reduced matrix element, and therefore from the alge-
braic considerations alone (for the case of usual symmetries as well as for the
case of supersymmetries), one is not able to solve the physical problem. In
either case one needs information about physical interactions. This is very
indicative and interesting. It indicates the great limitations inherent in group
theoretic methods, since even the introduction of completely new algebraic
objects failed to improve the situation in this respect. In known examples
of symmetry, that is for Poincaré graded algebra, conformal group graded
algebra the rules were found which link the irreducible representations. In
particular, a scheme was given for the factorization of the tensor product
of the two irreducible representations into the irreducible representations.
Gordan–Clebsch (in general Wigner’s) coefficients were found. In particular
it became possible to find decay branching for the particles appearing in the
multiples, and also the conditional probabilities of these decays. Similarly
as for the group-theoretic symmetries, one could give a chain of more broken
supersymmetries. This chain could aid in classifying the elementary particles
spectra. There appear also the applications in nuclear and atomic physics,
and even in solid state physics.

In the case of Poincaré supersymmetry, there is no breaking and it could
describe the massless particles like photon or photino. It is very interesting
and often happens in the case of supersymmetry that to a known particle, e.g.
boson, there is being added in supersymmetry a new particle, the fermion.
In this way, we always get pairs like the one presented below. Photino con-
stitutes a counterpart to photon among the fermions. Similarly we could
have gravitino for graviton. These particles are waiting for the experimental
discovery. There is an interesting question to ask whether one could “inte-
grate” the supersymmetric algebras down to certain objects of the type like
Lie groups. It turns out that it is not a trivial question and the answer is
quite complicated. Let us concentrate exclusively on algebras with the Z2
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gradation. In the structure of such an algebra, we will have commutators as
well as anticommutators. Should there exist the structure of Lie group type,
capable of giving us later on the supersymmetric algebra, the two types of
parameters would have to be present — the commuting and the anticom-
muting ones. And also two types of coordinates — bosonic and fermionic
ones. The generators corresponding to the bosonic coordinates — real or
complex numbers — would constitute the generators of Lie subalgebra of
the supersymmetric algebra.

The generators corresponding to the anticommuting coordinates would
constitute supersymmetric extension of Lie algebra. In applications they
turn out to be Majorana spinors. The fact of occurring of two kinds of
coordinates, namely the c-numbers and q-numbers has far reaching conse-
quences. In a certain sense, due to the fact that a spin of 1/2 constitutes a
completely quantum effect, one could consider the manifold with the anti-
commuting coordinates as the structure of quantum type, vanishing in the
classical limit. The anticommuting coordinates — the fermionic ones repre-
sent the elements of Grassmann algebra. We shall deal with the manifolds
endowed with Grassmannian coordinates further on in this essay.
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11 Anticommuting Coordinates. Lie Supergroups

This chapter deals with problems of Lie supergroups and the supermanifolds.
Let us return to the problem of “integrating” the supersymmetry down to
the manifold-like structures. It turns out that it is a very rare situation. For
gs(n) it is only possible in the case n = 2, and the resulting structure bears
the name of graded Lie group GSU(2). In few cases one could find groups of
this type acting on power series built from the elements of Grassmann alge-
bra. It is however rare. There is a certain formal way of defining a structure
possessing the given features. However, that is ineffective, since this is not
able to result in structures like Lie groups. Because of that, this is not so
important for an arbitrary graded algebra, as GSU(2) is a graded SU(2).
Hence, the interesting question has resulted whether the new coordinates
called fermionic ones constitute a generalization of the classical coordinates.
These new coordinates could be treated as ones of the quantum mechanical
nature. One might say that they appear in a manner similar to the occur-
rence of q-number in quantum mechanics. The quantization in fact consists
of substituting the c-numbers from classical mechanics with q-numbers of
quantum mechanics. The new quantities — q-numbers enjoy the commuta-
tion properties — different from always commuting c-numbers. Nonetheless,
in classical physics (constituting a limit case in the sense of the quantum me-
chanical correspondence principle) we will not have spin 1/2 particles; the
q-numbers corresponding to fermions have simply to disappear. In the case
of q-numbers corresponding to bosons, they shall in the limit become clas-
sical c-numbers. No wonder therefore that fermionic coordinates could not
have classical partners. Thus, onto a theory with fermionic coordinates one
should look upon as at least partly quantum one. After all, the creators
of this theory are interpreting it just that way. It seems however that this
is premature. As a matter of fact, one has no idea what will happen with
ordinary bosonic coordinates in such a case. Should there be the equality
of rights between the two types of coordinates, then the bosonic ones would
be q-numbers also, like the fermionic coordinates. At the classical limit the
bosonic coordinates would transform into c-numbers, whereas the fermionic
ones, as not possessing the classical limit, would simply disappear. Unfor-
tunately in all theories there is a kind of this asymmetry. The fermionic
coordinates fit the scheme here presented. But the bosonic coordinates are
not q-numbers, they are ordinary numbers. Therefore, in accordance with
the idea here presented, the theory has to be quantum in one part and classi-
cal in the other one. This asymmetry indicates that one has to quantize the
resulting theory like any other, unless some mathematical scheme will be in-
vented, in which bosonic coordinates would become operators. The bosonic
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coordinates are space-time ones, thus sometimes also the space-like coordi-
nates. They are the so called exterior coordinates. In addition to them,
there are also the internal coordinates, associated with the internal symme-
tries, that is associated with the internal degrees of freedom. Here belong —
isospin, strangeness, charge, colour, charm and other quantities, which orig-
inated in the theory of elementary particles. These coordinates are defined
on the manifolds which are Lie groups of the corresponding symmetries. For
example, to the electric charge and the electromagnetic field, there corre-
sponds an additional coordinate associated with the parameter of a group
U(1). This is a global gauge group and via Noether theorem, the charge con-
servation law follows from it. The extension of this group to a local gauge
group, leads to the appearance of the electromagnetic field. All these coordi-
nates are real numbers. Substituting of them with q-numbers might lead to
a theory which from the outset would be a quantum one. This could mean
the elimination of some troubles associated with quantizing of the theories
with gauge symmetries. In the case of substituting of the space-time coordi-
nates with operators, this might lead to the creation of the quantum theory
of space-time and thus quantize the gravity. There are already attempts of
this type and lead to a fine-grained structure of space-time. The interesting
thing in this type of approach is the obtaining of the indeterminacy principle
for measurements of time and space. This leads further towards the appear-
ance of an elementary length and of an elementary time. The quantized
space-time becomes here a discrete structure. In the case of theories other
than with the space-time coordinates (that is in the case of some internal
bosonic coordinates) nothing similar has been created as yet. The only exist-
ing example of approaches in this category is the theory of quantum groups.
They constitute quantum deformations of groups. There are even playing
for them the role of the counterparts of Yang–Mills fields. Note also that the
bosonic coordinates corresponding to the space-time like ones can be linked
to quants of the gravitational field with the aid of gravitons. Probably with a
similar bosonic coordinate in the fifth dimension, one could associate a quant
of an electromagnetic field — the photon. In this way we have to comfort
ourselves with the asymmetric situation thus obtained, where the bosonic
coordinates are numbers, and the fermionic ones are q-numbers. This may
mean an unsatisfactory state of affairs, but nevertheless worth considering.
To that end, following the suggestions of Salam and Strathdee, let us con-
sider the so called superfield. The superfield assumes complex values, but
nonetheless is a function of both the space-time as well as of the additional
ones — the fermionic coordinates. Therefore there appear two types of in-
dependent coordinates — numbers and the elements of Grassmann algebra.
Expanding this field into a series with respect of fermionic coordinates, we
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could obtain, due to the anticommutation properties of these quantities —
the finite number of fields. They are to be equal to the coefficients of the
expansion with respect to subsequent powers of the Grassmannian elements.
In this way we get the scalar, vector, spinor and other fields. These fields are
therefore contained in the superfield as its components. Now, constructing
the supersymmetric Lagrangian to the same field and writing down the su-
perfield equations on the basis of the least action principle, we could obtain
the equations for the fields enumerated above. They will be: Klein–Gordon
equation for the scalar held, Proca’s for the vector field and Dirac–Weyl for
the spinor one. The superfield represents an interesting concept aiming to
unify some quantities occurring in the field theory. Because of this, we have
in one quantity several independent fields. Thus from a single variational
principle for a single field quantity we get the equation of the superfield.
From this equation the equations for other fields follow. Let us embark now
on generalization of the supersymmetry from a global case to a local one.
To this purpose, let us recall what the global and local symmetries are all
about in the case of ordinary symmetries implemented with the aid of Lie
groups. The local symmetry of the U(1) type via Noether theorem leads to
the charge conservation law. This conservation law is expressed by a conti-
nuity equation. This charge is a real quantity. In principle we do not use
the properties of Lie groups in the proof of Noether theorem. We use Lie
algebra of this group. This is dictated by the fact of using the infinitesimal
transformations of the fields and of coordinates. It is sufficient to have Lie
algebra and the infinitesimal changes of group parameters to define these
transformations. Thus formulation of Noether theorem for supersymmetry
does not require a structure corresponding to Lie group. This is significant,
because of troubles in defining this type of differential structure. Hence we
could formulate a counterpart of Noether theorem for supersymmetry. The
conservation law in the form of continuity equation will appear in it. The
spinor current will be a quantity occurring and being conserved in the con-
tinuity equation. This is not going to be a real-valued current. The charge
associated with the supersymmetry will be spinor as well. All the charges
together, the conservation of which follows from Noether theorem for a defi-
nite graded (supersymmetric) algebra will constitute the mentioned algebra.
Hence, the anticommutation rules will follow here, in compliance with the
rules for such an algebra. The interpretation of such spinorial charges or
currents is not a straightforward matter. The vacuum case, where some of
these currents assume non-zero magnitudes will be very interesting. Here
one could speak about the spontaneous symmetry breaking. In the case of
a supersymmetric extension of Poincaré group (or conformal group) algebra
this is possible to obtain. Let us recall that for Poincaré group or for the
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conformal one there is no possibility of having non-zero momentum or en-
ergy in the vacuum state. In the case of a supersymmetric extension of these
algebras, the spinor charges could not vanish in the state of vacuum. In such
an instance this vacuum state undergoes the degeneration, and supersymme-
try gets spontaneously broken down to a subalgebra which does not change
the value of a supersymmetric (spinor) charge obtained in the vacuum state.
Thus, completely new possibilities appear, which were missing in the case of
classical symmetries. All of the above appears at the global symmetry level.
Let us embark now to the local gauge symmetries, the so called gauges of the
second kind. In the case of an electromagnetic field, we get the gauges of the
second kind by substituting the phase transformation in global gauges with
a function dependent on the point in the superspace-time. In this manner
we extend the gauge transformation of the first kind. By Noether theorem
we have the charge conservation law, which follows from the invariance with
respect to gauges of the first kind. The introduction of the second kind
gauges will bring about a significant change. Namely, there will appear an
additional field, called a compensating one. The whole procedure of this sort
was described in the preceding chapters. For the supersymmetric case we
will have a similar situation, which is to be described below.

A very interesting approach has been designed by A. Rogers in Super-
manifolds. Theory and Applications (Rogers 2007). In this approach we
have a supersymmetric manifold with geometrical quantities consisting of a
“soul” and a “body”, where the “body” is connected to ordinary (real or
complex) manifold and the “soul” to anticommuting coordinates.
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12 Supersymmetric Gauge Transformations. Su-
persymmetric Gauge Fields

The supersymmetric gauge fields and transformations constitute the topic
of this chapter.

Let us start from a symmetry with gradation. In accordance with all
what we have said above, the global infinitesimal transformations exist for
such algebras and via Noether theorem we could obtain the conservation laws
of certain spinorial quantities. Hence we have the infinitesimal gauges of the
first kind. We could extend them to the gauge transformations of the sec-
ond kind requesting that infinitesimal parameters of these transformations
should depend on space-time points. In this fashion these transformations
cease to be rigid and become dependent on points. Local gauges similar
to these of the second kind in the electromagnetic case or Yang–Mills ones
are thus become obtainable in this way. Much alike it was in ordinary Lie
algebra case, the introduction of these local gauges will have significant con-
sequences. This time they will be of a different nature, but complementary
to these of Yang–Mills fields. Namely, they are going to describe the interac-
tions between the charges whose behaviour follows from the generalization of
Noether theorem for the supersymmetric algebras. As we recall, these were
spinor charges. The role of the intermediate particles in such interactions is
to be played by fermions. Therefore we have obtained the compensating field
with the intermediate fermions. This gives us a very elegant and symmetric
situation for the theory in question. We will have to substitute in the La-
grangian of the original fields (similarly as was the case of Yang–Mills fields)
the ordinary derivative with gauge derivative corresponding to the fermionic
gauge field. At the same time we will also add to the said Lagrangian the
Lagrangian of this gauge field. This is to be Dirac Lagrangian of that field,
since this will be a spinor field with spin of 1/2 or 3/2. Similarly as in the
bosonic case, this field is massless, thus Dirac–Pauli equation will become its
equation of motion. It is to be at the same time conformal group invariant
equation. For the case of fermionic gauge fields we can also try to find the
geometric interpretation of the quantities obtained. For Yang–Mills fields
the fibre bundle with the structural group G, which was gauge group, had
served this purpose. Here it will be harder, since the structures of the graded
Lie group are not well defined, that is the group manifolds with the anticom-
muting parameters. Nonetheless we have mentioned that there are formal
structures for which a graded Lie algebra constitutes a tangent space at the
unit element. Proceeding in a manner similar as was the case for Yang–Mills
fields, we construct a fibre bundle whose base is a space-time for which the
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graded group serves as its structural group. The bundle manifold obtained
in this fashion has the coordinates which partially are numbers, and partially
Majorana spinors. These last ones are anticommuting parameters, and thus
fermionic coordinates. The connection on such a bundle will have the inter-
pretation of a compensating fermion field, and connection’s curvature — the
interpretation of this field strength. The cross-section of this bundle will pro-
vide the choice of gauge, while the covariant derivative is going to describe
the minimal coupling between the compensating field and a field carrying
the spinor charge resulting from Noether theorem for supersymmetry. In the
case when we have more than one parameter, both the fermions as well as
the intermediate bosons will appear in a graded group. The compensating
field here has as its carriers the particles of both types. When the supersym-
metric (graded) algebra is non-commutative, the equations for this type of
fields are nonlinear and we have the self-interactions between fermions and
bosons. The number of intermediate fermions of different types equals the
number of anticommuting parameters, whereas the number of intermediate
bosons, as before, is equal to the number of numerical parameters. Hence
we see that the situation is very symmetric and elegant. There are attempts
of linking the known fermions with gauge fields. Regretfully however theo-
ries described here could only be used for massless intermediate bosons and
fermions. The introduction of rest masses to the Lagrangians will break the
gauge symmetry. There is yet another way of obtaining the rest masses.
Namely, it is possible to find this on a dynamical way due to interactions
with other fields, or via self-interaction. Spontaneous symmetry breaking
constitutes a very elegant method here as does Higgs mechanism, too. We
introduce in this case the additional, hypothetical fields, the so called Higgs
fields. The number of these fields depends on theory in which we want to get
masses for bosons and intermediate fermions. We require that these fields
interact among themselves in a nonlinear way. The self-interaction potential
could not be arbitrary; it has to be such that Higgs field in vacuum possess
a non-zero average value. Often in such a case the bi-quadratic potential
is being taken. At the same time we require that Higgs fields interact with
the gauge fields via the minimal coupling scheme. Since in the vacuum state
Higgs fields has non-vanishing value, the symmetry will be broken sponta-
neously, to such one which would leave this value unchanged. The vacuum
will be degenerated. Once we choose one of them and start to build the
excited states over it, the symmetry will break and all the carriers of the
compensating (gauge) bosons and intermediate fermions are going to obtain
rest mass, except those corresponding to the generators of that subgroup,
with respect to which the symmetry has not been spontaneously broken.
Only the latter particles will remain massless. All others will assume masses.
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Thus the part of gauge field will have finite range. Nonetheless the whole
Lagrangian is still to be invariant with respect to a complete gauge group of
the second kind, since the symmetry has been broken solely due to the choice
of the vacuum state. This state in spite of the fact that it was arbitrarily
chosen, has caused breaking of the symmetry and consequently the appear-
ance of rest masses. Spontaneous symmetry breaking and Higgs mechanism
endow bosons and intermediate fermions with rest masses. The remarkable
thing is here that as the matter of fact the symmetry is not being broken
in this case. The Lagrangian remains invariant with respect to the second
kind gauge group. The massive terms appearing here are not breaking the
symmetry, since they constitute a certain effective description of fields self-
interaction. Vacuum degeneration occurring here makes applicability of the
perturbation calculus questionable in some cases. Namely, so long as we stay
near a vacuum state chosen, everything is O.K. The situation is here very
much the same as in the non-degenerated vacuum case. We are in a position
to construct subsequent excited states over the one chosen. Should we come
too far away from the state of vacuum, then the following situation would
become possible. Contribution from the remaining vacuum states, in partic-
ular from the nearest ones, would become greater than the one coming from
lower order term in perturbation calculus. The influence of the nearby vac-
uum states might have been caused by the tunneling effects, which increase
with energy. Effects of this type make one to enquire, from which place
onwards the applicability of the perturbation calculus gets lost. Once the
applicability of it becomes either impossible or troublesome, one has to think
about using of other methods. Here belong mainly the exact ones, like exact
solutions. These exact solutions in the form of instantons or solitons find
ever wider application. They might lead to a very substantial changes of the
quantum field theory’s formalism. Thus far the attempts of obtaining exact
solutions were directed to gauge fields in the case of quantum chromodynam-
ics. As of today, there are no exact solutions for fields, with the intermediate
fermions, although we have exact solutions in the supersymmetric theories
such as supersymmetric extension of the gauge field models known in time
theory of elementary particles. There are also supersymmetric extensions for
models like e.g. Glashow–Salam–Weinberg (GSW), and even for the entire
standard model. (Standard model as we know, includes Quantum Chro-
modynamics (QCD), the theory of strong interactions, GSW model — that
is the theory of weak-electromagnetic interactions.) Its supersymmetric ex-
tension comprises, in addition to particles appearing in these theories, also
their supersymmetric partners. Thus, in addition to gluons from QCD we
have gluinos, which are the spin 1/2 fermions; in addition to quarks we have
also squarks (scalar particles), for W± and Z0 bosons W±-ino and Z0-ino,
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photon has photino, whereas for the leptons — the so called sleptons; Higgs
particles have higgsinos. As yet, the supersymmetric partners have not been
experimentally confirmed. Such extension of the Standard Model is known
as Minimal Supersymmetric Standard Model (MSSM) and considered to be
a step to get a supersymmetric GUT.

Let us come now to supergravity. In order to understand the essence of
this theory, let us return to Kaluza–Klein theory in its classical casting. We
have the five-dimensional manifold with a metric defined on it, together with
a metric connection. In the ordinary formulation it is being assumed that the
connection is symmetric (Riemannian). We assume at the same time that
there is Killing vector for this metric. Then in a suitable coordinate system,
the quantities involved do not depend on the fifth dimension. This dimension
will be associated with the electromagnetic field gauge. The metric tensor
will decompose into the symmetric space-time tensor and the four-potential
of the electromagnetic field. On this 5-dimensional manifold, the changes
of the coordinate system are going to decompose into the changes of the
coordinate system on the space-time plus the electromagnetic field gauge.
One could extend this theory onto the case of an arbitrary gauge group,
not only the U(1). This generalization is particularly natural and elegant,
when fibre bundle formalism is employed. In the preceding chapters this
has been described in considerable details. Generalization of this theory to
more dimensions and other gauge groups, gives also a unified theory of the
bosonic fields and gravitation. The question arises, whether getting of a sim-
ilar theory would be possible such, where the fermionic fields could appear
together with the bosonic ones. It turns out to be in fact possible. The
theory of this type bears the name of supergravity. We start from a mani-
fold endowed also with the fermionic degrees of freedom. Consequently the
quantities defined on this manifold depend on ordinary coordinates and the
fermionic ones. The latter are elements of Grassmann algebra and therefore
are anticommuting. The quantity defined on a manifold of this kind will thus
constitute a superfield, referred to above. It would be an interesting thing
to have a metric tensor introduced on such a manifold, and further also the
connection generated by this tensor. The quantities of various types would
constitute the components of this tensor. The space-time part of this tensor
will be the usual space-time metric tensor. The anticommuting Majorana
spinors for the spin 3/2 spinorial field will constitute the mixed components
here. Due to the fact that a metric tensor represents a quantity whose part
belongs to Grassmann algebra, the definitions of Christoffel coefficients will
have to change. The fact of anticommutation will be taken into account in
this definition. In the case when the quantities appearing here will happen
to be numbers, this definition will reduce itself to the one generally known.
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This is going to be the case e.g. of the space-time components of the metric
tensor. The coefficients thus obtained with would enable us to construct the
curvature tensor. Here also a certain modification of a definition is necessary,
to comprise the anticommuting coordinates case. Further, on the basis of
this tensor we build Ricci tensor, curvature scalar and Einstein tensor. All of
the above subject to modification of the type as before. Now, writing down
Einstein equations in vacuum for this type of quantities, we could obtain field
equations. These will be ordinary Einstein equations for a spin 3/2 spinorial
field, energy-momentum tensor and Majorana equation for a spin 3/2 spino-
rial field. Hence, this theory becomes the one unifying spin 3/2 spinorial field
with gravitation. We will find in it spin 3/2 fermions and spin 2 gravitons.
A spin 3/2 particle is often called gravitino; this is a fermionic partner for
graviton. We might also try to generalize the five-dimensional theory, that is
one of Kaluza–Klein, onto the case of fermionic variables. Like in the preced-
ing cases, we will consider a metric tensor on this manifold. It will break into
a space-time tensor, the electromagnetic field four-potentials, a spin 3/2 Ma-
jorana spinor and a spin 1/2 spinor. Once we complete the construction of
all the required quantities, that is curvature tensor, that of Ricci, curvature
scalar and Einstein tensor, and also write down Einstein equations, it will
turn out that they are taken into the following equations: Einstein equations
with the electromagnetic + spinorial fields tensors as sources, Dirac equa-
tions for spin 1/2 spinorial field, Majorana equation for spin 3/2 spinorial
field, and Maxwell equations. Regretfully however, this theory could only
describe uncharged fields. Namely, the fields involved here fail to be an elec-
tron. Similarly as in the preceding case, we may join the following particles.
Graviton with gravitino and photon with a spin 1/2 particle, which we might
call photino. This theory without difficulties can be extended onto the case
of a generalized Kaluza–Klein theory with an arbitrary gauge group. Here,
the supersymmetric partner for a given Yang–Mills field intermediate boson
will become a spinor (spin 1/2) multiplet, belonging to a representation of
the adjoint gauge group. These particles will not couple to Yang–Mills field.
Their “colour” charges will vanish similarly as in the electromagnetic case,
“photino” has the charge equal to 0. The theories obtained here could be
extended onto the case of non-vanishing torsion. In such a case we will get
the nonsymmetric connection on the multi-dimensional manifold.

“Einstein equations” will be similar to the ones from the previous cases,
but the torsion will not vanish. This is very important difference between
the purely bosonic case and the fermion-boson one. In the case when only
the bosonic coordinates appear, the commuting ones, the torsion vanishes.
When the anticommuting coordinates appear, the torsion might be differ-
ent from zero. Let us notice that we could fit the supersymmetric theories
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here presented into a general unification scheme presented in Chapter 4. We
have there two theories T1 and T2 which were geometrized and later com-
bined into the geometrical theory T3. In the theory T3 all the quantities had
obtained the geometrical interpretations. They are the quantities like con-
nections, metric tensors, torsions and the remaining geometrical ones. Under
the assumption about the existence of supersymmetry, one could extend the
notions of geometrical quantities by introducing manifolds with anticom-
muting parameters (the so called supermanifolds) and bundles with graded
Lie algebra. Let us notice for instance that the gauge field is described by a
connection on a principal bundle with a structural group G. This connection
constitutes a form with values in Lie algebra of this group. In the case of
considering the counterpart to a supersymmetric gauge field, that is to a
field whose carriers are the intermediate fermions, we will have a bundle for
which a graded Lie group constitutes its structural group. This field will be
described by a connection on such a bundle. In turn this connection will be
a form with values in the graded Lie algebra. In this manner, as we see, the
geometrization is also possible in the fermion sector, not only for bosonic
fields. In both cases the geometrization is associated with the unification of
the fundamental interactions.
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13 Physical Determinism and Holism

The relationship between an all-encompassing holism and physical determin-
ism is to be presented in this chapter. We are going to show that statistical
determinism and a holistic world-view imply each other.

What is at present understood by determinism in physics and more pre-
cisely — the deterministic laws — what are they? They are the laws ex-
pressed in the form of differential equations, integral ones or appropriate
variational principles. At this moment we have to perform certain specifi-
cation, since these laws might employ two different types of variables: dy-
namical and probabilistic ones. The former will be ordinary functions, while
the latter-random variables. The first ones give us (after solving the equa-
tions) the change in time of such characteristics like: momentum, energy,
field strength, potentials, entropy, enthalpy, etc. The other will bring the
change in time of the statistical distributions of the same characteristics.

The laws of the first type constitute the realm of such branches of physics
like: Newtonian mechanics, thermodynamics of irreversible processes (the
linear of Onsager and nonlinear one of van Kampen), microscopic and macro-
scopic electrodynamics, classical field theory, Special and General Relativity.
The laws of the second kind occur in statistical mechanics (classical), quan-
tum mechanics, quantum field theory and all applications of the last two,
and also the theory of elementary particles in the widest possible sense.

Contrasting of these two kinds of laws, particularly laws of Newton’s
mechanics and of quantum mechanics (under the assumption that anything
which appears as deterministic is exactly predictable, fatalistic, while any-
thing which is indeterministic, is unpredictable) markedly leads towards the
recognition of laws defining the change of random variables as indetermin-
istic. The viewpoint of this sort, deeply rooted and many times emulated
results from the misunderstanding due to only seemingly non-probabilistic
nature of quantum mechanical laws. This view has also found support in a
wide-spread slogan about the reducibility of the statistical and thermody-
namical laws to the laws of Newtonian mechanics.

Let us first analyze this view. What does it mean? It means that Boltz-
mann equation, entropy increase law, Onsager relations, gas law could be
derived from Newton laws. Thus the law describing the random variables,
the relationships between the average values of certain distributions could
supposedly be deduced in a logical sense from Newton’s laws.

How do the followers of the reducibility of the motion from the thermal
level to the mechanical one justify this claim? We consider they say, not
every single particle — (due to the impossibility of hacking the paths of
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all the gas particles in a vessel) separately when it e.g. strikes at the walls
of the vessel, but an average amount of them in a unit of time per unit of
area. Now, by computing the average change of momenta for these particles,
we obtain the pressure, and further by associating mutually the remaining
macroscopic features (like the volume and temperature) we arrive at the
ideal gas law. Of course, we relate before that the temperature with the
particles’ average kinetic energy. This is a very well known procedure, found
in all the undergraduate manuals of physics and taught to students of the
first course.

Now let us think how such a reduction is to be carried through at some-
what higher level. Thus we have a certain number of mutually interacting
particles, acting also onto the walls of the vessel. The motion of the every
one of them is described by Newton equation (the advanced methods em-
ploy the Hamiltonian formalism) where on the side one finds the gradients
for the potentials of particle interactions between a selected particle and
the remaining ones plus the gradient of the external potential (equal for all
the particles). We could associate this last potential with e.g. gravity force,
electromagnetic field (if the particles are charged) and above all — with the
vessel’s walls. In other words, we are concerned with taking into account
of all the forces acting onto a given particle, either the external or the in-
ternal ones (originating at the particles themselves). If we now try to solve
these differential equations, this would turn impossible from the practical
point of view (too large number of variables) — but this will not become the
greatest trouble. Namely, one needs to know initial conditions for solving
the differential equations. This constitutes an extremely interesting feature
of Newtonian mechanics, that is the separating of the two things: the equa-
tions of motion (the laws of motion) from initial conditions of the motion.
Wigner considered this to be extremely interesting — and challenging. It
was believed earlier that it is not appropriate for physics to deal with the
initial conditions for the equations; physics was only to postulate the equa-
tions themselves. The issue of initial conditions was to be left for other
sciences, such as geology, astronomy etc. This point of view is acceptable
everywhere except the statistical mechanics — here the initial conditions
are of extreme importance — equally significant as the equations of motion.
After this digression let us return to our example.

Due to the impossibility of tackling analytically or numerically of this
problem, one has to consider it in the statistical terms and hence to intro-
duce the density of the statistical distribution, describing all the particles
having definite momenta and coordinates. We define this probability func-
tion over a phase space of momenta and coordinates of all the particles.
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Further, we may adopt certain idealizing assumptions about the distribu-
tion in question, namely to reduce it to the random variables defined on
less-dimensional phase spaces. At this moment we are in a position, by us-
ing the equations of motion, to write down the equation of time evolution
of our probability distribution; here a very significant moment is going to
occur. We have to assume something about time initial distribution of mo-
menta and coordinates. The assumption about initial distribution is very
important, simply a crucial one, since it conditions significantly the form of
the distribution after solving the distribution equations of motion.

One might perform this in variety of ways, all expressing the fact that the
initial distribution of momenta and coordinates is equiprobable in the phase
space. Often this fact is being expressed by a postulate of vanishing of certain
correlation functions. With the aid of distribution function, we could find all
statistical averages of the dynamical quantities and obtain out of them the
macroscopic characteristics: the pressure, the temperature, internal energy,
entropy etc. Using the relationships between these average values, we could
derive lot of identities known in the phenomenological thermodynamics and
e.g. entropy increase law. We might also formulate the distributions for
the fluctuations of the thermodynamical quantities. Depending upon the
idealization assumptions adopted with respect to:

• 1. interactions between the particles
• 2. potential of the external forces
• 3. form of the global distribution function for all the particles (e.g. by
expressing it via the three-, two- or one-particle distributions)
• 4. ordinary or asymptotic ergodicity
• 5. thermodynamic equilibrium,

we will obtain the ideal gas law, that of van der Waals, Maxwell and Boltz-
mann distribution, thermodynamics of reversible and irreversible processes,
nonlinear van Kampen thermodynamics etc. The assumption about the ini-
tial distribution of momenta and coordinates is going to occur everywhere
here. Summing up we see that in order to “derive” the thermodynamics
from Newton’s theory, we had to: firstly, introduce the probabilistic no-
tions; secondly, assume some initial distribution. Hence we have introduced
the concepts not present in Newtonian mechanics of the material point, and
have adopted a crucial assumption about the character of the possible ini-
tial conditions. It will be important to emphasize here that by adopting a
different assumption about the distribution of initial conditions, we might
fail to obtain the entropy increase law, which indicates the significant nature
of this assumption and its relations with experiment. Therefore we see that
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there is no reducibility form the thermal motion level to the mechanical one.
In spite of the dynamical character of the thermodynamical laws (gas laws),
they are in essence of a statistical nature, derivable from the probabilistic
concepts and laws, which in turn are not reducible completely to the dy-
namical laws of Newton’s theory. On the other hand, the fluctuations of the
macroscopic quantities, such as: pressure, average number of particles in the
unit volume constitute form the point of view of gas laws (that is laws of the
phenomenological thermodynamics) something random, not predictable and
hence indeterministic. From the statistical mechanics point of view (that is
one of distribution of momenta and coordinates of all the particles), there
is even no need to ask about this, since the statistical distributions of these
discrepancies are known, and this is exactly what we are going to know
and already know. One might say that the requirement posed in statistical
mechanics is a minimalistic one. The idea of finding the motion of all the
particles of gas contained in a vessel, e.g. with the volume of 1 cubic cm is
thinkable. Due to the advancement of electronic computers, we could solve
this problem, if not analytically, then in any case numerically.

Let us use here the interesting example found by Borel. As is known,
the initial conditions are indispensable for the problem solution. Now the
error of the order of 10−100 in the determination of the coordinates and
momenta of particles results in the impossibility of finding the path of a
single particle already after 1 milionth part of second. After this amount
of time, the error in the determining of that particle’s path (this path’s
blurring) becomes so large that it fills out the entire phase-space. And such
a change occurs already under the influence of transferring 1 g of mass in
the star Sirius on the path of 1 cm. Consequently, in order to have the
motion of all the particles of this gas tracked, enabling one to derive the
equations for the changes of pressure, number of gas particles contained
in the unit of volume, for the temperature and for the other quantities —
one would have in principle to take into the account all the interactions
directed onto a given particle from within the entire Universe. Thus it
means that the whole matter from Sirius were to be taken into account,
if we would like to consider the motion of one particle during 1 milionth of
second that way. Greater the duration of the motion, smaller the magnitude
of an initial disturbance capable of influencing the motion afterwards; in
addition to this, these disturbances will begin to accumulate themselves.
Predicting the motion of all gas particles in the volume of 1 cm3 found on the
Earth surface and consequently — the ability to write down the dynamical
equations for the pressure and temperature (provided that this gas stays in
a thermodynamical equilibrium with environment) calls for the introduction
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of a “Laplace’s cosmic mind”1 which would manage to take into account all
the interactions.

Thus the “cosmic mind” of Laplace design is needed not only in order to
predict exactly the Universe fate from its inception, but even to predict the
fluctuations of the pressure in a small vessel filled with gas, on the Earth
surface during the time of two hours. This is an extremely paradoxical con-
clusion, which strongly corroborates the probabilistic point of view adopted
in statistical mechanics.

We have taken up as example only Newtonian mechanics and the ther-
modynamics with statistical physics. Nonetheless one might see that the
same applies to a microscopic and macroscopic electrodynamics, where the
material constants: magnetic susceptibility of a medium and the dielectric
constant constitute also moments of the statistical distributions and could
undergo fluctuations. We have in this case to deal with the so called stochas-
tic differential equations.

The same conclusions could be drawn after considering the physics of
elastic media, plastic and thermoplastic media, the entire macroscopic
physics. All of them are dynamical theories only when viewed upon superfi-
cially — as a matter of fact they describe solely the behaviour of statistical
averages. Of course we could, acting in accordance with the principles of
statistical physics to find the distributions of fluctuations for the quantities
involved. At the very moment however, when we would like to formulate
the dynamical laws of change for the quantities appearing in the equations
of these theories (I am thinking at this place about such changes of physical
quantities, which are caused by their probabilistic nature; the equations of
a theory contain not the functions, but the random variables) — we im-
mediately encounter the ghost of Laplace’s “cosmic mind”, which like Deus
ex machina is necessary at least for mentally solving the problem. At this
moment we plainly see that in order to proceed further, one has to reflect

1Under the term of “Laplace’s cosmic mind” we are going to understand here an intelli-
gent being, capable of investigating the Universe in the way we are investigating the vessel
filled with gas. Hence, this hypothetical being would assume, in a certain sense, a position
external to the Universe. In the example of an ideal one-dimensional Universe, presented
below, this hypothetical creature would play the role of an observer, trying to discern the
two micro-states of the Universe staying in the given macro state. This creature would
try to predict the fate of a particle via discovering the microscopic information about the
Universe at the given moment and using this information in the particle’s equations of
motion. We assume that the said creature would be — once given the above informa-
tion — capable of solving the equations of motion and find particle’s trajectory. It seems
that in the case of a system with a finite degree of freedom, there should be no problem
(in the ideal situation) in discerning of the two micro-states corresponding to the same
macro-state (refer to the example with gas, analyzed below).
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upon the capabilities of the said “cosmic mind”. To this end, let us ponder
from the very beginning upon the motion of a single Newtonian particle in
the Universe.

The Universe is acting onto a particle and we have to take this fact into
account, in order to find the theory of motion. Since we are going to find
it for arbitrary time span, hence we have to take into account absolutely
all the interactions. We assume that without trouble we can identify the
two Universe states occupying two different macro levels, that is in different
states described by macroscopic parameters (in the scale of Universe). In any
case, if not necessarily we ourselves, then the “cosmic mind”, should it exist,
for sure could perform this identification in quite a similar way as we were
identifying the macro states of a vessel with gas. But the thermodynamical,
macroscopic information is absolutely not sufficient for the identification and
taking into account of all the interactions directed onto the particle, since to
a single macro state of the Universe, there correspond lot of different micro-
states, whose ways of interacting with this single particle could be different.
Thus, one has to obtain this information.

In order to understand better this problem, let us return once more to
the example of a vessel filled with gas. This time however let us consider
it as a system completely isolated from the world’s external influences and
think what would happen, if we first put all the gas particles into a volume
smaller than the original volume of the vessel, and afterwards would allow
the gas particles to fill out this original volume again. Let us follow the
motion of a system in the part of the phase space accessible to it. At the
beginning, before the decompression, the system (gas has occupied a certain
part of the phase space). In the statistical physics there is an extremely use-
ful concept — the probability liquid. It describes very well time notion of a
statistical system and, what is very important, the liquid is incompressible
(the so called Liouville theorem). The liquid in the original state (before
the decompression) fills out in a homogenous manner exactly the entire part
of the phase space accessible to it. Associating now the information with
the position of this liquid (since we know in which place of the phase space
it stays) we observe that after a sufficiently long time this information will
disappear. The liquid fills up all the phase space accessible to it in a uniform
way. This is true only the point of view of such volumes, which are compa-
rable with the originally accessible part of phase space, without the change
of density. Anyhow, let us divide now the whole phase space accessible in
this problem into cells having volume very small in comparison with the
original volume of the phase space. At this level we could observe without
any difficulty the inhomogeneities and we see that in spite the fact that the
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average liquid density was constant in regions comparable with the original
volume of phase space, now it is noticeably variable on coming from cell to
cell.

Let us now translate this what has happened above, into the language of
thermodynamics and information theory. Let us notice that the entropy of
the system (measure of its disorder) has increased to a maximum possible
value, while the information has decreased down to zero (the uniform filling
of the phase space by the liquid). This could however be concluded only
from the macroscopic point of view. Looking onto this phenomenon from a
microscopic point of view (very small cells) we nonetheless see (this could be
precisely proven) that the macroscopic information has not disappeared, but
had turned into a microscopic one (the amount of liquid in the subsequent,
very small cells). Notice that the information about time macroscopic state
constitutes a thermodynamical information (minus entropy up to a constant)
whereas the microscopic information in principle equivalent to finding the
coordinates and momenta of all the particles of a gas in question at the
given moment (it is sufficient to reduce accordingly to the sizes of cells).
Hence it is equivalent to solving the particles’ equations of motion under the
assumption that the initial conditions fit the original phase space volume.
Notice further that the macroscopic information (definition of entropy in
statistical physics) constitutes a statistical distribution (more precisely — a
logarithm of a distribution) whereas the microscopic information is a mean
of implementing the said distribution (and thus represents the post factum
distribution).

We see therefore that there will be quite natural to break down the in-
formation about the isolated system (our vessel with gas constituted just
the instance of such a system) into the macro and micro ones. The first
of them informs us about the statistical distribution, the second about its
particular implementation (we deliberately omit the distinction between the
information and its measure, in order not to complicate the presentation).
Clearly, the above subdivision makes only sense after reaching thermody-
namical equilibrium. Let us notice that in principle, in our case it is possible
to give both information. To put it in another way: in the given macro
state we are able to distinguish the two micro states corresponding to it.
This is however the case of the finite, isolated system with a finite degrees of
freedom. The question arises that since the Universe constitutes an isolated
system — whether in this case it might be possible to distinguish between
the two micro states corresponding to the give macro state.

In order to answer this question, let us consider the idealized example of
a one-dimensional Universe — the straight line with the countable amount
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of points marked on it (they are to correspond to the particles). Let us
assume that this line does not have any region which could be distinguished
with regard to statistical properties e.g. the average density (the number of
points divided by a length of a segment they occupy) in sufficiently large
segments does not depend on the position of this region on this line. This
is going to express the first, strong (statistical) cosmological principle. Let
us think, whether we are able to distinguish within such one-dimensional
Universe between the two micro states, which correspond to the same macro
state.

Returning back to the preceding considerations we ask whether Laplace’s
“cosmic mind” would distinguish between the two states. We have to give the
method of identification. The most simple one would be just the positioning
of the two such straight lines, corresponding to the two states and check,
whether the corresponding points contain the particles. This is however not
possible, for this simple reason that we do not know which point correspond
to each other (in principle it would be enough to show a single one on every
line). This fact reflects the isotropicity of the Universe. Thus there remains
only one, unique method, namely we take a sufficiently large segment on
the first line, of known length and divide it into smaller ones, of equal size.
We count the number of particles which fell into every smaller segment.
This gives us a certain sequence of natural numbers. Now we cut out the
longer segment on the second straight line, starting from an arbitrary, but
fixed point (to the left and right). We divide both segments thus obtained
into the smaller ones of equal size, as was the case with the first line and
count the number of particles contained in each of them. In this way we
will obtain the two infinite sequences of finite sequences of integral numbers.
In this case the law of great numbers predicts that after a finite number of
comparisons between the first sequence obtained (the one from the first line
and the one from the second), we will find the identical finite sequence. Let
me recall that macroscopic information (that is, the statistical distribution)
is identical in both cases. Thus, we are not able to distinguish two micro
states corresponding to the same macro state.

The example of a line without a distinguished point, illustrates properly
the situation we encounter when comparing two microscopic states of the
infinite — Universe, being in the same macroscopic state. Hence we see that
we shall not be able to distinguish two micro states in a given macro state.
In other words, we could only find the distribution of some characteristics of
the Universe, we will only be able to predict the changes of these quantities
exclusively in the probabilistic sense. On the other hand, it is not known
whether the Universe is in the state of the thermodynamical equilibrium.
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Should it not be in equilibrium, then this would imply that distributions of
its characteristics are variable in time. Nonetheless, the very impossibility
of distinguishing between its two micro states would still remain in force.
One has only to divide the Universe into regions in local thermodynamical
equilibrium (the fact of the very existence of such regions we conclude from
the observations). For each one of these regions we could find the macro
information. Here, the macro state of the Universe would be constituted by
a set of local macro states, whereas the micro state would still be defined as
before, and hence the whole argument would apply, too.

Let us return to the “cosmic mind” of Laplace, discussed earlier. Even
this one would not be able to distinguish the two micro states of the Universe
corresponding to a single macro state. Consequently, this creature would not
be able to find all possible interactions directed at a given moment onto a
Newtonian particle. This “mind” could only give a distribution of these in-
teractions and thus enter them into the equations of motion in the forum
of Langevin forces of some kind. In this manner the subsequent momenta
and coordinates of a particle could not be known with the infinite precision.
After solving the equations of motion (which in this case would involve ran-
dom variables), we could at best find the distribution of the possible paths
of a particle. If the solutions of these equations admit Poincaré breakdown
of the trajectories, and if the distribution of trajectories thus obtained, fails
to vanish on both sides of a critical point, then even the prediction of the
characteristics of the particle motion could at best be made in a probabilis-
tic sense. In the case when the equation would provide several solutions of
different topological nature, the selection of any among them would depend
on a randomly changing right side of the particle’s equation of motion arid
hence finding out, which one of them is just being implemented in the given
moment, could also make sense only in probabilistic terms. The occurrence
of the possible bifurcation points would still further complicate the picture
of the motion. The situation of entering into the chaotic region of equation
would also be possible. Classical, dynamical determinism would become
completely impossible. This is not to say that the particle behaviour is inde-
terministic that we are not able to predict precisely the fate of a particle. We
could however offer the distribution of trajectories, coordinates, momenta.
This constitutes a statistical determinism, the only one possible. Of course,
while considering small time periods, we are observing the most probable
trajectory. If one takes the motion in larger time periods, then with the
presence of critical points, one might observe cases of abrupt changes in the
particle motion. This is perfectly understandable. Let us summarize the
hitherto obtained results based on the classical mechanics.
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Under proper treatment, even the question of a single particle motion
gives the predictions of only a statistical nature. The statistical mechan-
ics is not reducible to Newton’s equations of motion in a logical sense. All
the deterministic laws express the statistical determinism, as motion’s dis-
tribution laws of pressure, momenta, coordinates, that is with the aid of
differential equations, integral equations and integro-differential ones. One
could plainly see that at this point occurs the dialectical unity between the
causality and necessity. The statistical laws are necessary as necessary are
the given statistical distributions and their way of change in time, that is
via means like differential equations, integral and integro-differential ones,
variational principles, etc.

Causality reveals itself in the fact of existence of random variables and
only the random variables. The symmetry laws of the physical systems, e.g.
Galileo invariance, spatial translational invariance become the symmetries
for the statistical distributions. The conservation principles are defined for
the statistical averages of the conserved quantities. The fluctuations of the
conserved quantities are caused by the interactions of the systems in question
with the whole Universe. Let us come now to quantum mechanics.

We notice from the outset that the significant difference between the the-
ory of motion for the single Newtonian particle being analyzed above, and
the theory of motion for the quantum mechanical particle does not consist
in the statistical nature of predictions characterizing the latter. Both the-
ories give the statistical predictions. The former due to the impossibility
of taking into account of all the interactions directed onto the particle (and
this in a fundamental way, when the motion takes place against the infinite
Universe) while with respect to the latter we might conclude that for the
very same reason. Nonetheless, the viewpoint is always possible to the effect
that all this represents the reflection of a fundamental principle of nature
and could be hardly justified in a similar way, as in the first case. Such
an origin of the statistical character of quantum mechanical predictions is
however worth taking it into account and we will return to this soon. As to
the differences, the only one would be the possibility of probability interfer-
ence. Of course this was not the case in classical mechanics. Probabilities in
classical mechanics would only be additive. The difference follows from the
very method of obtaining the probability density, for instance of locating a
single quantum particle. This density consists of wave function, which could
undergo interfere.

In order to make the two theories maximally similar, we may try to look
upon Schrödinger equation as an equation describing the time evolution of
a certain probability distribution. Let us consider further the conservation
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laws. Here they are also defined for statistical averages, e.g. energy, momen-
tum etc. Only the charge conservation principle is not cast for the statistical
average, which resembles of the classical theories. Heisenberg relations are
in turn taking place among the mean deviations of the fluctuations and it
is not their occurrence which seems strange, but just the fact that they are
binding mutually the fluctuations of quantities which are canonically conju-
gated. Let us note that the previously obtained impossibility to distinguish
two micro states of the Universe being in the same macro state could be
considered as a “principle of indeterminacy” of some sort. One might even
present some evaluation of this indeterminacy, with respect to e.g. density
of matter.

Quantum mechanical symmetry principles deal with the wave function
and hence constitute the probability distribution symmetries. Schrödinger
equation written in terms of a wave function’s phase and modulus, becomes
extremely similar to Fokker–Planck equation known for diffusion (compare
the probability of liquid diffusion in classical theory). All this testifies once
again that the statistical predictions do not constitute an exclusive domain of
quantum mechanics, but they find their counterparts in classical mechanics.

It is worth to find out and stress all the contact points between the clas-
sical and quantum mechanics, since lately some attempts have appeared in
physics, aimed at applying the nonlinear classical field theory for describing
the quantum phenomena. Namely, it turns out that there are certain stable
solutions for nonlinear field equations, the so called solitons, which behave
quite similarly like quantum particles. Lot of phenomena hitherto exclu-
sively of quantum nature, has won in this fashion a certain new model on
the basis of classical field theory. The models were obtained which could be
considered as elementary particles. Some of them possess quantum statistics,
electric charges and spins, even the magnetic charges (t’Hooft monopoles).
Characteristics of these solutions are linked to some topological properties
and invariants. This does not mean that these methods managed to super-
sede quantum mechanics — as a matter of fact, there are no signs of that.
Nonetheless it turns out that certain properties hitherto considered as imma-
nent quantum mechanical features, could be modelled in terms of classical
field theory, which seems extremely intriguing. Simultaneously interesting
investigations are under way devoted to classical methods even in such ex-
clusively a quantum domain like hydrogen atom spectrum. The spectrum of
hydrogen atom was obtained via the methods of classical electrodynamics
(under the assumption about the existence of electron magnetic moment) as
a difference between the stable orbits. It turns out that the electron with a
magnetic moment, moving in the field of a nucleus will not radiate energy
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form certain orbits (they accidentally agree with these of Bohr) and will not
fall down onto the nucleus. All this testifies once again that the relationship
between the classical physics (not quantum one) and a quantum one is far
from final explanation.

After all — quantization — what does it constitute? It is a kind of
heuristic procedure, which puts into a correspondence to a classical systems
the quantum one in a definite way. For systems with finite number of the
degrees of freedom, the situation is quite simple and has even found its for-
malization in the Kirillov–Kostant form (geometrical quantization), but even
here the quantization of nonlinear systems seems to be of dubious nature.
One might here also take advantage of Poisson bracket algebra deformation
and consider Moyal brackets – counterpart of commutators in algebra of
differentiable functions.

One of many interesting problems in geometrization of physics is a pro-
gramme of geometrization of quantum mechanics. We mean here ordinary
known quantum mechanics without any generalizations. It means it will
be a geometric formulation of ordinary Hilbert space quantum mechanics.
Moreover, Hilbert space is a vector space (this is important because of inter-
ference principle in quantum mechanics). Thus we should go from Hilbert
space to Hilbert manifolds (locally Hilbert space). We should define a tan-
gent space, a metric, a symplectic form and a connection. Simultaneously
we should define Kählerian structure and before it a complex structure. This
is possible to do. Afterwards (if someone wants) we can go to more general
structure to nonlinear quantum mechanics. Moreover, a typical example of
Hilbert manifold is a manifold of coherent states. In quantum mechanics we
work with infinite-dimensional Hilbert spaces. Thus our Hilbert manifold
will be infinite-dimensional. It means it is an interplay between differen-
tial geometry and functional analysis. In quantum mechanics we work with
unbounded operators. Thus we face a problem with domains quite obscure
in differential geometry. In future generalization, maybe in order to quan-
tize nonlinear field theories, we should consider infinite-dimensional tensors
as unbounded operators and so on. This geometrization programme works
quite well in the case of finite dimension, i.e. for H ' Cn.

There is a completely different situation in field theory, where in principle
we could only quantize the fields described by linear equations. Attempts
at quantizing of the nonlinear field equations are confronted with great and
principal difficulties due to inability of representing Poisson bracket of dy-
namical quantities by the commutators of the operators for these quantities
in a quantum field theory (in a canonical quantization). We get better re-
sults by quantizing via Feynman path integral method; Yang–Mills fields
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with non-Abelian gauge groups are quantized this way and also attempts
are being made for quantizing General Relativity Theory. This method is
not quite satisfactory, since it leads to the appearance of the non-observable
particles, the so called ghosts (Faddeev–Popov ghosts) associated with the
choice of gauge. (Moreover, those ghosts can be exorcized.) This situation is
so much unsatisfactory, that the question arises whether one should look for
stable soliton solutions and view them as states of the field after the second
quantization. The solutions have lot of common features with the elementary
particles. In t’Hooft model for instance, there is a stable solution, which be-
haves asymptotically like a monopole — the magnetic charge, endowed with
a mass, able also to move in the space-time. Its path, due to the fact that this
solution fills the entire space-time, is undetermined. This object therefore
has some properties of a quantum particle. That model deserves particu-
lar attention since the field equation for which it constitutes a solution, is
just like the gauge field equation for SU(2) group, coupled with Higgs field,
which spontaneously breaks the symmetry SU(2). There are at present such
models of quantum field theories, which do not have corresponding classical
limits. They are the so called topological field theories. Their Lagrangians
constitute the topological invariants. Therefore, the classical equations are
trivial. May be this represents a proper approach towards quantizing e.g.
the gravity. There are some approaches using non-local field theories to get
renormalizable or even finite theories.

Finally, let us think for a while about the relationship between the all-
encompassing statistical determinism and holism. One could see that they
are intrinsically linked. The impossibility of separating of the part from
the whole could lie, it seems, at the root of an exclusively probabilistic
character of physical laws. At the higher level of the structure of matter it
is often hard to notice, but under deeper scrutiny it could be grasped. Let
us refer for instance to our discussion of the thermodynamics of the infinite
Universe and the motion of the Newtonian particle in it. More deeper we get
immersed into the structure of matter, more pronouncely this phenomenon
reveals itself. Maybe the mathematical formalism of quantum mechanics
represents only a model capable in a certain fashion of taking into account
the all-union of phenomena within the framework of all-encompassing whole
— the Universe. For the case of models of elementary particles based on
nonlinear field equation, the relationship between the probabilistic character
of predictions and a holistic approach to their internal structure seems very
akin. In the case of discrete space-time structures such a relationship would
be absolutely a must. Of course, it is difficult to foresee whether in fact
physics is going to develop along this path, but judging after the present
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trends, one might state with a high probability that the holistic approach
together with the accompanying statistical determinism will be dominant.

Let us notice the following fact. For in statistical mechanics we have to
do with a system of differential equations describing a movement of point
particles, it seems to be natural to apply a theory of deterministic chaos.
This application of deterministic chaos theory seems to be very natural for
we need to get some probability measure needed in statistical mechanics.
We mean a continuous probability measure which is absolutely continuous
with respect to a Lebesgue measure on Rn. This is possible only in very
special situations for a very low dimensional systems, i.e. Lorenz system,
Hénon system. In this case we have to do with so called “strange attractors”.
They are a Cartesian product of a Cantor set and an ordinary manifold.
(A Cantor set is defined on the real axis.) These sets are so called fractals.
They have non-integer Hausdorff dimensions. Moreover, we have also to do
with some kind of universality connected to a transition to deterministic
chaos described by M. Feigenbaum. The third approach is connected to the
so called intermittency. All of these three approaches are very valuable in
order to get in deterministic systems a continuous probability measure. If
such a transition is present in some systems then small changes in initial
conditions of equations of motion for particles can go to non-predictability
of their movement. These phenomena can be described as a repulsion of
trajectories.

This is exactly what we are talking about. In this way we solve an old
Boltzmann problem. However, practical application of a deterministic chaos
theory in statistical mechanics seems to be very tedious. Moreover, from
philosophical point of view the problem seems to be solved and justifies any
probabilistic considerations in statistical mechanics. In this way we get our
statistical determinism.

Let us notice that in the theory of chaos in a system of dynamical ordi-
nary differential equations there are really four approaches:

1. strange attractors,
2. universality by Feigenbaum,
3. intermittency,
4. bifurcations on bifurcations, e.g. L. D. Landau theory.

The second approach seems to be the most natural to apply it as a foundation
of statistical physics and of a kinetic-molecular theory of matter. Working
with a Poincaré map we face also interesting phenomena as Misiurewicz crit-
ical parameters which complicate a problem of holism and reductionism and
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statistical determinism (Ruelle 1989a, 1989b; Mandelbrot 1977; Cvitanović
1989; Gutzwiller 1990; Dorfman 1999).

I am not pretending in this chapter for a complete resolution of the
question of a relation between the statistical determinism and the anti-
reductionistic, holistic approach to physics. I am however of the impres-
sion that the two are always co-appearing and in number of cases one might
observe that they are mutually conditioned.

A philosophical role of a deterministic chaos has been advocated by
M. Tempczyk in several publications Theory of chaos and philosophy (in
Polish) (Tempczyk 1998). Let us notice that in pure mathematics we have
to do with indeterministic chaos which is not covered in Tempczyk’s publi-
cations.
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14 Holism and Reductionism
in Contemporary Physics

The relationship between holism and reductionism in physics constitutes the
topic of this chapter.

Holism represents the philosophical option (it hardly might be called sys-
tem) which considers the “whole” to precede, be more basic than the “parts”.
We shall try to develop this general assertion, referring first to instances from
outside the realm of physics. Let us begin with the position held by English
empiricists. It is common parlance to say that scientific theories consist from
theorems. This is an assertion reducing theories to theorems. But one could
say also: it is not true, the theorems are such and nothing else, because
they are following from a theory. This last statement expresses the holistic
viewpoint. It is namely assuming that a theory is more primitive than the
theorems which, as it seems — compose together the theory. But we could
go further and ask whether the theories enter as components into the intel-
lectual currents of a given period? According to reductionist the answer is
“Yes” whereas the holistic standpoint replies “No”; there are precisely the
intellectual currents of a given period, which cause that the scientific theories
assume the form as they do, not the other way round. Proceeding further
along this path, we ask whether the intellectual currents fit together into a
whole of intellectual life in a given period? The answer “yes” reduces the
intellectual life of a given period to the intellectual currents. The negative
answer constitutes the holistic thesis, to the effect that the given period’s
overall intellectual atmosphere gives rise to the creation of this or other sort
of intellectual currents.

One could prolong the reasoning here presented by introducing the con-
cepts from ever higher and higher levels. Two extreme viewpoints will always
be possible: the first one reducing the units of a higher level to ones of lower
levels, and the other, deriving the properties of objects at lower level from
ones at the higher level.

The reductionist standpoint and an opposite to it, the holistic one, we
could formulate in the following way:

The reductionist standpoint:

1. The whole consists in a block-like fashion from the parts, e.g. the unit
at higher level consists of lower level units.

2. The properties of a whole largely follow from the properties of the
parts, e.g. one could deduce in logical sense the properties of lower
level units from the properties of higher level units.
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3. The part constitutes a cause for a whole, which is to say that the units
at lower level are at the cause of higher level ones.

The holistic viewpoint negates the above claims:

1. The parts are not autonomous with respect to the whole that is the
lower level unit exists solely within the context of the higher level ones.

2. The properties of the parts follow logically from the properties of the
whole.

3. As the cause of lower level unit there is a unit of the higher level.

In the sequel we will develop the holistic viewpoint and try to prove
its methodological superiority in contemporary physics. It is interesting to
notice that structuralism in physics has been advocated by M. Tempczyk in
Structuralism in contemporary physics (in Polish) (Tempczyk 1976).

Before we embark onto the presentation of the contemporary physical
viewpoints, we will present the holistic approach in biology, linguistics,
etnography, sociology and psychology. The holistic viewpoints in these dis-
ciplines often bear the name of structuralism. The structuralism, known
from the works of Piaget, Levi-Strauss and Chomsky represents a certain
holistic viewpoint (also at this point I withstand from calling it a philosoph-
ical system or a philosophical direction, but rather a standpoint, method or
viewpoint, in accordance with the intention of its creators) in etnography
and anthropology (“structural anthropology” of Levi-Strauss and Piaget’s
“structuralism”) (Levi-Strauss 1963; Piaget 1971). Structuralism employs
the concept of a structure, which constitutes undoubtedly a holistic motion.
The structure is akin to the notion of a whole not reducible into parts. It
has however some further properties, which qualify it a bit closer. Namely,
there is a set of functions transforming a structure into itself. In this way
the structure, in spite of transformations preserves its identity, that is to
say, remains the being of the same type, which is to be found with the
help of certain criteria. Below we will give these criteria for the particular
cases to be discussed. As — the outcome of arbitrary transformations, in
spite of preserving the whole-structure, and their parts may change. They
undergo transformation, destruction, substitution in this fashion could not
be autonomous with respect to the structure. The primary and basic is
the structure, its “building” parts are less fundamental, their properties are
derivative of a structure. The very concept of a structure does not exactly
mean a notion of an irreducible whole. It constitutes in a certain sense the
specification, on the one hand, of such a concept, but on the other hand
is a certain class of abstraction of an irreducible (to its parts) whole, with
respect to the admissible transformations. Let us use for instance the notion
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of “avunculate” occurring in Structural Anthropology by Levi-Strauss. In au-
thor’s view, this structure occurs in all ahistoric societies and the traces of it
appear in the historical society. Nonetheless, in spite of this being a unique
structure, in its particular implementations it might undergo changes, de-
pending on a tribe where it occurs. These changes are tightly correlated
among themselves, and have been formulated with the help of a fixed law
of the relationship between husband-wife, brother-sister, father-son, uncle-
nephew. It is exactly this law, which determines the possible transformations
occurring within the structure, without violating it. An extended family in
a tribe would appear in this context as an irreducible whole. The func-
tionalism of B. Malinowski offers also an example of the holistic standpoint.
Malinowski claims (Malinowski 1987 — Introduction) that all rituals, myths,
behaviours or the institutions are to be analyzed in their interrelationships
among themselves, in the light of functions they are bound to play in the
life of a tribe. In this fashion B. Malinowski tries, like Couvier, to recover
some objects from the other ones on the basis of the whole of the tribe’s
life. His method constitutes transfer of Couvier’s convergence from paleon-
thology to etnography and anthropology. Couvier’s method works towards
the recreating of the complete dinosaur’s skeleton on the basis of few fossils
of it. Couvier could guess the shape of unknown skeleton’s parts by assum-
ing that the reptile’s organism had been accommodated to fulfil vegetative
functions (and hence it constituted a whole whose properties are irreducible
to the properties of its parts) making some measurements and fittings. Ma-
linowski’s functional method was very much alike. Assuming that the tribe
exists, and hence the basic functions and needs are being assured by various
institutions, Malinowski had tried to reconstruct whole of the tribe’s life
just by examining the single subject, e.g. the sexual life. In both cases, these
of Malinowski and Couvier, certain investigation methods were being used,
but holistic assumptions were to be found at their roots. In Malinowski case
there was a thesis to the effect that a primary thing is the whole of the
tribe’s life, out of which there follow all the institutions, cults, etc. Precisely
here the whole of tribe’s life becomes an irreducible whole, the components
become derivatives, fulfil various functions — they are by no means oddities
nor interesting accidental features — he claimed.

In the case of Couvier’s convergence, the fundamental holistic assump-
tion is one of non-reducibility of an organism to its organs (skeleton parts).
These organs have to be such and no different, since they have to cooperate
together, in order to assure the organism’s existence as a whole.

Let us come to holism in biology. Holism in biology is a wide-spread
standpoint and appears at different levels of structure. Let us begin from
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the cellular level. The reductionist viewpoint states that a cell consists
from organella and its properties follow from the properties of organella.
Holism contends that there are organella which have such and such properties
exactly because they enter as components of a cell. At the level of the
whole organism, “consisting of” cells, the holistic standpoint asserts, that
it is just the organism, which constitutes an irreducible whole. Tissues,
cells and organs, being elements of an organism, constitute the derivatives
with regard to it. Their properties are such that they enable the organism
to fulfil its vegetative functions. This is associated with the organism’s
homeostasis. Some cells perish, still other undergo mutation, specialization,
etc., while the organism as a whole preserves its identity. Its parts are non-
autonomous with respect to organism, undergo changes or even destruction
so as to allow the organism to function in homeostasis. We could distinguish
in biological sciences still other wholes, at the higher levels. Here belong:
the species, population, biotop, biocenosis, biosphere. The holistic approach
operating on these wholes is particularly common in population genetics,
ecology, phytosociology, sociobiology by E. O. Wilson (Wilson 1980), etc.

Since the ancient times a question was posed whether one could subdi-
vide the matter into infinity or whether after a finite number of divisions
we will approach a limit in the form of the further indivisible constituents.
During the ages of philosophical development, and later on of physics, dif-
ferent answers were being offered here. Democritos from Abdera replied to
this question by creating the idea of an atom — a further indivisible particle.
Aristotle held the view that one could divide matter ad infinitum. Epicur
followed the path of Democritos. Scholastics rejected the existence of atoms.
Dalton laid foundations under the modern atomic theory. Mach and Ost-
wald held atoms to be a fiction. Now due to STM (Scanning Tunneling
Microscopy) we can “see” single atoms on a surface of graphite or gold.

There is another question associated with the matter divisibility problem,
a derivative one: whether from the properties of the whole’s components —
the whole would follow? Democritos replied to this question this way. The
atoms have different shapes and magnitudes. Their various combinations
bring about the variety of the bodies being observed. All the changes de-
tectable in nature are the outcome of the atomic configuration changes. The
beings observed are variable and destructible, but the atoms themselves are
invariable and non-destructible. Therefore the properties of bodies follow
from the properties of atoms. Democritos’ theory was an instance of a typi-
cal reductionist theory in its pure form. The creators of the kinetic-molecular
theory 20 centuries later, by formulating the problem of reducing the prop-
erties of gases, liquid and solid bodies to the properties of atoms, have not in
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fact changed the problem. They have only formulated it more correctly and
due to having at their disposal the advanced physico-mathematical meth-
ods, managed to prove the reduction of thermodynamical law plus that of
the gas mechanics to the laws of Newton’s mechanics. Have they in fact
been successful in reducing the thermodynamics and other macroscopic the-
ories to Newton’s mechanics? In textbooks of physics one often finds the
example of a vessel with an ideal gas, covered with a moving piston. The
cluster of particles represents a model of the ideal gas. By performing the
uncomplicated calculations one could “derive” with the aid of Newtonian
mechanics the gas laws, simply by identifying the pressure with the aver-
age number of particles per second, striking the unit area of the vessel’s
walls. Similarly the temperature could be identified with the average energy
of a particle and so on. In spite of the far reaching simplifications, even
in this case we cannot accept the identification of e.g. the temperature and
the average kinetic energy of the particles. We have to deal here with the
two completely different quantities. The empirical temperature is a certain
physical quantity, whose way of measurement is given. Also its properties
are definite, e.g. the zeroth law of thermodynamics, the relationship with
Carnot cycle. The particle’s average energy is something quite different.
The equality of the two quantities is nothing else as misunderstanding, since
by this way the reducibility of a temperature to the average kinetic energy is
only apparent. The properties of a gas as a whole — its temperature — are
not reducible to properties of its components — the particles with kinetic
energies. If we extend this problem and confront the question whether the
thermodynamics is reducible to Newtonian mechanics, plus consider a whole
this issue at somewhat higher level, it would turn out that the topic is much
more complicated. After all, what is to be understood under the claim of
reducibility of the thermodynamical laws to these of Newton’s mechanics? It
means namely that on the basis of a certain model, referred to as a kinetic-
molecular theory, we deduce in logical sense from the laws of mechanics (in
e.g. Hamilton’s formulation) the thermodynamical ones. In this fashion we
get properties of gas from the properties of particles. This is grossly exagger-
ated and could be overthrown by the following counter-example. The laws
of Hamilton’s mechanics are reversible. This is to say that the motion in
one direction and that reversed to it would be equally probable. Reversibil-
ity in thermodynamics is being expressed by the law of entropy increase.
Processes resulting in the decrease of entropy of the isolated systems are
impossible. But according to the reductionist picture, every thermodynam-
ical process represents a mechanical motion of particles, composing the gas.
Every component motion is reversible. Therefore, how it could happen that
the resulting mechanical motion is not reversible? The paradox lies in the
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assumption about the reducibility of system’s properties to the properties
of its parts. Hence, one cannot deduce the laws of thermodynamics form
the mechanical laws alone. The laws of mechanics are written in the form
of differential equations. It is exactly to these equations that one wanted to
reduce the thermodynamical laws, e.g. the entropy increase law. One often
forgets that in addition to the differential equations — laws of motion, one
needs also the initial data for all the gas particles, before specifying their
trajectories. Therefore, specifying the initial data for all the gas particles
in the vessel and solving the equations of motion, we will find the motion
of all the gas particles. The problem of this sort is in general impossible to
solve for computational reasons. We see nevertheless that obtaining radi-
cally different results is possible by adopting different collections of initial
data for the equations of motion. It is always possible to reverse the system
of particles from every point in the phase space. Within this picture there
is even no room for any kind of irreversibility. The whole problem changes
in the very moment once we introduce the probabilistic concepts, and begin
to deal with the particles’ probabilities of trajectories and positions. At this
moment the initial conditions for all the particles’ equations of motion will
not interest us any more, but rather their positions’ probability distribution.
But even this will not suffice, since not every probability distribution leads
to the irreversibility observed in thermodynamics. In order to obtain the
entropy increase law, we shall assume the equal probabilities of all the ini-
tial configurations in the phase space. Should we assume anything else, we
would obtain completely different results. Hence, to summarize, in order to
recover the laws of thermodynamics, the mechanical laws — the equations
of motion alone were not enough. We had to introduce the probabilistic
concepts and adopt a principal assumption about the distribution of initial
conditions. In this fashion the laws of thermodynamics are not reducible to
mechanical ones (more about this in the preceding chapter).

The laws concerning the whole, the properties of a whole could be re-
duced to the laws and properties of parts; the assumptions are to be adjoined
to them, which are not appearing in the particles’ equations of motion. Par-
ticularly the assumption about the equiprobable distribution of the initial
conditions bears markedly holistic flavour. The adoption of this assump-
tion on the ground of a kinetic-molecular theory is dictated by the entropy
increase law, the irreversibility requirement. This constitutes a kind of lim-
itation on the initial conditions, which in no way follows from the laws of
mechanics. It seems that the probabilistic laws have certain advantage over
the deterministic ones in physics, whenever the issue of particle motion in
Universe enter under the consideration. The deterministic description of a
particle motion with the infinite number of the degrees of freedom in the
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Universe is impossible. Assertions about the particle behaviour could only
be made in probabilistic terms. Even the introducing of a cosmic Laplace
mind will not help in the deterministic description of a particle motion, due
to the impossibility of distinguishing the two “micro” states corresponding
to the same “macro” state. Let us recall that the “macro” state is char-
acterized by the thermodynamical quantities whereas the state “micro” is
defined by the positions and momenta of all the particles which fill the Uni-
verse. The probabilistic behaviour of a particle is caused by the interaction
with the entire material Universe. Therefore the type of particle determin-
ism (the statistical one) is due to the effects of a Universe as a whole (the
infinite number of the degrees of freedom). This represents very remarkable
instance of holism already at the quantum mechanical level (see Chapter
13).

As a foundation for a theory, we have in quantum mechanics the prob-
abilistic nature of the laws governing particle motion, expressed by a wave
function. The model would be possible which assumes that the probabilis-
tic nature of motion constitutes a mathematical reflection of a necessity
of taking into account the particle’s interactions with the whole Universe.
Intuitionally it is clear here that smaller the particle, less factors are able
to disturb its motion. This would explain the probabilistic nature of the
quantum mechanical laws. Of course in quantum mechanics we have the
interference of the probabilities, a factor absent in classical physics. This is
due to the fact that the probability distribution includes a wave function.

Yet another argument on behalf of analogy between the quantum me-
chanical particle and the one moving in a Universe and possessing the infinite
number of degrees of freedom is the fact that in both cases the particle state
is being described with the aid of infinite number of parameters. In the case
of quantum mechanics they are grouped in the wave function — the quantum
state. In the classical particle case within the infinite Universe there are the
coordinates and the momenta of all the remaining particles interacting with
a given one. In quantum mechanical situation we know that a wave function
constitutes an element of a Hilbert space. In the second situation, we do not
know the structure of a functional space, which describes the particle state.
Nonetheless these analogies are striking and certainly not accidental. Let
us also notice that the holistic approach (taking into account of the entire
Universe) has led us to the probabilistic nature of a physical determinism in
a classical case. In quantum mechanics the global character of a wave func-
tion (particle state) is associated with a probabilistic description (density of
probability). In both cases the statistical determinism is linked with holism.
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Let us return once again to the problem of matter divisibility and the
reducibility of a theory. Let us take for instance the physics of chemical
molecules and atoms entering into them. It is quite clear that one is not
able to deduce the properties of atones, e.g. their magnetic moments and
the remaining ones — from the properties of chemical molecules. One might
instead obtain a good theory of chemical molecules (not so complicated) by
using quantum mechanics and the properties of atoms. Here, the reduction-
ism may score the veritable triumph. As a matter of fact, from the properties
of the parts we get the properties of the whole (on the basis of a theory). It
seems however that there is no question here of reducing one set of laws to
another, of one properties to others. Both the molecules and atoms are de-
scribed by a theory of the same type. One might say that these are the units
of the same rank. There is no analogy in this case to the situation of ther-
modynamics vs. Newtonian mechanics. The theory of the atomic structure
is in the analogous situation. The only holistic-type assumption occurring
here is the self-dual field theory in Hartree–Fock approach or Thomas–Fermi
model of an atom. The statement to the effect that atoms consist form the
nuclei and the election shell is well founded, similarly like the assertion that
from the properties of nuclei and electrons we are finding the properties of
atoms (on the basis of quantum mechanics). The self-consistency of a field
is to be considered as a computational trick, simplifying the proceedings, a
kind of an assumption of pragmatic nature, associated with the investigator’s
instrumentarium.

Stepping down into the structure of matter we encounter the atomic nu-
clei and the elementary particles. In classical nuclear physics, the whole vs.
parts issue is analogous as it was in the atomic physics. The nuclei consist of
protons and neutrons. The properties of a nucleus follow from the properties
of its composing parts. Nuclear models — the droplet, shell, superconduc-
tive, collective — are only of a pragmatic nature. The assumptions adopted
in these models, which were of a holistic character, like a self-consistency of
a nuclear potential in an independent particle model, the surface tension of
a liquid in a droplet model and others, are of pragmatic nature. Similarly
like in the atomic physics, these are not the fundamental assumptions but
rather the comfortable instrumental approaches, enabling the quantitative
predictions. In many cases they are evidently false (e.g. the surface tension
of a nuclear liquid), nonetheless they often allow the reasonable quantitative
predictions within a certain range. The application of these models is dic-
tated by a necessity, since in the times of their inception, nothing or almost
nothing was known about the forces binding the nucleons together inside
a nucleus. These models constitute a reflection of our ignorance. Gradu-
ally, with the accumulation of knowledge about the nuclear forces, one has
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managed to obtain models out of the incomplete theories of the interactions
between the nucleons. In any case it needs emphasizing that the theory of
atomic nuclei construction and the theory of atomic structures are analogous.
The fundamental difference between them consists in the fact that the forces
between the electron shell and an atomic nucleus are well known, while the
forces between the nucleons are far less investigated. The second difference,
less important, lies in the fact that within the atom we have a central body
— the nucleus, creating a field within which the electrons revolve, whereas
in a nucleus there is nothing similar. This in turn implies that while inside
atom one might consider the interactions among electrons as disturbances,
in the nucleus however they are essential. This is exclusively the difference
of a technical nature, although a troublesome one in the case of applications.

To conclude the above discussion, let us stress also that in atomic and
nuclear physics the reductionism is predominant, while holism fits solely the
pragmatic, technically-instrumental side of the problem setting. Here it is
not fundamental. What concerns the nuclear and atomic physics, the fact
that holism might bear here only the instrumental character, is undoubtedly
due to the fact that the components of atomic nuclei and the atomic nuclei
themselves are the objects of the same kind. We remember though that a
proton constitutes the nucleus in the hydrogen atom, and an alpha particle
— the nucleus in the atom of helium.

We will discuss in the sequel the situation taking place in the theory of
elementary particles.

By the time when the theory of elementary particles was born, becom-
ing a branch of nuclear physics, the reductionism was scoring its greatest
triumph. There were no indications of a radical change which was to take
place soon afterwards. At this time only proton, neutron and electron were
known. The existence of neutrino and meson was predicted. The situa-
tion was roughly the following. Several elementary particles constitute the
foundation for the edifice of the entire Universe. All atomic nuclei, atones,
molecules are constructed out from the few basic components. The whole
variety of nature is caused by various combinations among these compo-
nents. In a sense this constituted the development and mathematization of
Democritos’ idea. All laws of motion would presumably reduce to the laws
of motion of these few elementary particles. The reality turned out to be
more complicated. Within the few years a lot of the “elementary particles”
were discovered: their number was so great that the very notion of the ele-
mentarity of these objects became questionable. Since hadrons, the particles
taking part in strong interactions constituted the majority among the newly
discovered particles, this has given rise for suspicion, whether they are really
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elementary or are composed of lower rank objects. There was no indication
to the effect that some hadrons would be more elementary than others. The
attempted construction of a model, envisaging hadrons as composed form
neutron, proton and hyperon Λ0 resulted in a failure. This was labelled as
Sakata model, and failed to confront lot of difficulties. At the same time
other concepts of elementary particle composition has begun to develop.
This was mainly the idea of a bootstrap — democracy of particles. It as-
serted that all hadrons are equally elementary or equally non-elementary.
Every hadron was in a certain sense to be composed of all the remaining
ones. The relationship between them identifies all the particles existing in
nature and their parameters, like: rest masses, magnetical moments, spins,
isospins, hypercharges, etc. The character of this relationship was at is-
sue here. Chew and his followers have maintained that the assumption of
S-matrix analyticity constitutes this global provision, giving rise to the re-
lationship in question. S-matrix or scattering matrix defines all the possible
inter-particle reaction channels. In this fashion the assumptions pertaining
to that matrix give rise to the appearance of such and not other channels,
and consequently of the particles with definite properties. In its extremal
casting, the S-matrix theory rejected even the meaningfulness of space-time
concepts for elementary particles. It was claimed that upon satisfying of
all the assumptions for S-matrix and by adopting only one parameter with
a dimension of length, one should be able to recover the entire spectrum
of elementary particles. Here belonged various S-matrix symmetries like
SU(2), SU(3), its unitarity and parity conservation, etc. The data concern-
ing the elementary particle spectrum were obtained from the approximate
symmetries. Predictions of the masses of these particles were obtained on the
basis how the symmetries SU(2), SU(3) were broken. The prediction and
experimental confirmation of Ω− particle within the framework of SU(3)
constituted a great success for this line of argument. Let us add that the
introduction of the so called Regge poles into the S-matrix theory fuelled
further development and subsequent successes.

Let us notice now that the S-matrix theory and the theory of its symme-
tries constitutes a holistic theory, and non-parametric one as was the shell
or droplet model. This theory does not mention any hadronic “elementary
particles”. Neither does it refer to interactions between the particles. This
theory assumes that the nature of these interactions is different from the
ones hitherto encountered. They are not of space-time character, and con-
sequently there is no question of motion, even in quantum mechanical sense.
The whole and unique information about the particles and their interac-
tions resides in S-matrix. The global, holistic assumption concerning the
properties of that matrix results in obtaining of all the particle’s properties.
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This extremely holistic programme was however not fully implemented.
At the very outset, it had to be incoherent with respect to the electro-
magnetic interactions, which are long-range ones and exhibit the space-time
nature in macrophysics: the same was with regard to gravitational inter-
action, encompassing all particles. Due to that, this programme had to be
weakened while the democracy postulate — that of equal rights for all the
particles — has been retained. This assumption have found a place in Heisen-
berg’s theory of prematter (Urmateriegleichungen). Heisenberg revived in
his idea the concept of Aristotle to the effect that every being consists of
substance and form. At the same time he had retained the assumption that
there could be no matter without form. He put forward a nonlinear equation
of quantum field theory for a spin 1/2 spinor field. This was the equation
for prematter. Various kind of this field’s states constituted the elementary
particles to be observed in nature. The field itself could not be directly
observed in nature. In a certain sense, this was the kind of Aristotle’s first
substance, whereas the state of this field constituted the form of such a first
substance. Together they gave an elementary particle.

This was a holistic idea and its ultimate formulation is to be found in
Heisenberg’s books: Physics and Philosophy and Unified Theory of Elemen-
tary Particles (Heisenberg 2000, 1966). W. Heisenberg, who managed in his
undertakings to employ ideas of ancient philosophers, has left not only the
one taken from Aristotle. He took over also the holistic concepts dating back
to Democritos and Plato. Namely, Democritos atoms were often represented
as equilateral or regular polyhedra. The equilateral polygon, constituting the
said polyhedra were not existing independently, since they were not atoms;
dividing atoms into fully flat elements was not possible. Heisenberg claimed
that there is a complete analogy between the said polygons and his premat-
ter idea. In a manner similar as these polygons, the prematter could not be
observed directly, although it could be mathematically described. In both
cases, he maintained — this was a remarkable thing. The “part” was not
autonomous with respect to the “whole”. The “whole” could not be subdi-
vided into parts. Any being could not be broken down into the substance
and form in spite that it consisted of them. The polyhedron — the atom,
could not be subdivided into polygons, since these were flat, not spatial. The
elementary particle could not be broken into prematter and form, although
it consisted of them. The “parts” appearing in these concepts were not au-
tonomous with respect to the “whole” and could not be obtained out of it
as the result of division. In this fashion Heisenberg managed to obtain in
his theory the bootstrap — “a democracy of particles” and at the same time
explained in theoretical terms definite features of these particles. Due to the
considerable computational difficulties, this theory has not developed much.
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Nonetheless, it scored some successes in explaining hadronic mass spectra.
At present there are occurring some references to the concepts advocated for
above, but from quite a different angle which we will discuss below.

Holistic theories were developed in parallel with the reductionist ones.
Attempts were undertaken in them at explaining the properties of elemen-
tary particles by reference to some from among their building elements —
the quarks. Quark models pioneered by Gell-Mann and Zweig had assumed;
that there are elementary building blocks of matter, namely the quarks.
One is speaking at present about at least five of them, while some time ago
only three were being mentioned. Each baryon consisted of three quarks,
each meson from a quark and an antiquark. Assuming appropriate binding
forces between quarks and antiquaries enables one to recover the spectrum
of elementary particles by using three quarks and three antiquarks. Quark
models to be encountered in these theories had much in common with models
of atoms and atomic nuclei. Everything was in perfect agreement with the
experimental data, except the fact that quarks have never been observed
in nature. In addition to this, quarks had fractional electric charges and
baryonic numbers. At the same time the quarks had to fit the so called
para-statistics. Namely, there is an elementary particle, the so called ∆++

resonance with the isospin 3/2 and the spin of 3/2. This resonance consists
of three identical quarks assuming the same quantum state. If quarks are
fermions, then it would violate Pauli principle; on the other hand they could
not belong to bosons, due to their spin of 1/2. Consequently they would
appear as the so called para-fermions of rank 3. This is to say that in every
quantum state one might have 3 particles at once (not only one as is the
case for fermions). This solution seemed to be not too appropriate due to
the connection between spin and the statistics of the particles in quantum
field theory. Hence the idea of the so called colour of quarks was born.
It was assumed that the quarks have an additional quantum number, the
so called colour. This quantum number does not characterize hadrons; the
quarks therefore have to saturate in this number. On time other hand, we
save Pauli exclusion principle, quarks differ in colour. In this fashion each
one from among the known quarks could appear in any of the three colour
states: red, green and blue. Hadron as a whole is white. The quantum
number were saturated in a manner similar to chemical valence or bonds.
The assumption about the existence of colour was very rich in consequences.
All elementary particles observed were “white”, no unsaturated colour was
encountered. This has created a ground for quark non-observability (confine-
ment) hypothesis. The quarks therefore, appearing as hadronic components
could not be directly observable. The role of the “part” and “whole” in
this case could have turned to be quite different than in nuclear or atomic,
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physics. On the other hand, quarks were not to be taken as pure fiction.
They could indirectly be observed in experiments involving deep inelastic
electron scattering on hadrons. Here hadron appeared as a cluster of loosely
related point particles. One could even experimentally determine the av-
erage electric charge of such a charged particle. The particles observed in
deep inelastic scattering were called partons and it became customary to
identify them with quarks and the so called gluons. Gluons constituted the
hypothetical particles gluing the quarks into hadrons; they were quanta of
inter-quark interactions. The uncharged partons were identified precisely
with gluons. On the other hand, the scattering experiments have led one to
believe that quarks have small rest masses. All this has led to the conclusion
that quarks are hadronic components in yet another sense, not to be found
anywhere outside the realm of the theory of elementary particles. They were
supposedly not able to appear independently. This remains in sharp con-
trast to our intuitions about the notions of divisibility and of a component.
In this way hadron appears to us as something indivisible, in spite of be-
ing composed of lower rank elements. The hadronic part — a quark makes
sense only within the context of a whole hadron, and outside of this one,
it looses any possibility of material existence. This reminds us the atom of
Democritos — the polyhedron composed of polygons or the substance and
the form of it. In a sense it is akin to Heisenberg idea, which will become still
clearer below. In the approach of this kind we find the dialectics between
the whole and the part. They become somewhat like the two sides of the
same medal; they become inseparable.

The next step in the development of this theory would consist of finding
a mathematical model for this theory. This was already accomplished —
quantum chromodynamics is such a model. It shows the interactions among
the quarks. This is the so called gauge field with SU(3)c gauge group. The
gauge fields, introduced by Yang and Mills (and therefore labelled as Yang–
Mills ones) are very much similar to the electromagnetic field, but have
different gauge groups. One might express this in popular parlance by saying
that there here appear more “photons”, that is interaction-carrying particles.
The most significant difference consists in the fact that these “photons”
could be charged, which is impossible in electrodynamics. The charges being
carried over by gluons are colour ones, not electric charges. These charges are
responsible for the forces keeping the hadron together. The gauge field (with
a non-Abelian gauge group) e.g. SU(3)c exhibits a very interesting property.
At the very small distances (which correspond to large momentum transfers
— big energy) the coupling constants — the charges of colour quarks —
diminish very quickly. In this fashion at small distances the hadron appears
as a cluster of very weakly interacting particles. This situation is being
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asymptotic freedom. This agrees with an experiment, the parton model. The
fundamental problem of quantum chromodynamics consists in proving that
at large distances the coupling constants grow sufficiently quickly, in such a
manner that quarks could not escape. The theory assumes that the quarks
are massless and obtain their masses in the outcome of interaction with
the nonlinear gauge field. According to this approach, the quarks first are
endowed with masses, then the chirial symmetry is being broken and finally
the quarks get confined. This confinement is called infrared-confinement.
This model illustrates the field-theoretic instance of an approach within a
theory of strong interactions with hadrons. In this theory, the hadrons are
composed of the fields, which are not independently observable: quark fields
and a gauge field. This model is very similar conceptually to Heisenberg’s
prematter model, but here the prematter is more complicated, it is not
solely the single spinorial field. We find here quark fields and gauge fields
(gluonic ones). We would like to emphasize that this is a field theoretic and
holistic theory at the same time. The underlying fields here are not directly
observable. The hadron consisting of quarks and gluons constitutes a whole
to be understood holistically. The parts are not independent with respect
to the whole, they are endowed meaning in the context of the whole.

The question of composition of elementary particles in the light of the
theories here considered, looks much more complicated than was the case for
atomic nuclei or atoms. The inability of obtaining the components (quarks,
gluons) points to the fact that the old concept of a part and a whole has
to be changed. The only idea, which can be retained here, is the holistic
concept. Naturally, this is not an extreme idea. As a matter of fact, the
properties of elementary particles are in a sense reducible to the properties
of quark and gauge fields. However this is a holistic or structuralist kind
of reduction. The state of art of reductionism in contemporary physics has
been profoundly described in note 3 (page 205).
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15 Holism in Physics of Nonlinear Phenomena and
in Cosmology

This chapter deals with holism in physics of nonlinear phenomena and in
cosmology.

In contemporary physics one might distinguish to an ever growing extent
the important role of nonlinearity, The nonlinear phenomena begin to exert
still greater influence onto the way of understanding the fundamental pro-
cesses. The linear equations, due to the superposition principle were deemed
most important thus far. Let us recall that linear are Maxwell’s equations
in electrodynamics, Dirac equation, Schrödinger and Klein–Gordon ones.
Nonlinear are the equations of Einstein, Euler, Navier–Stokes and these of
magnetohydrodynamics. Hitherto the nonlinear equations were solved ei-
ther approximately or by linearization. From some time already one began
to look after the exact solutions of such equations. Lot of solutions was
found, and thus an entirely new domain of mathematical physics came into
being. The solutions of such equations with stable properties are called soli-
tons. It seems that soliton is a model for an individuum, and therefore it well
might be that such an approach is able to overcome the difficulties of ele-
mentary particle theory, nonlinear optics, hydrodynamics, solid state physics
and others. The application of this approach in quantum field theory and
in the theory of elementary particles appears to be particularly interesting.
Lot of solutions for nonlinear field equations has been found by now, which
behave in a way analogous to particles — the individua, e.g. sine-Gordon
solution and Korteweg–de Vries one (historically this was the first soliton
solution), Schrödinger nonlinear equation with logarithmic or cubic type of
nonlinearity, and — what seems to be the most interesting — the solutions
of gauge fields coupled to Higgs fields. In certain cases these solutions model
the behaviour of quantum particles. Namely their trajectory is blurred (fills
the entire space). The counterparts of baryons and their mesonic excitations
could appear, too. A certain approach is also possible to “bare” particles
and the “dressed” ones.

Let us take for instance sine-Gordon equation in two-dimensional space-
time.

This is a nonlinear equation, which for small values of the fields trans-
forms into Klein–Gordon equation. From the very form of this equation it
is clear that a factorization of the field into oscillators does not make much
sense. Let us recall that in order to quantize the field e.g. described by
Klein–Gordon equation, one has to apply Fourier transform to it, that is has
to factor it out into the harmonic oscillators. Then we introduce the creation



15 Holism in Physics of Nonlinear Phenomena 147

and annihilation operators for elementary excitations of such oscillators. In-
stead the breakdown of this field into the mathematical pendulae is possible
and very natural (there is beautiful mechanical model of this system). Due to
the nonlinearity of the equation one could have tried to find soliton solutions.
Such solutions exist and one might interpret them as a collective motion of
the mathematical pendulae distributed in a continuous way on a thin string
performing the screw-like vibrations. This solution behaves in a manner
similar to a “dressed particle” in quantum field theory. Here the mathemat-
ical pendulum is a “bare particle”. Two- and more-soliton systems are also
possible as well as the counterparts of the bound states like Cooper’s pairs.
One might go still further and consider the excited states of a soliton. This
is done in the following way. First linearize the fields in the neighbourhood
of a soliton solution. This gives a harmonic oscillator vibrating around the
stable solution. The states of this oscillator define the excitation of a soliton.
Now it could be approached as a meson — excited baryon. Of course this is
a model situation. On the other hand let us note that the linearization has
broken the state of the excited soliton into the soliton in ground state and
the oscillatory excitation. Finding of the soliton solution for the equation,
which would correspond in linear approximation to a state of the form: soli-
ton + oscillatory excitation would give e.g. “dressed baryon” with a mesonic
excitation as a collective motion of the “bare” field states — the particles.
In the case of sine-Gordon equation this would be a collective motion of the
mathematical pendulae. Notice also what type of philosophical conclusions
such a method is inviting. Namely, in the sense of the field equation, the
excited state of a “dressed particle” is not a sum of a particle ground state
and its exciton (meson). In spite of that, the ground state constitutes a solu-
tion of the field equations, but the “meson excitation” is such only in linear
approximation. In this manner, in spite of the fact that the excited state of
a particle is “composed of ground state” and the excitation it is impossible
to separate the excitation from the excited state. The whole in spite of “be-
ing composed” from roughly speaking two parts, as a matter of fact is not
reducible to its components. The situation of this type occurs for instance
when real baryon “consists of” quarks do not have such a theory as we find
in sine-Gordon for strong interactions. Some simplifications of the quantum
chromodynamics lead under suitable assumptions to this type of situations.
In such a case the hadrons would become exact solutions of chromodynam-
ical field equations. At the same time the non-observability of quarks and
gluons would be explainable in a strictly mathematical way. The “whole”
— hadron would not be reducible to the composing parts (quarks with nest
masses), although it would consist of them. Quarks could not be solutions
for the field equations. They would only exist as a certain description of a
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solution (for example with large momentum transfers, hadron would appear
as a cluster of almost point-like particles). In practice this would reveal itself
through the increase of the interactions between the quarks, whenever one
would try to separate them, that is — would result in quark confinement.
Such a situation has been described from quite another side in Chapter 14.
To summarize, let us notice that there is an anti-reductionist trend as fol-
lows: the objects from the microworld — elementary particles endowed with
an internal structure — are not approached as the “wholes” reducible to
their “parts”. In fact they constitute the exact solutions for the field equa-
tions. Using the phrases like “they consist of” or “the successive levels of a
structure” assumes a completely new holistic meaning. This occurs only in
the context of a whole.

Let us observe that the approach treating the particles as the solutions
of field equations is due to A. Einstein himself. In the book of A. Einstein
and L. Infeld we read about the competition between the particle- and field-
theoretic approaches in physics. The authors say that the motion of a stone
in Earth’s gravitational field could also be treated in the field-theoretic man-
ner. In such an approach instead of a real stone’s position we have a very
strong concentration of a field; such strong and at the same time stable,
so the stone preserves its identity during motion. This whole motion is a
solution of the field equations. The authors fail to say more clearly what
these equations are and what field do they mean. Probably they meant here
the equations of a unified field theory. Let us note that the situation re-
ferred to in their book is very akin to modern approach to be found in the
soliton theory. The soliton constitutes a solution for the field equations, e.g.
sine-Gordon ones. It preserves its identity during motion. One could find a
region where the field density is very high and take this as a location of an
individuum described by the soliton. A. Einstein’s programme maintaining
that all the particles (in the first place the so called elementary ones) consti-
tute the solutions for the equations of a unitary field theory, had failed for
a variety of reasons. First of all, he was looking for equations which would
comprise, in a non-trivial way, the electromagnetism and gravity. There was
no room here for the strong and weak interactions. On the other hand,
he was not successful in the construction of stable models for the parti-
cles — solutions of field equations. Nonetheless, the direction which he has
established, seems appropriate for several reasons. Firstly, the unification
programme aims at combining all the interactions into a unified geometrical
theory. This is to say that the physical interactions obtain, like gravitation,
the interpretation of geometrical quantities. Yang–Mills field theory is just
this kind of a theory. It was successfully employed within the theory of weak
and electromagnetic interactions in the so called Glashow–Salam–Weinberg
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model (which was discussed in detail above). At present we might speak
about the electromagnetic-weak interactions. Similarly as in Maxwell’s the-
ory the electricity and magnetism constitute the sides of the same medal,
hence also in this case the separation of the electromagnetic and weak inter-
actions is only possible under special circumstances, the two interactions are
inseparable, they represent the two sides of the same medal. In this sense one
might say that electromagnetic and weak interactions constitute the part of
the broader, electro-weak interactions. These interactions are components
of Glashow–Salam–Weinberg ones exclusively in the holistic sense. They
could exist only upon the simplifying assumptions, concerning globally the
whole electro-weak interaction. The entire unification represents after all
the holistic programme somewhat analogous to B. Malinowski’s functional-
ism or Couvier’s method (which we have described before). The programme
of geometrizing physics together with its unification, put forward by A. Ein-
stein represents only a certain precise statement of the unification proper.
It offers a kind of indication as to how one should unify the theories of
physical interactions. In the preceding chapters it was advocated for a view-
point asserting that unification of physical interactions at present is tightly
connected with the geometrization of physics. The geometrization of the
electro-weak and strong interactions is a fact. In chromodynamics we use
Yang–Mills field with the SU(3)c gauge group, in Glashow–Salam–Weinberg
theory — Yang–Mills fields with SU(2)L × U(1)Y group. Yang–Mills fields
represent the connections in the suitable fibre bundles. The postulate of
physical interactions’ geometrizability with the simultaneous unification of
them, provides a certain selection criterion among various non-trivial com-
binations of given theories. The original theory has to be the geometri-
cal one. In practice one might obtain in this manner Kaluza–Klein theory
— joining in it the geometrical and gravitational interactions. One could
generalize this approach to arbitrary Yang–Mills field. Should one become
successful in geometrizing of a spontaneous symmetry breaking, one might
attempt constructing of the geometrical theory unifying the gravitational
and electro-weak interactions, and perhaps consequently the strong ones, to.
This programme is now under way. It aims at constructing of a field theory
comprising in a unified way all the known fundamental physical interactions,
that is the gravitational, weak, electromagnetic and the strong ones. This
theory has to be geometrical, which is to say that the unified field is to be
a geometrical quantity, for instance some connection. The field equations
are to follow from a certain least action principle. Of course these equations
will be nonlinear. All known elementary particles would constitute stable
solutions for these equations. The spectra of elementary particles, as well
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as their charges, magnetic moments, spins — all should follow from the pa-
rameters of a solution. These solutions ought to have much in common with
solitons, referred to above. The quantization of this theory is to be similar
to one we have in sine-Gordon case. This programme is inherently holis-
tic, combining the advantages of all the holistic approaches in the theory of
elementary particles. Therefore the elementary particles “are constructed”;
they consist of the “elementary interactions”. These interactions exist only
within the context of a whole — the particle constituting a solution of the
field equations. The particle energy is the energy of a field constituting the
particle. As the model cases used to show, such a field most often fills out the
entire space. Energy therefore represents a global feature of the whole space.
Of course, such a field quickly vanishes except the relatively small region (a
particle is localized). Nonetheless, the complete energy of a particle includes
also these distant contributions. Similar situation occurs with the fixed cou-
plings, for instance in electric or magnetic charges. This charges are usually
topological, that is they are determined by the topological — global proper-
ties of the entire space-time or other multi-dimensional manifold. A model
situation known from the solution called t’Hooft monopole, constitutes an
exact solution of the nonlinear field equations. This field is gauge one with
a SU(2) gauge group and Higgs field. This solution asymptotically behaves
like a magnetic charge. Consequently its magnetic field is asymptotically
Coulomb-like. The magnitude of the magnetic charge could be determined
from the theory. But the solution itself has no singular point. In fact in
the vicinity of a point, where the above mentioned monopole would have to
be located, the field remains regular, changing its character in a function
of a distance. We may easily compute the mass of such a particle — the
monopole by determining the decomposition energy of the fields associated
with this solution. Hence we see that in this approach all the properties of
a particle follow from the global properties of solutions for the equations,
among others, from the properties of the space-time. This represents the
most holistic picture for elementary particles composition. In addition to
t’Hooft monopole referred to above, we have other examples of “kink-type”
and various kinds of solitons. There are also some models of such particles,
obtained from nonlinear field equations by numerical means. This type of
models are also known for the real particles, such as proton and neutron.
The remarkable fact being here that the mathematical models and theo-
ries employed in this type of theories by itself imply the holistic viewpoint.
These theories cast globally the properties of the topological manifolds and
spaces. These manifolds could be the solutions of the field equations. Global
features of such mathematical entities could be identified with the “local”
properties of the particles, such as energy, mass, charge etc. There are also
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known some solutions of the nonsymmetric Kaluza–Klein theory endowed
with finite energy electric charge and without singularity. They constitute
models of charged particles.

Let us turn our attention to the question of holism in cosmology.
Cosmology is a relatively young discipline (Bondi 1960; Weinberg 1972;

Ehlers & Schafer (eds.) 1992; Weinberg 2008; Liddle & Lyth 2000; Mukhanov
2005; Martinez et al. (eds.) 1992; Dirac 1973; Abbott & Pi (eds.) 1985). In a
matter of fact, first scientifically sound notions about Universe have emerged
only in XIX Century. About this time cosmology began to gain independence
from physics and astronomy. The very problem of determining the proper-
ties of the Universe appears to be ideally suited for the holistic treatment.
In fact, from the very definition of Universe it follows that it constitutes an
ultimate whole. In the chain of subsequent components of a structure hier-
archically positioned, from the elementary particles, through atomic nuclei,
atoms and chemical particles to planets, stars and galaxies, the Universe con-
stitutes a final element. There is still another element, which substantially
distinguishes the Universe from galaxy or elementary particle. Universe is
unique. We have no opportunity for comparing it to whatever entity of the
same category. We are not able to investigate many Universes, as is the
case when we examine lot of galaxies or stars. In this manner we could not
speak about the typical Universe, as we used to say about the typical star or
a molecule. We have no possibility of comparisons. This is very important
circumstance. At the same time we are a part of Universe, observing it some-
what like “from within”. We could not look at it as we are doing when looking
via telescopes at the stars or galaxies. All these circumstances contribute to
the fact that the cosmology itself is holistic in majority of its concepts. We
have two approaches to cosmology: according to the first, we assume that
the laws of physics discovered in our most immediate neighbourhood will
also remain valid for the Universe as a whole. For instance, we assume the
validity of Newton’s gravitation law or of general relativity. Using these laws
and also the so called cosmological principles, we construct the model for
the Universe. Cosmological principles constitute certain assumptions about
the symmetry of the Universe. Thus we assume for instance that there are
no distinguished points in the Universe. The newly constructed model is to
undergo observational checking. This means that we draw conclusions of the
type liable for testing via the observational means. Within this approach,
we deduce from Universe’s global properties — its local properties, e.g. the
escape of galaxies. The second approach assumes some global properties of
the Universe and tries to extract from them its local features, particularly
the locally observed relationships. The first approach might be termed as
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one proceeding “from physics to cosmology”, while the second as “from cos-
mology to physics”. This second approach represents an extremely holistic
attitude. Let us try to explain this on the example of Milne’s theory. In this
theory certain space-time metric for the Universe is being assumed. From
the form of this metric and some quite natural assumptions Milne obtains
Newton’s gravitation law for the two nearby material points. This is a sur-
prising result. For here out of the Universe’s global properties, we get laws
about the behaviour of its parts. This is not the only approach. Attempts
of associating the properties of the Universe as a whole with properties of
elementary particles are very characteristic in cosmology. This applies to the
properties like e.g. masses, charges and radii. One might ask way to relate
them just with the properties of elementary particles, not the ones of stars,
planets or the Solar system. The answer is quite simple. The parameters
of stars or galaxies are distributed over a considerable region and it is thus
hard to determine some of them as the most characteristic. In the case of
atoms, their nuclei or in the case of molecules, there also occurs large disper-
sion of parameter values, and in addition to that we are rightly convinced
about the complexity of these objects. Elementary particles seem to be the
ultimate stage of dividing matter in a usual sense. The question of their
construction out of quarks was discussed earlier. Lot of researchers hold the
view, that it is just this lowest level of structure associated with the ele-
mentary particles, which should be linked with the global properties of the
Universe. The entire problem in turn had originated from the so called large
number hypothesis of P. A. Dirac (Dirac 1973). This hypothesis states that
any two great dimensionless numbers in nature have to be related together
in a simple arithmetic way. What are these great dimensionless numbers?
They are, to name the most significant ones:

q2

4πε0GNmpme
= 0.23 · 1040

R
q2

4πε0mec2
= 4 · 1040

ρR3

mp
= 1080

(15.1)
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where:
GN — Newton’s constant
q — elementary charge
4πε0 is the permittivity factor
me,mp — mass of electron, proton
c — velocity of light in a vacuum
R — radius of the Universe
ρ — average density of matter in the Universe.

The first of these numbers determines the relationship between the elec-
tromagnetic and gravitational forces inside the hydrogen atom. The second
represents the ratio of Universe’s radius to the so called classical radius of
electron. The third constitutes the number of nucleons (baryons) in the Uni-
verse. The remarkable thing is that the first two numbers are of the same
order. The probability for the occurrence of such a relationship at random
is negligibly small. Therefore it is believed that they imply some deeper
relationships between the global properties of the Universe and of the ele-
mentary particles. The third number is approximately a square of the two
first ones. This relationship seems also to be intriguing. One might form
more relationships which would include dimensionless atomic constants on
the one side and the dimensionless cosmological constants on the other. All
will include the numbers of the order of 1040 or its squares or third powers.
Together these relationships are quite strange provided that we assume an
entirely random cause. There are lot of attempts aimed at explaining these
correlations. Among others it was assumed that these numbers remain con-
stant. Due to the expansion of the Universe, this would mean the expanding
of elementary particles, for instance of the electron. This hypothesis leads
therefore to the conclusion that the elementary particles change their prop-
erties in conformance with changing properties of the Universe. Thus, out of
the global properties of the Universe, the properties of its parts would follow.
P. A. Dirac tried to explain the assumed constancy of the numbers obtained
by the variability of a gravitational constant. In fact, one could observe in
following relationship (constituting a corollary from the ones written above)

GNρR
2 = c2. (15.2)

This condition implies the variability of the gravitational constant. It is
of course very slow variability, but it is probably possible for observational
detection in parallel with the enhancements of the investigatory techniques
within the next decade (if this phenomenon really is taking place). There are
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still other attempts aimed toward relating the universal constants e.g. of an
elementary charge (of the fine structure constant), or constants for the weak
and strong interactions in formulas with cosmological parameters. They
lead to the predictions about the variability of these constants in agreement
with the expansion of the Universe as a whole. Attempts are being made
to confirm experimentally these predictions. The said changes can have and
could already have had great influence onto the Solar system structure or
the interior of the stars. That is why even the traces of these changes are
being sought at distant geological epochs. In addition to the hypothesis
about great numbers theories are being put forward, which would enable
us to infer them. Here belong the theories of Hayakawa and Eddington.
Hayakawa has assumed that the entire Universe constitutes such a whole,
where the particles are the distinguished dynamical states. The particles
are stable and localized, but the conditions of their stability are determined
by the properties of the said whole. This is very much like the vibrations
of a string. The wave’s nodes and the antinodes, plus also the wavelengths
are locally observable, but the standing wavelength depends on the distance.
This theory provides an instance of an extremely holistic one. It features
the absolute dominance of the whole over parts. The properties of parts are
being completely determined by the properties of a whole. The solution put
forward by Hayakawa resembles Mach’s principle for the properties other
than the inertial mass. Let us recall that Mach postulated the following
principle: inertial mass is being determined by the gravitational interactions
of distant masses. In other words, the inertia constitutes a global feature of
the entire system of bodies. There is no inertia in an empty space, where
only one body is present. Already at the times of Mach the theories were
created, which conformed to his principle. They represented the modification
of Newton’s gravity law. The gravitational potential in these theories depend
on velocity. The inertia of an entire body found its origin at the gravitational
interactions with distant bodies. In a similar way the electrical charges and
masses of elementary particles were determined by global properties of the
whole Universe. Eddington’s theory belongs to this type of theories. It
predicts the magnitude of the fine structure constant, number of nucleons in
the Universe and a lot of other quantities. The most interesting thing here is
the prediction of the value for the fine structure constant, which determines
the magnitude of the electromagnetic forces and thus the value of an electric
charge. Here, the dominance of the whole over the part is complete.

Finally, I would like to note that the inflationary models for Universe, de-
veloped recently and cosmic string models are very holistic in their essence.
This applies primarily to the inflationary model. There are several infla-
tionary scenarios for the Universe. Here belong the first, the second super-
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symmetric and the chaotic inflationary scenarios. In their construction, the
theory of elementary particles is being used, gauge field and the spontaneous
symmetry breaking with Higgs mechanism. Due to Higgs mechanism, the
Universe starts from the state without matter. Here, de Sitter model with
a cosmological constant is being followed. Because of spontaneous sym-
metry breaking, corresponding to the phase transition of the second kind
after inflating (the exponential Universe expansion in de Sitter model) of
the Universe, there follows the phase transition of the first kind, leading to
Friedmann model. From this moment onwards the hitherto known normal
evolution of the Universe takes place. The Universe in the phase of de Sit-
ter expansion starts in the state of the so called meta-stable vacuum (false
one). After completing the phase transition of the second kind, correspond-
ing to the transfer from the state of meta-stable to the stable vacuum (the
true one), there follows the creation of matter out from the vacuum (from
the energy corresponding to the state of meta-stable vacuum — the cosmo-
logical constant having the interpretation of negative pressure). This gives
rise to the possibility of creationist interpretations. It is possible (likely)
that the Universe in its initial state was divided into many mutually non-
communicating (causally) parts, all being in the state of meta-stable vacuum.
At the outcome of the phase transition mentioned above, the coalescence of
these parts would occur, with the subsequent entry into the expansion within
the framework of Friedmann model. It is also likely that the Universe began
the evolution as a solely one part. The differences between the subsequent
inflationary scenarios for the Universe development, which were referred to
above, are purely technical. In the first scenario we have quantum transi-
tion (tunnel effect) between the state of a meta-stable vacuum and a stable
one. In the second scenario we have the transition of a classical type. In
the supersymmetrical scenario we have to deal with taking into account of
the supersymmetry (fermions). Inflationary models are capable of explain-
ing some intriguing properties of the Universe. Namely, its very large spatial
flatness (the fact that average matter density is very near to a critical density
value). This coincidence had always appeared to be very mysterious. The
inflationary models introduce new problems, e.g. of magnetic monopoles etc.
These problems could be solved by the extended inflationary models, too. It
seems that the inflationary models are capable of solving also a lot of other
problems associated with the fluctuations of matter density, responsible for
proper size of galaxy clusters and the observed inhomogeneity of matter in
the Universe. There are several inflationary scenarios. The most important
is Linde chaotic inflation with (supersymmetric) slow-roll inflation. The
first inflation theory constructed by Guth using Weinberg–Coleman theory
promises us a strict connection between cosmology and particle physics.
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The relationship between cosmology and physics of elementary parti-
cles within these models places them inside a series of exceptionally holistic
models. It seems that the inflationary models could be derived from the the-
ories of Kaluza–Klein type, complemented with the dimensional reduction.
The application of chaotical dynamical methods could probably explain the
existence of superclusters and superholes between them (e.g. the Great At-
tractor). In such a case one might try to explain successfully also the fractal
structure of the distribution of matter in the Universe at the level of clusters
and superclusters. Let us notice here that the distribution of superclusters
observed could not be explained by the accretion of the galaxy clusters due
to their mutual gravitational interaction, since the relaxation time of such a
big system is far greater than the age of the Universe. Hence, this structure
had to be created already before the galaxies were born. Consequently it
looks like the observed fractal (or multi-fractal) matter distribution pattern
in the Universe ought to have its origin in the evolution from the primordial
Universe, that is to say — in the inflationary age. This is the extremely
holistic viewpoint. The interesting problem is to deduce a proper theory of
gravitation from cosmological observations.

Recently we found from an observation that an inflationary scenario in
cosmology is correct. Simultaneously it happens that the Universe is spa-
tially flat. The Universe is also filled by a dark matter which acts only
gravitationally. This matter is a cold dark matter (a dispersion of velocities
of the matter is very small). In the budget of a full matter content of the
Universe we have 4.9% of an ordinary matter (the so called barionic mat-
ter), 26.8% of a dark matter and 68.3% of the so called dark energy. The
Universe is spatially flat thus a total density of matter in the Universe must
be equal to a critical energy density. In this way a paradigm of cosmol-
ogy is ΛCDM model. It means Λ — cosmological constant, CDM — Cold
Dark Matter. According to modern ideas a dark matter (a cold one) could
consist of supersymmetric particles (sparticles). There are some hypothe-
ses: gravitino, WIMP (Weakly Interacting Massive Particle), also axions
and scalarons. Someone calls an additional dark energy (e.g. a cosmological
constant) a quintessence, which could be described by a scalar field from e.g.
Nonsymmetric Jordan–Thiry Theory. In this way we have in the Universe
five types of matter:

1. an ordinary barionic matter, which is visible,
2. a radiation,
3. a hot dark matter (e.g. neutrinos),
4. a cold dark matter,
5. a dark energy — a quintessence.
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This is similar to Aristotle four elements theory plus la quinta essentia,
the fifth element, i.e. five elements in his Universe. Due to the observations
(Cobe, WMAP, Planck’s satellite) of CMB (Cosmic Microwave Background)
radiation (it means a correlation of its fluctuations) we can prove a ΛCDM
model of the Universe in a very great probability. It happens that probably
we need also an additional dark matter, so called “warm dark matter”. The
theory of “dark matter” has been recently highly developed. We have the
so-called “dark strong interaction” with “dark quarks” and “dark gluons”.
In some sense this is similar to a “mirror world” known in E8×E8 heterotic
string theory (moreover quite different). Simultaneously a geometrization
and unification of fundamental interactions connected to a holistic approach
seems to be a right track in contemporary cosmology and physics. Thus an
arche of the world seems to be a geometry.

An interesting approach to cosmology has been designed by R. Penrose.
He considers the so-called cycles of time and in his cosmology a singularity
has been removed by a coordinate transformation (it is an apparent sin-
gularity as an apparent singularity in the case of horizon singularity for a
black hole). In this way we are not forced to consider quantum cosmology,
classical is enough. His cosmology is conformal and the Universe interacts
infinite number of times with the future time-like infinity. It is possible
to test empirically his CCC (conformal cyclic cosmology) theory observing
microwave background radiation looking for rings. He claims that he does
not need dark energy to explain cosmic acceleration (in his approach it is a
gravitational radiation coming from past Universe).

Let us give some details of R. Penrose’s theory (Penrose 2010). We have
an infinite (countable) number of universes with Friedmann metrics. Every
copy of a Friedmann universe can be attached through conformal boundary.
In this way we get a new solution of Einstein equations which is considered
as the entire Universe. R. Penrose called the existing sectors aenos. The
concentric circles which can be observed on a sky (WMAP) can be considered
as confirmation of the theory. However we can also get such circles (rings)
from the scattering of many universes in Multiverse.

After the Planck mission we corrected cosmological model parameters
and a composition of the Universe (we give the last results above). The
paradigm of a contemporary cosmology is of course ΛCDMmodel. Moreover,
Starobinsky nonlinear gravity (R2) works very well for an inflation. There
is almost flat spectrum for a primordial matter fluctuation ns = 0.9652 ±
0.0062, for a Hubble constant we get H0 = 67.3 ± 1.0 and the age of the
Universe is 13.8 Billion years. Simultaneously a discovery of a polarization
of a microwave background radian due primordial gravitational waves was
not confirmed.
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Conclusions, Remarks and Prospects
for Further Research

Ideas put forward here are meant to illustrate a certain approach leading
towards the unification of physics. This is a geometrization approach. The
postulate of geometrizing physics constitutes a kind of methodological doc-
trine, which might be defined as one of using the geometrical methods in
physics whenever possible, his somewhat imprecise definition needs some
additional comments and further elaboration. The essay discusses exam-
ples of geometrization in: theory of relativity, mechanics, gravitation theory,
electrodynamics. In many cases the methods of joining two geometrized
theories into a single, unified one were also demonstrated. Supersymmetry
and supergravity calls for the introducing of many hitherto unknown struc-
tures into mathematical physics. Here belong graded Lie algebras originally
created specifically for the second quantization problems, and developed in-
dependently afterwards. But this is not all. Problems of geometrization
and unification in physics call for the application of quite different mathe-
matical apparatus. It is due to this need that quaternions and octonions
entered into the theoretical physics, this is to say the non-commutative and
non-associative structures. The usage of manifolds, not only complex ones,
but also quaternionic and octonionic became wide-spread. These manifolds
provide the example of the varieties with non-commuting coordinates, which
were referred to above. It is being hoped that such an approach might re-
sult in joining many areas of elementary particles theories. This applies to
the case of colour and its non-observability, known as “confinement”. With
non-commutative algebras are related in a peculiar way the algebras excep-
tional in Cartan classification: G2, F4, E6, E7, E8. These algebras and Lie
groups corresponding to them are candidates for general gauge group of the
fundamental interactions within the so called grand unification. Grand uni-
fication aims at unifying the electromagnetic, weak and strong interactions
with the aid of a single gauge group. At the same time this group is to pro-
vide classification of quarks and leptons. In contrast to G.U.T. the so called
small unification strives to unify only the electromagnetic interactions with
the weak ones, viewing the strong interactions as independent, described by
quantum chromodynamics. Simultaneously this scheme will comprise lep-
ton classification, and hence it aims at quite modest goals. The programme
of small unification seems to be near completion due to Glashow–Salam–
Weinberg model. The programme of grand and small unification is partly
geometrized due to Yang–Mills fields occurring there, or the connection on
fibre bundles. These programmes use heavily also other methods, namely
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Higgs mechanism and the spontaneous symmetry breaking. Both these in-
teresting and important mechanisms are already partly geometrized. One
might consider this to be a success of the geometrization programme, in
spite that they still do include lot of phenomenology. There is a hope for
the gradual removal of the remnants of the phenomenological inconvenience
mentioned, mainly one associated within specific form of self-interaction po-
tential for Higgs fields. All that could similarly be applied to the case of the
spontaneous supersymmetry breaking and the supersymmetric Higgs mech-
anism. Here, also lot of phenomenology lurks through, even more than in the
case of ordinary symmetry. Let us observe that the contemporary physics
begins to follow the path set forth years ago by Albert Einstein in his idea of
a unified geometrical field theory. He has devoted to it almost half of his life,
without any significant outcomes. In fact it was only he, who worked in this
domain, since after his death the idea was abandoned. The desire of having
a grand synthesis in physics, of obtaining its unification via geometrizing the
fundamental interactions has been thus abandoned. Now we see that Albert
Einstein was right, he was on correct path. His programme was formulated
prematurely; in his times it could not have been implemented. Nonetheless,
some basic facts established within his research approach have remained
for good. Among others was he who formatted the ultimate Kaluza–Klein
theory unifying gravitational and electromagnetic interactions. The idea of
geometrizing physics with, simultaneous unification of this science represents
the holistic concept. The future geometric theory has to include in itself as
special cases the already existing theories of interactions, e.g. general relativ-
ity and electrodynamics. This is mandated by the correspondence principle.
This future theory will not be the mere compilation of the ones referred to
above. Due to the fact that these have to be geometrical theories, some inter-
ference effects are expected to appear between interactions of various kinds.
It is in precisely this fact, where pronounced holistic moment is contained.
According to Einstein’s programme, the particles have to cease playing the
role of field’s singular points. They are to become the solutions of the field
equations; only in the approximate description will they become singular
points. Albert Einstein and Leopold Infeld in their book (Einstein & Infeld
1938) Evolution of Physics write the following: let us imagine the motion of
a stone inside Earth’s gravitational field from the purely field-theoretic point
of view. This is not going to be the motion of a particle-body any more.
Rather it will be the motion of the fields, which due to mutual interactions
preserve the shape of a stone in an unaltered form. The energy of this field
very quickly vanishes beyond the geometrical limits of the stone. The motion
of these fields could be well described as the motion of the stone’s centre of en-
ergy (the centre of gravity) in constant gravitational field. It could be clearly
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seen that this idea and the notion of elementary particles as the solution of
the field equations constitute conceptually identical approaches. They differ
only in this that they have originated in different historical periods, and this
explains why the more recent one is more precise. Also — we have already
certain models capable of implementing this idea. Here belong the soliton
solutions to nonlinear differential equations in various branches of physics.
It seems that some of them could quite proficiently describe certain proper-
ties of elementary particles, including also quantum features. This kind of
attitude towards the elementary particles is very holistic. One could even
say that extremely holistic. The particles are here the solutions of the field
equations. Precisely this constitutes the continuation of Albert Einstein’s
programme, and once again confirms his genial intuition.

The main thesis of this essay asserts that physics abandons the additive-
analytic viewpoints on behalf of the holistic ones, and that this trend is going
to continue. Out of this claim certain practical corollaries follow, bearing
onto the way of cultivating physics, and also the type of mathematical appa-
ratus used in it. The claim was advanced to the effect that it is the machinery
of differential geometry, algebraic topology and algebraic geometry, which
is going to play the role of principal mathematical techniques applicable.
There appears that just these mathematical theories are particularly use-
ful in theoretical physics, whenever the holistic standpoint enters into the
play. It is likely that these theories are best capable of grasping the “part
vs. whole” dialectics in contemporary physics. Judging after the attitude
exhibited in works advancing them, contemporary physics approaches the
situation, whereupon the basic components of matter — elementary par-
ticles — are going to be described by holistic methods. The structure of
elementary particles (these particles do possess the internal structure) could
not be explained by additive methods. This is going to reveal itself in the
fact that it will not be possible to extract the hypothetical components of
these particles. In this way the subdivision of a “whole” into “parts” is going
to become a matter of convention, will exist due to convenience, a procedure
without any counterpart in reality. In fact the ontological status of “parts”
will be completely different than that of a “whole”. The viewpoint advocated
for above, bears also still other repercussions, associated this time with way
of doing physics as such. Namely, the idea is being propagated recently to
the effect that the search for the elementary components of matter could be
prolonged into infinity. According to some views, quarks are going to be iso-
lated, one day, and afterwards their components are going to be discovered,
e.g. the subquarks, etc. Should this process of subdividing be continued into
infinity, then even assuming the eternal existence of civilization on Earth,
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this will find no limit. The matter is going to assume the hierarchical struc-
ture, and this will be the structure without any boundary, when viewed in
the direction of ever simpler components. Supposedly in this fashion the
infinite variation of matter is going to reveal itself. This viewpoint repre-
sents the prolongation of the situation encountered in molecular, atomic and
nuclear physics of today far into the future of physics.

The examples demonstrated above and considerations presented question
such a thesis. The infinite variety of matter could reveal itself at any level
of its structure; it is not necessary to introduce the infinite number of these
levels.

The conviction expressed above brings about some particle consequences.
Namely, since we are never to reach the matter’s basic components, is it
worth investigating all this, has the spending of such a tremendous amount
of effort on searching for these any value? At present, when the science itself
and its methods are being assaulted from the irrational standpoints, it is
important to show that the fundamental natural science — physics — is not
heading in the agnostic direction, leading nowhere.

One should note that the links the holistic programme exhibits with ge-
ometrization, are by no means accidental. Application of the methods of
differential geometry, as well of these of algebraic topology and algebraic
geometry is associated with global approaches toward such quantities like:
mass and charge of a particle, its magnetic moment, spin and a lot of oth-
ers. The above properties characterize the whole space-time. In this fashion
a particle fills up the whole space, although in practice it is sufficient to
consider only the small region of space. This feature determines the corre-
spondence between the purely field-theoretic picture and the field-particle
one. At the limit, the region in question could be considered to be a point,
and the particles — material points, the singular points of a field.

The superstring model is a very holistic one, seems to be highly promising
in its prediction power and the unification of fundamental interactions in the
area of elementary particles. This model, or rather a collection of models has
linked together the concepts of Kaluza–Klein, supersymmetry, supergravity,
of dual models and that-of strings. The latter ones has resulted out from the
modified hadronic strings, referred to earlier in this essay, in this case some
among their weaknesses in the physics of hadrons turned into advantages, at
the different level of structure, namely at Planck’s lengths (10−33 cm). This
theory is capable of creating the quantum theory of gravity (a finite one)
corresponding to GTR (General Relativity Theory) in the classical limit.

Such a deep level of structure (distances of the order 10−33 cm— Planck’s
scale) would call for the introduction of a discrete theory for space-time, e.g.
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of the cristall-lattice type. Perhaps in such a case, the role of gravity in
the micro-world, of GRT would find proper explanation. The attempts of
creating a discrete theory for space-time have already been undertaken many
times in the past and are still being made. It is postulated that GRT within
such an approach would become a macroscopic theory, phenomenological
thermodynamics of a sort, obtainable after taking the averages over the
regions big enough in comparison to Planck’s length. From this point of
view, the quantization of GRT in its present shape would be devoid of any
merit, due to the absence of quantization of thermodynamics. Superstring
model leads toward viewing GRT from yet another side.

Let us notice the following fact in quantum gravity approaches. It is
possible to construct a consistent Hamilton formulation of General Relativ-
ity using new type of canonical variables going to be the so called Quantum
Geometry (Rovelli 2004; Thiemann 2007). In this way we can quantize an
area, a length and a volume. Some approaches to the theory of quantum
black holes have been made getting the second law of black holes dynamics
and Hawking radiation. It was also possible to resolve cosmological singu-
larity using this approach (see Bojowald models). In some sense Quantum
Geometry is in line of geometrization of physics. Moreover, there are a lot
of problems to be solved in order to get a unification and a holistic picture
of the Nature.

Important attitude within philosophy of physics, very much related to
holism is a viewpoint taking the physical process to be the most fundamen-
tal one. In this manner the world gets represented as a dynamical process,
devoid of any fundamental bricks. Only the process as a whole enjoys the
absolute property of existence, with everything else being relatively separate
part there of, in suitable conditions undergoing transformation or destruc-
tion. That is why in this approach the notion of vacuum (or even emptiness)
assumes greater importance. The vacuum is not empty, it is full of processes
leading toward creation or annihilation of the virtual particles. Exhibits
lot of properties characteristic of any material medium, is polarized, could
be viewed upon as a semiconductor or even a superconductor, has non-
vanishing dielectric and magnetic properties, could even exert pressure. The
vacuum is therefore an extremely complex being, far more complicated than
the’mechanical model of aether put forward in his time by C. Maxwell. It is
worth mentioning that there are interesting works confronting the notion of
vacuum in QCD (Quantum Chromodynamics) and Maxwell’s aether. The
former is much more sophisticated, due to the fact that it could be degen-
erated. Given such an attitude toward vacuum, we have of course troubles
with “elementary particles”, that is their ontological status is doubtful. Are
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they the most basic constituents of matter or not? Are they indivisible (in
the sense of Democritos) or not? The reply to both questions is in principle
negative. The world assumes here the form of a process (at the most basic
level) where elementary particles reveal themselves at the outcome of this
very process. This is very fertile idea, to a large extent finding confirma-
tion in the theory of superstrings. These theories (I say this in plural, since
there are lot of alternative models of this kind) have a chance of becom-
ing the theories for all the fundamental physical interactions. A continuous
process of joining and separation of the vibrating, relativistic strings consti-
tutes the model of the world within the framework of superstring theories.
The motion of the strings takes place in the multi-dimensional space-time
(26-dimensional and 10-dimensional one). The observed space-time corre-
sponds to the state of vacuum, resulting at the outcome of higher dimen-
sions’ compactification. In this way the multi-dimensional space-time in the
state of vacuum (its ground state) constitutes a Cartesian product of the 4-
dimensional Minkowski space and 6-dimensional compact manifold endowed
with a suitable topology. This represents the extension of Kaluza–Klein
idea. The superstrings wind around the higher dimensions producing the
spectra of the observable particles. There is presently a lot of works, trying
to derive the standard model and new predictions in high energy physics.
Some of them were quite successful. Summing up, the superstrings mean the
imaginative fusion of Kaluza–Klein theory with dual models, supersymme-
try and supergravity, theory of solitons and almost entire contemporary and
past mathematics. Superstrings models are capable of avoiding anomalies,
even be finite (in the sense of quantum field theory), it is possible to derive
GR.T from them, corrected with scalar interactions (as is the case of Brans–
Dicke theory) or even to be endowed with non-Riemannian, nonsymmetric
metric. We could obtain Yang–Mills fields, quark and leptonic spectra, a
number of families in the standard model, spectrum of the nonsymmetric
particles, etc. The most distinguished superstring model, the so called het-
erotic strings, give us a single distinguished group, that is E8× E8 unifying
the interactions.

Superstrings (particularly the model of heterotic strings) have been con-
sidered as a starting point for the creation of the all-encompassing theory,
that is the theory of the entire physical reality. They failed to satisfy to
these expectations, due to the following reasons. They were not a unique
model singled out on the basis of the mathematical constituency involved.

Due to the manner of obtaining the heterotic strings model, the hope has
arisen to the effect that this could be a unique model of physical reality. This
has however turned to be misleading. A great deal of competing models was
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created, which had enjoyed similar properties. One could even hardly deter-
mine, how much of them there are. On the other side, the linking of standard
model’s parameters directly to some specific superstring model ended in a
failure. Because of this, in principle only the so called superstring-inspired
models were investigated. This has not yet provided any significant hints for
experimental work. The only new predictions comprised the ones dealing
with the existence of the additional bosons Z0(Z0′) and their mixing with
Z0) boson. In general no predictions about their masses were obtained. The
superstring models were employing very interesting mathematical formalism
within the string quantization framework. This formalism, labelled with
the name of Polyakov employs the theory of Riemann, Teichmüller space
and also determines for operators acting in infinite-dimensional spaces of
functional analysis. The need for compactifying the superstring model has
caused the development of the theory of Calabi–Yau manifolds. Solving (by
Yau) of the conjecture by Calabi about these manifold served as the main
argument supporting the model including E6 group within the grand unifi-
cation resulting from the model of heterotic strings. It seems however that
in spite of a great abundance of the string models, their importance in high
energy physics is quite limited. They fail to provide (at present) easily veri-
fiable predictions. Hence they are not good theories in the sense of Popper.
The physics of Descartes and Newton constitutes a complete negation of
such an approach. In spite of the fact that here the notion of vacuum is far
more important than was the case in pre-Newtonian approaches, they still
fail to offer adequate ontological status for vacuum. The notion of vacuum
(void) is heavily substantially linked to the geometrization of physics. The
geometry (that is the void, the vacuum) occurs here as the basic rule for the
world, and it constitutes just this physical process mentioned above. Such
an approach could also be developed within the superstring context. The
possibility arises here of associating the spectra of the observable elemen-
tary particles together with their features with the cosmological model of
the Universe (the so called compactification on the orbifold, linked with the
cosmic string). In this manner the experimental testing of the cosmologi-
cal model could be inseparably associated with the investigations into high
energy physics, which is very interesting.

Cosmic strings are one-dimensional material objects. In the relativistic
theory of gravitation they span a two-dimensional surface in the space-time.
They (that is — strings) could be open or closed. In the model mentioned
above, the cosmic string is a consequence of the common 2 dimensions for an
8-dimensional orbifold and the space-time (4-dimensional) entering into the
cosmological model. In this fashion, there will appear 2-dimensional world
— sheet of a string in the space-time. In the 3-dimensional space (for a fixed
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cosmological time) a one-dimensional object is observed as the cosmic string
evolving in time.

The process-like approach might be combined with a systematic one,
that is to say with the structuralistic approach. Together all this is ex-
tremely holistic. There is also an interesting combination of the string and
superstring theories with black holes. This is associated with string gravity,
resulting after going to the limit with α′ → 0. The parameter α′ called Regge
trajectory’s slope, tends here to 0 in a special way. In this manner we obtain
(via the tree-like approximation of the heterotic string theory) the classical
Lagrangian of GRT. Thus we could examine the corrections a’ (associated
with the quadratic terms in Lagrangian) to the black-hole type solution of
GRT.

Taking advantage of quantum corrections to the tree-like approximation
within the heterotic string model, we could obtain in a similar manner the
corrections to α′ (of the second order in perturbative quantum string calcu-
lus) to GRT Lagrangian. In these cases we examine of course the tree-like
diagrams plus one- and two-loop corrections for spin 2 particle, which here
has the interpretation of graviton. Proceeding in this fashion, we could look
for quantum corrections to GRT Lagrangian (or full supergravity). This is
going to bring us quantum effects in the space-time generated by black-hole-
type solution.

In a similar manner we get Lagrangians for Yang–Mills fields, the scalar
ones, together with the corrections α′ and also the corrections of higher or-
ders in perturbative string calculus. If the whole theory (of superstrings)
is finite (there are no ultraviolet nor infrared divergencies) then this should
constitute a means for obtaining the quantum theory of gravity. By inves-
tigating the effects around the exact solution (implementing the black hole)
to the classical field equations, we obtain quantum effects of gravity inside
the black hole. At this moment these are not semi-classical methods any
more, hitherto referred in this essay, and associated with Hawking effect.
(See some considerations below.) There will be instead significant effects of
quantum gravity, originating from the heterotic string model.

Superstring models have recently undergone considerable development
(Kaku 1999; Polchinski 1998; Green et al. 1987). We have today strings
and superstrings in various space-time dimensions. The dimensions 10 and
26 critical for the quantum superstrings and strings, have turned far from
being unique. The strings and superstrings have also appeared in the four-
dimensional space-time. Let us recall that by a critical dimension of a su-
perstring or string is to be understood such a dimension, at which we obtain
consistent quantum theory of string or superstring. Referring to Chapter 10,
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we might say that for a bosonic string (without spin) in dimension 26 — rela-
tivistically invariant and the canonical quantization become equivalent. For
a string with spin the same occurs in dimension 10. The critical dimensions
of 10 and 26 could also be obtained at the outcome of other string quanti-
zation methods. By using Polyakov method, we may obtain them provided
that the assumption about uncoupling of Liouville’s theory was adopted. A
connection between the formula (10.1) and Kac–Moody algebras indicates
that the critical dimensions singled out, are not that much important and
they change from model to model.

We mention here on superstring consistent models. There are five pos-
sible String Theories: Type IIA, Type IIB, Type I, heterotic E8 × E8 and
heterotic SO(32). All of them are connected by some transformations. For
this someone considered them as realizations of more fundamental theory
calledM -theory. M -theory is considered as 11-dimensional supergravity (all
consistent String Theories are 10-dimensional). In String Theories we have
expected also higher dimensional objects (higher than 1-dimensional), i.e. p-
branes. String is 1-brane etc. They are living in 10-dimensional space-time.
The most important are D3, D7, D5. D means that we choose Dirichlet
boundary conditions on this object in 9-dimensional space (the remaining
dimension is a time). This project as TOE (Theory Of Everything) seemed
to be very promising. However, it is a very hard problem with compactifi-
cation, i.e. a landscape problem. It seems that we have to do with a huge
number of possible compactifications (some say 10500). In this way we can-
not choose (we have no mathematical criterion) a proper compactification to
get our world we live. There is also F -theory which is closer to our contem-
porary physical world but still to vague to be TOE. An interesting approach
to TOE is AdS/CFT. We will not consider these theories for they are far
away from our considerations on holism and geometry.

Let us mention on some developments in Kaluza–Klein-like theories. In
these approaches additional dimensions can help us in hierarchy problem
of fundamental interactions (Randall–Sundrum model) or by introducing
branes to solve some problems in cosmology (inflation).

It is worth to mention on Topological Quantum Field Theory (TQFT).
There are several models of TQFT. In all of these models the amplitudes
(correlation functions) do not depend on a space-time metric. They are topo-
logical invariants. Quantum gravity is considered as background indepen-
dent theory. TQFT models are examples of such theories. It is hard to say
if they can describe fundamental physical interactions. Moreover, they can
be useful in solid state physics as effective theories (fractional quantum Hall
effects). In some sense they show many holistic aspects. TQFTs are subjects
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of pure mathematical research not only of theoretical physics interests. Inde-
pendent models have been constructed by Atiyah, Witten, Schwartz, Linker,
Kontsevich. TQFTs can be considered (in some case) as non-physical mod-
els for computational approximation to string theory. Donaldson (1986),
Jones (1990), Witten (1990) and Kontsevich (1998) were awarded by Fields
Medals (Nobel Prize for mathematics) for works related to TQFTs. TQFTs
are connected to knot theory, geometry, topology of four-manifolds.

Models of strings and superstrings were developed in other directions
also. One such direction is the so called model of p-adic string. This model
uses a number field other than the usually encountered field of real or com-
plex numbers. It uses the field of p-adic numbers and also the field of complex
p-adic numbers. The field of p-adic numbers arises as a result of complement-
ing the field of rational numbers with respect to the p-adic norm. p-adic norm
(modulus) is defined for any prime number p in the following way:∣∣∣a

b

∣∣∣
p

= 1
pα
, b, a ∈ Z, b 6= 0,

α = ordp(a)− ordp(b)

where

y = ordp(x) is defined as the greatest number satisfying the condition
x = ±pyx0, x, y, x0 ∈ N∞0 .

One could prove that this norm agrees with the multiplication and also that
it fails to satisfy the axiom of Archimedes from elementary geometry. Instead
of the familiar formula

|x+ y| ≤ |x|+ |y|

we have
|x+ y|p ≤ max(|x|p, |y|p).

The fundamental characteristic displayed by the field of p-adic numbers is
the fact that a set {na} is bounded in p-adic norm, where n ∈ N∞0 , and a is
a rational number (in general p-adic). The field of complex p-adic numbers
is obtained by the algebraic closure and complementation in an extended
p-adic norm. It is proved that in this field the principal theorem of algebra
holds, which means that every polynomial with coefficients from this field
has a root also in this field.

The application of p-adic number field in the string theory has the fol-
lowing sense. We assume that the variables a and r (see Chapter 10) are
p-adic, and Xµ(σ, τ) has real values. In this way we construct an internal
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p-adic space inside a string. In another approach it is assumed also that
Xµ is p-adic, and only the transition amplitudes are complex. The most ex-
treme approach assumes that even the transition amplitudes between differ-
ent string configurations are p-adic. This last direction finds its continuation
in the so called p-adic quantum mechanics. In such an approach one imports
the entire quantum mechanical formalism into the field of p-adic numbers.
Under the influence of this type of research, the entire p-adic analysis, p-adic
functional analysis, p-adic geometry etc. were developed.

Complex p-adic analysis has interesting properties: Liouville theorem
does not hold, and a necessary and sufficient condition for the convergence
of a series is

∞∑
n=1

an is convergent iff |an|p → 0.

In the p-adic functional analysis the Hahn–Banach theorem does not hold.
The development of p-adic analysis enables us to compute the transition
amplitudes for p-adic strings. The results obtained are very interesting,
although quite remote from experimental checking. Following the example
of using the field of p-adic numbers to physics, attempts were undertaken
to use also other fields. This applies to the finite fields, too. Minkowski
space over the field of p-adic numbers, over the finite field were constructed,
the appropriate Lorentz group was built etc. Attempts were also made
towards extending of this analysis onto Riemann geometry and GRT. The
results seem to be quite interesting, but regretfully enough they remain too
distant from experimental checking. The philosophical importance of this
type of concepts is tremendous. Why? It is known from algebra that the
only norms, defined over the field of rational numbers are the usual norm
and the p-adic one, for any p prime. Of course one means here only non-
trivial norms, coinciding with the structure of the field of rational numbers.
Rational numbers are available to us as results of measurements. We do not
get real numbers as the outcomes of measurements. This is impossible. We
use the field of real numbers for the sake of pure convention, referred to by
H. Poincaré (Poincaré 1905) and later by K. Ajdukiewicz.

The adoption of the field of real numbers fellows entirely due to our
convenience and thus by a convention. Now the question arises here, whether
one could change this convention by taking the field Qp (that is — the field
of p-adic numbers) instead of the field of reals. Could it be that this change
in the manner we understand measurement would enable us to solve the
fundamental problems of contemporary physics? This is interesting and
already brings us some results in the form of a convention more suitable for
e.g. the domain of superstrings. We should envisage this type of outcomes,
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provided that we adopt the conventionalist attitude within philosophy of
science. We know after all that no physical measurement whatsoever is
capable to check, whether the given function assumes real values. We could
only assert that it assumes rational values (the precision of a measurement).
The substituting of the field of p-adic numbers instead of real ones might
amount simply to a convention change. Issuing from the W. Van Orman
Quine’s logical empirism one could interpret it as a change of a measurement
number field. W. Van Orman Quine even suggested to change the logic of
inferences. For instance — the adoption of multi-valued logic instead of a
two-valued classical logic.

The postulate of adopting different logic is associated with the intro-
duction of a multiple-valued logics, e.g. of Reichenbach, Łukasiewicz, J. von
Neumann and Déstouches–Févriér to inferences in the quantum mechanics
within the context of a wave-particle duality.

In this approach it was the experimental checking which was to guide us
in deciding what kind of logic to use. Thus it is also the experiment which
could dictate us what type of number field to use in measurements. Let us
recall that W. Van Orman Quine (Quine 1961) claimed that in science there
are no purely analytical nor synthetical sentences. It is impossible to separate
knowledge originating from experience and the other one, independent from
any experience. In his understanding, every scientific assertion is so deeply
involved into the analytico-synthetical relationships that deciding the truth
of this assertion exposes the whole science onto the verdict of experimen-
tal evidence. Therefore everything could be changed once a given scientific
theory is falsified. Here might belong the changing of: logic (rules of infer-
ence), number field in which we cast the results of measurements, space-time
symmetry etc. Perhaps the only criterion left would be the consistency of
the results of measurements on the widest possible set of experimental out-
comes. At this point we could note that a very notion of consistency might
be relativized and thus also changed to another one more admissible or suit-
able. This constitutes a drawback of Quine’s Logical Empirism and also of
the whole attitude, represented by the neopositivists, which has given rise
to Logical Empirism. R. Ingarden has offered (known in the literature of the
subject) possibility of relativizing the ideas of Quine as the one which could
get contradicted after an unfavourable outcome of experimental checking. To
summarize: the idea of p-adic strings and of p-adic structures in theoretical
physics brings about exceptionally hard philosophical problems — either we
are forced to go to Ajdukiewicz–Poincaré conventionalism, or rather a major
change in the structure of entire science à la Quine (or perhaps something
still completely different) is to emerge.
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A time is ripe at this moment for a broader philosophical summary. The
ideas exposed here constitute an extension of Wheeler’s geometrodynamics.
Let us recall that in formulating his geometrodynamics, Wheeler wanted to
obtain the properties of elementary particles, e.g. of electrons from the topo-
logical or geometrical properties of the space-time. However, the properties
of a basic construct examined by Wheeler — that is of geon — are not re-
alistic enough. Geon is unstable and undergoes decay too quickly. Making
geon stable would be associated with a substantial increase of its mass. Such
a large mass may in turn to rule the geon out as a model e.g. of electron.
Here it is worth mentioning that a relatively stable geon would have a mass
comparable with the mass of entire visible Universe. Therefore this kind
of approach seems to be completely unrealistic. To a certain degree this is
understandable, since after all the geometry and topology of the space-time
alone seems to be too poor for an adequate casting of the elementary par-
ticle’s internal degrees of freedom. On the other hand, we have to mention
yet another approach, amounting to a completely contradictory viewpoint.
This was the standpoint of Leibniz, who denied the space any title for an
autonomous existence. He maintained that the space (and also time) do not
exist beyond matter. This he held somewhat contrary to what we find in
Wheeler’s geometrodynamics, where matter is deemed unable to exist au-
tonomously and originates from the geometrical and topological properties
of the space-time. To conclude, we see that according to Leibniz, the space
is only an appearance in contrast to Wheeler, who held that matter is an
illusion, and there exist only space (empty space). Let us recall that mainly
for this very reason Leibniz questioned Newton’s mechanics, where abso-
lute space and time featured very prominently. One could develop further
the idea of Wheeler’s geometrodynamics provided that we consider more
(than 4)-dimensional space-time. It could be many-dimensional, but empty
as in Wheeler’s approach. Here, the exact vacuum solutions of Einstein
equations will be stable, if the geometry is suitably defined. Simultaneously
we have to admit also such spaces (manifold) which have the coordinates
different from real or complex numbers. In the case of supergravity (and
supersymmetry) there are anticommuting fermionic coordinates, e.g. Majo-
rana spinors. In this manner, Kaluza–Klein programme after combining it
with supergravity and supersymmetry becomes a continuation of Wheeler’s
geometrodynamics in multi-dimensional space-time. In this approach we will
look after elementary particles as exact solutions of the vacuum field equa-
tions. Of course these are the geometrical field equations, like the multi-
dimensional ones of Einstein, where on the left side only purely geometrical
quantities appear, and on the right side is zero. Solving these equations gives
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us the geometry of the multi-dimensional space-time in non-commuting co-
ordinates, too. Should this solution be stable — a soliton of a sort, new
kind of geon, then it might serve us as a model of an individuum, e.g. of an
elementary particle. This is somewhat similar like the Skyrme model.

Let us recall that Skyrme’s model uses strong interactions’ effective La-
grangian (in a sense derivable from quantum chromodynamics) and looks
after exact solution for the field equations obtained from this Lagrangian.
These solutions are interpreted as elementary particles, e.g. nucleon, ∆++

resonance etc. It is possible to extend this model in such a manner, which
would enable us to obtain as exact solutions also the strange particles as
well. With some efforts one might classify the solutions with the aid of
the irreducible representations for groups SU(2), SU(3). Here, the symme-
tries are involved, which are instrumental in classifying the hadronic spectra.
One could also obtain more information about masses, magnetic moments,
form factors etc. Skyrme’s model and its derivatives give, in addition to
effective Lagrangian, quite satisfactory predictions (when confronted with
experiment) on properties of hadrons. Recently, Skyrme model has scored a
new success by explaining the distribution of spin inside a nucleon. Hence,
the topological Skyrme solitons could serve as realistic models of elementary
particles. This is very promising. As a matter of fact, exact solutions of the
nonlinear, partial differential equations — that is solitons — could function
as models of particles, like e.g. billiard balls, Cooper’s pairs, excitons — only
in terms of analogy without the possibility of confronting their properties
with experiment and obtaining an agreement.

Therefore, returning to the main thread (that is — the issue of multi-
dimensional geometry of the space-time as a model for elementary particle)
we see that such an approach is able to recover all the advantages of the ef-
fective Skyrme model and also proves itself a more realistic one. This could
occur due to the fact that the field equations are far more realistic upon
the introduction of gauge fields and the non-commuting quantities associ-
ated with fermions. In this manner we might expect complete implemen-
tation of Wheeler’s idea of geometrodynamics in the modern casting. This
new programme combines together the theory of Kaluza–Klein, supergrav-
ity and supersymmetry, theory of nonlinear differential equations, Wheeler’s
geometrodynamics and Einstein’s programme. Such a programme could put
on equal footing the implementation of Einstein’s programme, Wheeler’s ge-
ometry as well as Skyrme’s idea, without being a mere compilation of their
results. In purely computational problems, the extension of a method by Hi-
rota for solving nonlinear, partial differential equations with anti-commuting
coordinates appears to be very promising. The link between that and other
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methods too, seems also to be very promising, since at present one might
think that some formal successes of superstring models constitute solely the
successes of the two-dimensional conformal field theory, and thus (presum-
ably) would be only associated with Kac–Moody and Virasoro type algebras.
On the other hand we are aware of some links between these algebras (and
groups) with theories of Kaluza–Klein.

Thus we see that this programme solves the controversy between Leibniz
and Newton in favour of the latter, and extends Wheeler’s geometrodynam-
ics. In its extremal formulation this approach removes matter and leaves
only an empty space. Here the matter is an illusion, a Maya. The only way
out from such a situation for materialism is to accept this empty space as
an extension of the concept of matter, in accordance with Lenin’s idea of
matter. Otherwise the matter will disappear and there would remain the
emptiness — nothing. We could therefore pose a question: does the contem-
porary physics invalidate materialism? One could easily imagine Platonic
and Pythagorean interpretations of such the state of affairs, as well as yet
another one, which would go back to Aristotelian tradition with its prolon-
gation in Scholasticism and Thomism. The scientific materialism employing
a cognitive-theoretic definition of matter, without any difficulty will offer its
interpretation in such a way that the negative reply would follow.

An interesting thing from both the physical and also the philosophi-
cal points of view, would be to consider a problem of the so called black
holes in GRT. Namely, black holes constitute exact solution for vacuum Ein-
stein equations. We have got two principal types of black holes. These are
Schwarzschild and Kerr black holes. The former are spherical-symmetric,
while the latter are only axially-symmetric. Both types are stationary,
but Schwarzschild one is also static. Both solutions are characterized by
the existence of a singularity, and also of the event horizon. What does
it mean? It means the existence of a surface, playing the role of semi-
permeable membrane (this is a surface of a ball — the sphere with a radius
called Schwarzschild radius). This semi-permeable membrane functions in
such a way that all material bodies, radiation and particles etc. could pen-
etrate the membrane in only one direction — that is toward the singularity
of space-time generated by the solution in question. After passing through
the horizon, the observer is not able to communicate with this region of
space-time, which is located beyond the surface limited by the event hori-
zon. It works that way for both types of black holes mentioned above. In the
case of Kerr black hole, we have one more surface, which is the ellipsoid of
revolution surface. This surface constitutes the so called surface of infrared
infinite shift. This means that on such a surface the infrared Doppler shift
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is infinitely large. In the case of Schwarzschild black hole the two surfaces
coincide. The surface of a horizon covers the so called singularity. What is
singularity? This is a manifold where space-time geometry does not make
any sense. The structure of this manifold differs for the two varieties of
black holes. In this manner black hole absorbs all matter and thus increases
its mass. This justifies the name of such an object. In the case of Kerr
black hole, additional phenomena occur, due to the existence of two sur-
faces. Namely, in the space comprised between the two surfaces, in the so
called ergosphere, the so called Penrose effect or process might occur. This
process consists of extracting the energy from the black hole. Of course, this
is not contradicting the very notion of black hole. One could only extract
from the black hole the energy associated with its rotation and thus as a re-
sult of the said process, all black holes will become non-rotating ones, which
means that they are going to become Schwarzschild-type black holes. This
process has a considerable importance in the case of accretion disks around
the rotating black holes. Accretion disks are formed due to the accretion of
matter falling onto a black hole. Because of Penrose process, the mentioned
disks could generate highly-energetic radiation and hence they shine. Violent
outbursts of matter from these disks (the so called “jets”) are also possible.
In accordance with current views, quazars and active galactic nuclei repre-
sent the accretion disks around the rotating black holes. At present, due to
the advancement of the mathematical techniques in the area of the nonlinear
differential equations, we are capable of finding exact solutions of Einstein
equations, which have many event horizon surfaces. They constitute thus in
a sense the nonlinear superpositions of many black holes of Schwarzschild
or Kerr type. Soliton methods referred to many times before, constitute
the class of methods used for finding this type of solutions. The space-time
structure described by them is very complicated. It seems however that the
principal features of the type “being a black hole” are still retained here.
There are today also other methods of investigating black holes. Here be-
long the so called theorems about singularities. In conformance with these
theorems, under certain quite natural assumptions about matter’s energy-
momentum tensor the singularities and event horizons will always occur.
Hence in GRT we are condemned to the appearance of singularity. This is
highly unsatisfactory, since in the case of appearance of singularity, a whole
of our physics ceases to make sense. This fact has given rise to a conviction
that at this point GRT has an exceptional weakness, and one should look
for its generalization at the level of classical field theory. The topological
methods for black hole research have resulted in the creation of the classi-
fication of the notions of causality in a space-time. The causality known in
Minkowski space is here the simplest one.
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There are also the so called “charged black holes” (that is ones endowed
with an electric charge and also the magnetic one, provided that it exists).
They represent Einstein–Maxwell solutions in the spherical-symmetric and
axially-symmetric cases. In the first case it is the static solution, whereas
in the second — only a stationary one. The black holes named here have
two event horizons. The first is an usual one, as in Schwarzschild black hole
and the second for the charged particles. Spherically-symmetric black hole
with the electric charge is known as Reissner–Nördström solution. Axially-
symmetric “charged black hole” is often referred to as charged Kerr solution
or Kerr–Newman solution. Using of the soliton methods (there is an inverse
scattering method) for Einstein equations is also possible in order to ob-
tain the superposition of several solutions of this type, as was the case for
uncharged black holes. Obtaining a superposition of many uncharged and
charged black holes in a curved space-time, which would correspond to a
cosmological model is also possible. Such a solution has the interpretation
of a Universe with black holes situated within it. Clearly, the structure of
the singularities hidden beneath the event-horizons is in this case quite dif-
ferent. In the case of a solution situated in the background of a cosmological
model, one encounters still another type of a cosmological singularity.

Black holes are thought to represent final stages of the stellar evolu-
tion. Depending on the initial mass, the stars conclude their existence as
white, later on as black dwarfs, neutron stars (or pulsars) and black holes
surrounded by the matter falling onto them in the form of accretion disks.
There is a criterion, enabling one to distinguish a neutron star (pulsar) sur-
rounded by the accreting matter from a black hole surrounded by such a
matter. This is a criterion of mass of an object suspected to be a black hole.
Object with a substantial mass could not be a neutron star. It has to be a
black hole. Whenever such an object appears in a binary system, that is it
has a companion star, then inspecting the relative motion of the two stars,
we are able to find out on the basis of observing the mass of an object sur-
rounded by the accretion disk created from the matter pulled out from the
other star. If the mass of this object exceeds the critical mass, than it has to
be a black hole. At present we are aware of several objects which probably
are black holes. Two of them are located in the constellation Cygni, CygX-1,
CygX-3. We have also binary and trinary systems of black holes. These are
of course only our guesses, hopes that we in fact are observing black holes
on the sky. Also we only hope that the most massive stars terminate their
evolution as the supernovae of the second kind, collapsing down into a singu-
larity surrounded by an event horizon. Moreover, we consider as black holes
Active Galactic Nuclei (AGN) in all galaxies and especially in our Galaxy,
i.e. Sagitarius A∗. It seems that such a black hole in the center of a galaxy
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is very important in a galaxy formation. We should consider also primor-
dial black holes in the Big Bang. Thus we expect very massive black holes
(AGN), ordinary black holes and also black holes with intermediate masses.

There appeared recently also other methods of investigating black holes.
In 1974 S. Hawking put forward semi-quantum methods for black hole re-
search. Namely, he elected to continue looking upon the black hole’s gravi-
tational field classically, in conformance with the principles of GRT. He used
in turn the methods of quantum field theory to examine the radiation being
absorbed and emitted by black hole. In this picture photons or other parti-
cles, for instance electrons, move in a curved space-time. The space time of a
black hole includes a horizon. Due to this, the behaviour of the said particles
will be quite different than the behaviour of these moving in a flat space-
time. This simple, but genial idea has led to the conclusion that the black
holes are not black but grey. What does it mean? — one may ask: have
the theorems and conclusions mentioned thus far lost their validity? No, one
has only to modify them and have them complemented a bit. To explain
this, we are going to examine for a while the thermodynamics of black holes.
Namely, as we know, there are the so called laws of thermodynamics. Let
us have a look onto their contents.

The first principle of thermodynamics, which represents the energy con-
servation law states that a change of internal energy inside a physical system
is equivalent to the transfer of heat and the work there by performed. The
second law of thermodynamics asserts that the entropy of an isolated system
may not decrease. The third law in turn (Nernst principle) might be given
the form of the following postulate: in a finite number of steps it is not possi-
ble to reach the temperature of absolute zero (zero degrees Kelvin) starting
from any non-zero absolute temperature. There is also the so called 0-th
law of thermodynamics, to the effect that if the two bodies stay in a ther-
modynamical equilibrium with a third body, then they are in equilibrium
among themselves, too. The concept of a temperature could be introduced
due to the relationship taking place as stated in the zero-th law. This 0-th
law of thermodynamics also implies that a body in a state of thermodynam-
ical equilibrium maintains the same temperature everywhere inside it. The
second law of thermodynamics introduces the notion of a certain function
of state — the entropy. This function constitutes, as we know, a measure of
disorder inside a given system. Entropy increase indicates that the system
evolves from a state with more order (less probable) to one with less order
(more probable state). After introducing the entropy we are in a position
to express the flow of heat as a product of the temperature and the en-
tropy increase. In this manner entropy increase enters into the first law of
thermodynamics.
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Let us notice also that the laws of thermodynamics are of the phenomeno-
logical character. They are very well confirmed experimentally. There occur
some discrepancies, known as fluctuations. The fluctuations can be derived
out from a kinetic-molecular theory (of statistical physics).

Now, going back to black holes, let us introduce some relationships.
Namely, upon the fusion of two black holes, a surface area of a horizon
of the third black hole thus obtained is always not smaller than the sum of
the horizon’s surface areas of the two original black holes. Hence we have a
certain quantity which quite similarly like entropy — never decreases. Mul-
tiplying the area of a horizon’s surface by a suitable constant, we will obtain
a never-decreasing quantity, which has the dimension of entropy. That quan-
tity has been named entropy of a black hole. The fact that horizon’s surface
area is non-decreasing constitutes the statement of the second law of black
hole’s thermodynamics. Let us notice that for the case of a single black hole
surrounded with matter, there is also going to occur an entropy increase.
The black hole absorbs matter. In this way its mass will increase and so its
horizon’s surface area is going to increase. Detailed calculations convince
us that the total entropy of this system: black hole + surrounding matter
will increase as well. Now it is easy to understand that the matter being
absorbed by a black hole is in more chaotic state than the external matter,
if we only remember that a given black hole “has no hair”. What does this
statement mean? Black holes are characterized by several parameters, like
mass, moment of momentum, electric charge (and magnetic one, whenever
it exists).

Thus, if the black hole has absorbed matter which was also being charac-
terized by other parameters, the information about these other parameters
is going to disappear. One might say that black hole implements the state of
“elderly baldness”. This assertion finds its counterpart in cosmology of the
inflationary model (refer to Chapter 15). There, the Universe starts from a
state characterized only by the parameters mentioned above. All the other
parameters are created at the outcome of the exponential expansion followed
by a phase transition to Friedmann model. This state could be termed as
the state “of infantile baldness”.

The fact of using the parameters of the type described above in the
description of the black hole properties, has prompted the discussion about
taking advantage of this in the physics of the elementary particles. Namely, a
question was raised, whether black holes might serve as models of elementary
particles. Unfortunately, in the case of GRT, the solutions describing black
holes are singular and this property rules them out as models of elementary
particles. The energy of black hole’s gravitational field is divergent.
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Nonetheless, the concept is not fully without a foundation. Exact so-
lutions in nonsymmetric Kaluza–Klein theory could be non-singular with a
finite magnitude of energy and of the field. Thus, they might serve as models
of elementary particles. Having completed this digression, let us come back
to the thermodynamics of black holes.

We have thus a counterpart of the black hole’s entropy — its horizon’s
surface area.

One would like to know what might play the role of the black hole’s
absolute temperature. A gravitational acceleration on the surface of the
black hole’s horizon is the likely candidate here. The zero-th law of black
hole thermodynamics might assume the following wording: the gravitational
acceleration is constant on a black hole’s horizon. Multiplication of this
acceleration on the horizon by the suitable physical constants like Boltzmann
constant, Planck constant and the velocity of light gives us the quantity with
a dimension of an absolute temperature. In this fashion it turns out that a
black hole with a mass of the order of one Solar mass has a temperature of the
order of 10−7 K. Black holes believed to reside in the nuclei of active galaxies
and quazars will be still colder, with a temperature about 10−14 K. Heavier
the black hole, lower its temperature (which of course is to be calculated in
a manner sketched above).

In the case of a very light black hole with a mass of an order of 1018 g,
this temperature would be about 10 million degrees (Kelvin). This would be
therefore a substantial magnitude. Let us recall also the first and the third
laws of the black hole thermodynamics. The first law of thermodynamics for
black holes states that a change of the mass of the rotating black hole is equal
to the product of change of the horizon’s surface area by the gravitational
acceleration on the horizon’s surface (multiplied by a certain constant) plus
a product of a change of the black hole’s moment of momentum and black
hole’s angular velocity (again multiplied by a suitable constant). The first
component of the above sum has the interpretation of heat flow, while a
second — the interpretation of the work performed. The mass of a black
hole constitutes its external energy. Thus this first law is in fact formally
equivalent to the first law of ordinary thermodynamics. The third law of
black hole thermodynamics states that it is impossible in a finite number of
steps to reach a temperature of absolute zero (thus converting a black hole
into naked singularity) by simply increasing its moment of momentum. Here
again, the temperature of black hole is to be calculated in a manner described
above. It is easy to notice that the third law of black hole thermodynamics
is equivalent to the existence of Cosmic Censorship. It namely prohibits the
very creation and the existence of naked singularities.
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The laws of black hole thermodynamics formulated above, for quite a
long time were considered as a mere curiosity, having nothing in common
with genuine thermodynamics. The interpretation of the acceleration on
the horizon’s surface as a temperature has proved most controversial. This
temperature could — according to this wording — be always positive. But
on the other hand we know that a non-rotating black hole fails to emit any
radiation whatsoever (hence its name: black hole). At the same time it is
generally known that any body with a temperature above zero degree Kelvin
emits radiation. This results in a contradiction of a kind. On the one side,
we have to associate with any black hole a temperature of 0 degree Kelvin,
while on the other side we have a non-zero quantity, with a property of a
black hole temperature. The adoption of this second option results in black
holes ceasing to be black. They become grey. After such a choice — they will
become sources of radiation which would be proportional to the 4-th power of
their absolute temperature. The strength of this radiation is going to be very
small for heavy black holes. For the light tones it will become a noticeable
quantity. Due to the radiation, black hole mass will decrease and thus it will
cause the increase of the strength of its radiation. This process is going to
accelerate with time and finally, upon emitting last portion of energy will
become an explosive one. What is going to remain after such an explosion
— we do not know. Perhaps nothing — or may be only a naked singularity?
We see thus that the adoption of the possibility here considered leads to the
unusual conclusions. One has therefore to find out whether such a situation
could be possible. To that end, one has to examine the black hole behaviour
in the field of its radiation. Exactly this was done by S. Hawking with
the resulting discovery of the so called Hawking effect or process. He had
considered the phenomena associated with black holes by employing semi-
classical methods. He viewed a black hole’s gravitational field classically (in
a non-quantum way) but interpreted electromagnetic radiation quantum-
mechanically. He investigated the possibility of creating photons near the
event horizon of a non-rotating black hole. It turned out that a black hole
radiates like an ideally black body with a temperature greater than zero.
This temperature is equal to a magnitude derived from laws of the black
hole thermodynamics. It has also turned out that not only a total black
hole radiation coincides with a formula for radiation of an ideally black
body, but also a spectral distribution of this radiation agrees with Planck’s
distribution. Minor differences occurring here are rather insignificant. The
so called Bogolyubov transformation applies here, and the radiated photons
could be interpreted as quasi-particles (ref. Introduction).
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Similar to Hawking process is the so-called Unruh process which appears
in uniformly accelerated Minkowski space. We get an electromagnetic radi-
ation of an accelerated observer.

Let us describe now what this mysterious Hawking (or Unruh) process,
capable of prompting such interesting consequences is all about. In quantum
mechanics, as we know, there occur the so called Heisenberg relations. One
of them dealing with energy and time states that for a certain very short time
period the energy conservation law might be violated. This occurs for such
an energy and such a time that their product is smaller than the so called
quantum of action (Planck’s constant divided by 2π). In this fashion the so
called virtual particles could appear and could be immediately annihilated.
Now, if we supply enough energy from the outside, these virtual particles
could become real. Let us imagine now these virtual processes of photon
creation near the event horizon. Let us assume that there are two virtual
photons, which are to be created that way near the event horizon. One with
negative energy, the other with positive energy. The virtual photon with
negative energy could, due to a quantum effect, penetrate the event horizon.
Beneath the horizon, according to GRT, particles with negative energy are
admissible. Thus a virtual photon with negative energy, once it enters be-
neath event horizon — could become a real particle there. Under favourable
circumstances, a virtual photon with positive energy could become real, too;
it might escape to infinity and thus become detectable. The real photon
with negative energy, by penetrating beneath event horizon, will cause the
mass of a black hole to decrease. One can interpret the decrease of this
mass as an outcome of radiating the photons out from the black hole, which
we could observe at infinity. Let us notice also that larger the gravitational
acceleration on horizon’s surface, the easier could a virtual photon with a
negative energy penetrate into the interior of a horizon. Thus, higher the
black hole temperature, stronger the radiative effect will be. Let us notice
that Hawking’s effect and the radiation from black holes contradict the sec-
ond and third laws of black hole thermodynamics. Because of emitting out
the energy, the surface of black hole’s horizon gradually decreases and after
a certain time the black hole will disappear in an explosive-like manner. It
could be that the violent outbursts of gamma radiation observed on the sky
constitute the evidence of this process. Hawking effect, very interesting in its
own right, raises some hopes for the future, associated with a possibility of
formulating quantum theory of gravitation. Let us imagine for a while that
GRT represents a type of macroscopic theory, resulting from the averaging
of a certain unknown microscopic theory. In this sense, this unknown micro-
scopic theory would correspond to statistical physics, whereas GRT would
correspond to phenomenological thermodynamics. As we know from the
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history of physics, the deviations from the second law of thermodynamics,
the so called fluctuations had provided the principal evidence in favour of a
kinetic-molecular theory and of statistical physics. Perhaps Hawking’s effect
as a deviation from second law of black hole thermodynamics — will play
the role of fluctuations in statistical physics and is going thus to contribute
to the creation of quantum gravity. Hawking himself shares this view, too.
Finally, let us turn our attention to a certain historical precedence. Namely,
the quantum theory has originated from solving some difficulties related to
the ideally black body radiation problem. Perhaps quantum gravity will take
shape due to investigations aimed at explaining black hole radiation?

Of course, in this case we could only refer to the so called old quantum
theory of Bohr and Sommerfeld. A quantum gravity proper, corresponding
to quantum mechanics should start from the extended theory of gravitation
viewed upon as an instance of a classical field theory. One might try to em-
ploy here the gravity as used in superstring theory, plus also quantum space-
time, quantum groups etc. Neither Hawking’s approach, using the concept
of a mini-superspace, nor the recent advances in a canonical quantization do
not bring anything original in this regard, though they are very interesting
from both formal and cognitive points of view. Particle-like type of solutions,
admissible within the nonsymmetric theory of Kaluza–Klein (Jordan–Thiry)
provide for the occurrence of a horizon, but without singularity. In this kind
of a theory, creation of a quantum formalism for small vibration around a
stable, particle-like solution is possible. Such a formalism has already been
elaborated for an arbitrary field theory which admits the solutions of this
type. In the case of nonsymmetric Kaluza–Klein theory one should also use
a mini-superspace formalism, put forward by S. Hawking. Black hole type
of solutions are also possible for the multi-dimensional theories. They have
similar properties and drawbacks as in the four-dimensional case. It seems
that this is a drawback in a theory with Riemann geometry and thus one
should substitute it with another one, that is non-Riemannian geometry. The
programme of nonsymmetric Kaluza–Klein theory implements this, by us-
ing the geometry of Einstein–Kaufman type, known from the Nonsymmetric
Field Theory. Let us return again for a while to the problem of a cosmol-
ogy based on GRT. All the cosmological solutions are singular here. This
is unsatisfactory even in the inflationary theories, since with a singularity,
a whole physics (and not only gravitational physics) becomes meaningless.
There is no place for the notions of time, space, causality etc. That ex-
plains why a search for the alternative theories of gravity, which would be
free from this drawback is so important. The theory of Einstein–Cartan is
capable of providing the solutions without a cosmological singularity. Sim-
ilar is the case of Nonsymmetric Theory of Gravitation. Also the theory
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of Kaluza–Klein (Jordan–Thiry) exhibits comparable properties. Here, too,
non-singular solutions are possible.

The very interesting problem is to consider Kerr–Newman solution as a
model of an electron, a fermion. The solution describes a gravitational and
an electromagnetic field in a stationary and axially-symmetric case being a
solution of Einstein–Maxwell equations. The solution is characterized by the
mass m, the electric charge q and the angular momentum per unit mass a.
A magnetic field of the solution is asymptotically dipole-like and we can
calculate a gyromagnetic ratio of this field. A dipole moment is µ = qa, and
angular momentum J = ma. Thus a gyromagnetic ratio equals % = q

m . It is
a gyromagnetic ratio for an electron, i.e. g = 2 (%Dirac = g%class, %class = q

2m).
There is a problem to consider the solution as a model of an electron because
of singularity and because of a quadrupole electric moment associated with
the solution. It seems that an exact solution in Nonsymmetric Kaluza–Klein
Theory2 (stationary and axially-symmetric) can cure the drawbacks, for we

2One hundred years ago three men: A. Einstein, D. Hilbert and O. Klein were discussing
what should be a lagrangian for a gravitational field. They decided it should be a scalar
curvature R for Levi-Civita connection defined on 4-dimensional manifold (a space-time)
and compatible with a symmetric metric tensor defined on this manifold. In that time
and additional lagrangian was known. It was a lagrangian for an electromagnetic field
− 1

4 FµνF
µν coming from Maxwell equations which were known since about fifty years.

Some years later T. Kaluza designed a theory where a lagrangian on 5-dimensional manifold
R5 with additional symmetries is equal to R4 − 1

4 F
µνFµν . Now, 100 years of General

Relativity, almost 150 years of of Maxwell equations and almost 100 years of Kaluza idea
we came to the conclusion that only a scalar curvature can be a lagrangian for unified
field theory of all physical interactions. This will be a scalar curvature of a connection
defined on many-dimensional manifold with some symmetries and additional degrees of
freedom induced by a nonsymmetric (e.g. hermitian) metric. Let us give some elements of
the Nonsymmetric Kaluza–Klein Theory.
We consider the Nonsymmetric Kaluza–Klein Theory in a non-Abelian case and the

Nonsymmetric Kaluza–Klein Theory with Higgs’ mechanism and spontaneous symmetry
breaking in a new setting. We give a comprehensive review of a subject with many new
features.
The subject is specialized of course, but it could be very interesting for a wide au-

dience because geometrization and unification of fundamental physical interactions are
very interesting. This idea gives a justification for some phenomenological theories which
are completely arbitrary. There is no physics without mathematics, especially without
geometry—differential geometry. Even Maxwell–Lorentz electrodynamics happens post
factum geometrized in fibre bundle formalism. In the case of ordinary Kaluza–Klein The-
ory the geometrization and unification have been achieved. Unfortunately, without “inter-
ference effects”. We consider some additional versions of the Nonsymmetric Kaluza–Klein
Theory. In particular, except of a real version we consider also Nonsymmetric Hermitian
Theory in two realizations, complex and hypercomplex. They are natural (Hermitian)
metrization of a fiber bundle over a space-time. The nonsymmetric Kaluza–Klein (Jor-
dan–Thiry) Theory (a real version) has been developed in the past. The theory unifies
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gravitational theory described by NGT (Nonsymmetric Gravitational Theory) and Yang–
Mills’ fields (also electromagnetic field). In the case of the Nonsymmetric Jordan–Thiry
Theory this theory includes scalar field. The Nonsymmetric Kaluza–Klein Theory can be
obtained from the Nonsymmetric Jordan–Thiry Theory by simply putting this scalar field
to zero. In this way it is a limit of the Nonsymmetric Jordan–Thiry Theory.
The Nonsymmetric Jordan–Thiry Theory has several physical applications in cosmology,

e.g.: (1) cosmological constant, (2) inflation, (3) quintessence, and some possible relations
to the dark matter problem. There is also a possibility to apply this theory to an anomalous
acceleration problem of Pioneer 10/11.
A scalar field Ψ = 0 (ρ = 1). Moreover, the extension to Jordan–Thiry Theory in any

nonsymmetric version is still possible and will be done elsewhere. The scalar field can play
a role as a dark matter—quintessence with weak interactions with ordinary matter. On
the classical level, this is only a gravitational interaction with the possibility to change a
strength of gravitational interaction via a change of gravitational constant. On a quantum
level due to an excitation of a quantum vacuum a very weak nongravitational interaction
with ordinary matter is possible, i.e. a scattering of scalarons with ordinary matter particles
and also a scattering of skewons with those particles.
The theory unifies gravity with gauge fields in a nontrivial way via geometrical unifica-

tions of two fundamental invariance principles in Physics: (1) the coordinate invariance
principle, (2) the gauge invariance principle. Unification on the level of invariance prin-
ciples is more important and deeper than on the level of interactions for from invariance
principles we get conservation laws (via the Noether theorem). In some sense Kaluza–
Klein theory unifies the energy-momentum conservation law with the conservation of a
color (isotopic) charge (an electric charge in an electromagnetic case).
Let us notice that an idea of geometrization and simultaneously unification of funda-

mental interactions is quite old. GR is 100 years old and Kaluza–Klein Theory is almost
100 years old. Both ideas: a geometrization of physical interactions and a unification are
well established contemporarily.
This unification has been achieved in higher than four-dimensional world, i.e. (n + 4)-

dimensional, where n = dimG, G is a gauge group for a Yang–Mills’ field, which is
a semisimple Lie group (non-Abelian). In an electromagnetic case we have G = U(1)
and a unification is in 5-dimensional world. The unification has been achieved via a
natural nonsymmetric metrization of a fiber bundle. This metrization is right-invariant
with respect to an action of a group G. We consider also an Hermitian metrization of
a fiber bundle in two versions: complex and hypercomplex. The connection on a fiber
bundle of frames over a manifold P (a bundle manifold) is compatible with a metric
tensor (nonsymmetric or Hermitian in complex or hypercomplex version). In the case of
G = U(1) the geometrical structure is biinvariant with respect to an action of U(1), in a
general non-Abelian case this is only right-invariant.
Let us notice the following fact. We use a notion of a nonsymmetric metric as an abuse

of nomination for a metric is always symmetric. This will not cause any misunderstanding.
It is similar to an abuse of nomination in the case of Minkowski metric in Special Relativity
for a metric is always positive definite.
The unification is nontrivial for we can get some additional effects unknown in con-

ventional theories of gravity and gauge fields (Yang–Mills’ or electromagnetic field). All
of these effects, which we call interference effects between gravity and gauge fields are
testable in principle in experiment or an observation. The formalism of this unification
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has been described.
The theory considered here is non-Abelian and even if there are some formulations

similar to those from electromagnetic case one should remember that the theory described
is an Abelian theory with U(1) group. The difference is profound not only because a
higher level of mathematical calculations but also because of completely new features which
appear in a non-Abelian theory. If we can use similar formulations as in electromagnetic
case it means that a geometrical language is correct to describe a physical reality.
It is possible to extend the Nonsymmetric (non-Abelian) Kaluza–Klein Theory to the

case of a spontaneous symmetry breaking and Higgs’ mechanism by a nontrivial combi-
nation of Kaluza principle (Kaluza miracle) with dimensional reduction procedure. This
consists in an extension of a base manifold of a principal fiber bundle from E (a space-time)
to V = E ×M , where M = G/G0 is a manifold of classical vacuum states.
We consider a condition for a color confinement in the theory. We solve the constraints

in the case of non-Abelian Nonsymmetric Kaluza–Klein Theory getting an exact form of an
induction tensor for Yang–Mills’ fields in the theory. We find a formula for a non-Abelian
charge in the theory in comparison to 4-momentum in gravitation theory. We derive the
Lagrangian for Yang–Mills’ field and an energy-momentum tensor in terms of Ha

µν only.
We consider also Nonsymmetric Kaluza–Klein Theory with Higgs’ fields and spontaneous
symmetry breaking. We solve constraints in the theory getting Lagrangian for Yang–Mills’
field, kinetic energy Lagrangian for a Higgs field and Higgs potential in terms of gauge fields
and Higgs fields only. We derive pattern of masses for a massive intermediate bosons and
Higgs’ particles. We derive also a generalization of Kerner–Wong–Kopczyński equation for
a test particle. In such an equation there is a new charge for a test particle which couples
a Higgs’ field to the particle. This is similar to a Lorentz force term in an electromagnetic
case. This term is also similar to a new term coupled a Yang–Mills’ field to a test particle
via a color (isotopic) charge in ordinary Kerner–Wong–Kopczyński equation.
The Nonsymmetric Kaluza–Klein Theory is an example of the geometrization of funda-

mental interaction (described by Yang–Mills’ and Higgs’ fields) and gravitation according
to the Einstein program for geometrization of gravitational and electromagnetic interac-
tions. It means an example to create a Unified Field Theory. In the Einstein program we
have to do with electromagnetism and gravity only. Now we have to do with more de-
grees of freedom, unknown in Einstein times, i.e. GSW (Glashow–Salam–Weinberg) model,
QCD, Higgs’ fields, GUT (Grand Unified Theories). Moreover, the program seems to be
the same.
We can paraphrase the definition from McGraw–Hill Dictionary of Scientific and Tech-

nical Terms: Unified Field Theory (McGraw . . . 1989): any theory which attemps to express
gravitational theory and fundamental interactions theories within a single unified frame-
work. Usually an attempt to generalize Einstein’s general theory of relativity alone to a
theory of gravity and classical theories describing fundamental interactions. In our case
this single unified framework is a multidimensional analogue of geometry from Einstein
Unified Field Theory (treated as generalized gravity) defined on principal fiber bundles
with base manifolds: E or E × V and structural groups G or H. Thus the definition from
an old dictionary (paraphrased by us) is still valid.
Summing up, Nonsymmetric Kaluza–Klein Theory connects old ideas of unitary field

theories with modern applications. This is a geometrization and unification of a bosonic
part of four fundamental interactions.
Let us give some mathematical details of the Nonsymmetric Kaluza–Klein Theory.
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Elements of the Nonsymmetric Kaluza–Klein Theory in general non-Abelian case and with
spontaneous symmetry breaking and Higgs’ mechanism. GSW (Glashow–Salam–Weinberg)
model in the Nonsymmetric Kaluza–Klein Theory
Let P be a principal fiber bundle over a space-time E with a structural group G which

is a semisimple Lie group. On a space-time E we define a nonsymmetric tensor gµν =
g(µν) + g[µν] such that

g = det(gµν) 6= 0
g̃ = det(g(µν)) 6= 0.

(1)

g[µν] is called as usual a skewon field (e.g. in NGT). We define on E a nonsymmetric
connection compatible with gµν such that

Dgαβ = gαδQ
δ
βγ(Γ)θγ (2)

where D is an exterior covariant derivative for a connection ωαβ = Γαβγθγ and Qαβδ is
its torsion. We suppose also

Qαβα(Γ) = 0. (3)
We introduce on E a second connection

Wα
β = Wα

βγθ
γ (4)

such that

Wα
β = ωαβ − 2

3 δ
α
βW (5)

W = W γθ
γ = 1

2 (Wσ
γσ −Wσ

σγ)θγ . (6)

Now we turn to nonsymmetric metrization of a bundle P . We define a nonsymmetric
tensor γ on a bundle manifold P such that

γ = π∗g ⊕ `abθα ⊗ θb (7)

where π is a projection from P to E. On P we define a connection ω (a 1-form with values
in a Lie algebra g of G). In this way we can introduce on P (a bundle manifold) a frame
θA = (π∗(θα), θa) such that

θa = λωa, ω = ωaXa, a = 5, 6, . . . , n+ 4, n = dimG = dim g, λ = const.

Thus our nonsymmetric tensor looks like

γ = γABθ
A ⊗ θB , A,B = 1, 2, . . . , n+ 4, (8)
`ab = hab + µkab, (9)

where hab is a biinvariant Killing–Cartan tensor on G and kab is a right-invariant skew-
symmetric tensor on G, µ = const.
We have

hab = CcadC
d
bc = hab

kab = −kba
(10)

Thus we can write

γ(X,Y ) = g(π′X,π′Y ) + λ2h(ω(X), ω(Y )) (11)
γ(X,Y ) = g(π′X,π′Y ) + λ2k(ω(X), ω(Y )) (12)

(Cabc are structural constants of the Lie algebra g).
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γ is the symmetric part of γ and γ is the antisymmetric part of γ. We have as usual

[Xa, Xb] = CcabXc (13)

and
Ω = 1

2H
a
µνθ

µ ∧ θν (14)

is a curvature of the connection ω,

Ω = dω + 1
2 [ω, ω]. (15)

The frame θA on P is partially nonholonomic. We have

dθa = λ

2

(
Ha

µνθ
µ ∧ θν − 1

λ2 C
a
bcθ

b ∧ θc
)
6= 0 (16)

even if the bundle P is trivial, i.e. for Ω = 0. This is different than in an electromagnetic
case. Our nonsymmetric metrization of a principal fiber bundle gives us a right-invariant
structure on P with respect to an action of a group G on P . Having P nonsymmetrically
metrized one defines two connections on P right-invariant with respect to an action of a
group G on P . We have

γAB =
(
gαβ 0
0 `ab

)
(17)

in our left horizontal frame θA.

DγAB = γADQ
D
BC(Γ)θC (18)

QDBD(Γ) = 0 (19)

where D is an exterior covariant derivative with respect to a connection ωAB = ΓABCθC
on P and QABC(Γ) its torsion. One can solve Eqs (18)–(19) getting the following results

ωAB =
(
π∗(ωαβ)− `dbgµαLdµβθb Laβγθ

γ

`bdg
αβ(2Hd

γβ − Ldγβ)θγ ω̃ab

)
(20)

where gµα is an inverse tensor of gαβ

gαβg
γβ = gβαg

βγ = δγα, (21)

Ldγβ = −Laβγ is an Ad-type tensor on P such that

`dcgµβg
γµLdγα + `cdgαµg

µγLdβγ = 2`cdgαµgµγHd
βγ , (22)

ω̃ab = Γ̃abcθc is a connection on an internal space (typical fiber) compatible with a metric
`ab such that

`dbΓ̃dac + `adΓ̃dcb = −`dbCdac (23)

Γ̃aba = 0, Γ̃abc = −Γ̃acb (24)

and of course Q̃aba(Γ̃) = 0 where Q̃abc(Γ) is a torsion of the connection ω̃ab.
We also introduce an inverse tensor of g(αβ)

g(αβ)g̃
(αγ) = δγβ . (25)
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We introduce a second connection on P defined as

WA
B = ωAB −

4
3(n+ 2) δ

A
BW. (26)

W is a horizontal one form

W = horW (27)
W = W νθ

ν = 1
2 (Wσ

νσ −Wσ
σν). (28)

In this way we define on P all analogues of four-dimensional quantities from NGT. It
means, (n + 4)-dimensional analogues from Moffat theory of gravitation, i.e. two connec-
tions and a nonsymmetric metric γAB . Those quantities are right-invariant with respect
to an action of a group G on P . One can calculate a scalar curvature of a connectionWA

B

getting the following result:

R(W ) = R(W )− λ2

4
(
2`cdHcHd − `cdLcµνHd

µν

)
+ R̃(Γ̃) (29)

where
R(W ) = γAB

(
RCABC(W ) + 1

2 R
C
CAB(W )

)
(30)

is a Moffat–Ricci curvature scalar for the connection WA
B , R(W ) is a Moffat–Ricci cur-

vature scalar for the connection Wα
β , and R̃(Γ̃) is a Moffat–Ricci curvature scalar for the

connection ω̃ab,

Ha = g[µν]Ha
µν (31)

Laµν = gαµgβνLaαβ . (32)

Usually in ordinary (symmetric) Kaluza–Klein Theory one has λ = 2
√
GN

c2 , where GN is
a Newtonian gravitational constant and c is the speed of light. In our system of units
GN = c = 1 and λ = 2. This is the same as in Nonsymmetric Kaluza–Klein Theory in
an electromagnetiic case. In the non-Abelian Kaluza–Klein Theory which unifies GR and
Yang–Mills field theory we have a Yang–Mills lagrangian and a cosmological term. Here
we have

LYM = − 1
8π `cd

(
2HcHd − LcµνHd

µν

)
(33)

and R̃(Γ̃) plays a role of a cosmological term.
In order to incorporate a spontaneous symmetry breaking and Higgs’ mechanism in our

geometrical unification of gravitation and Yang–Mills’ fields we consider a fiber bundle P
over a base manifold E ×G/G0, where E is a space-time, G0 ⊂ G, G0, G are semisimple
Lie groups. Thus we are going to combine a Kaluza–Klein theory with a dimensional
reduction procedure.
Let P be a principal fiber bundle over V = E × M with a structural group H and

with a projection π, where M = G/G0 is a homogeneous space, G is a semisimple Lie
group and G0 its semisimple Lie subgroup. Let us suppose that (V, γ) is a manifold with
a nonsymmetric metric tensor

γAB = γ(AB) + γ[AB]. (34)

The signature of the tensor γ is ( +−−−, −−− · · ·−︸ ︷︷ ︸
n1

). Let us introduce a natural frame

on P
θÃ = (π∗(θA), θ0 = λωa), λ = const. (35)
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It is convenient to introduce the following notation. Capital Latin indices with tilde
Ã, B̃, C̃ run 1, 2, 3, . . . ,m+ 4, m = dimH + dimM = n+ dimM = n+ n1, n1 = dimM ,
n = dimH. Lower Greek indices α, β, γ, δ = 1, 2, 3, 4 and lower Latin indices a, b, c, d =
n1 +5, n2 +5, . . . , n1 +6, . . . ,m+4. Capital Latin indices A,B,C = 1, 2, . . . , n1 +4. Lower
Latin indices with tilde ã, b̃, c̃ run 5, 6, . . . , n1 +4. The symbol over θA and other quantities
indicates that these quantities are defined on V . We have of course

n1 = dimG− dimG0 = n2 − (n2 − n1),

where dimG = n2, dimG0 = n2 − n1, m = n1 + n.
On the group H we define a bi-invariant (symmetric) Killing–Cartan tensor

h(A,B) = habA
aBb. (36)

We suppose H is semisimple, it means det(hab) 6= 0. We define a skew-symmetric right-
invariant tensor on H

k(A,B) = kbcA
bBc, kbc = −kcb.

Let us turn to the nonsymmetric metrization of P .

κ(X,Y ) = γ(X,Y ) + λ2`abω
a(X)ωb(Y ) (37)

where
`ab = hab + ξkab (38)

is a nonsymmetric right-invariant tensor on H. One gets in a matrix form (in the natural
frame (35))

κÃB̃ =
(
γAB 0

0 `ab

)
, (39)

det(`ab) 6= 0, ξ = const and real, then

`ab`
ac = `ba`

ca = δcb. (40)

The signature of the tensor κ is (+,−−−,− · · ·−︸ ︷︷ ︸
n1

, −− · · ·−︸ ︷︷ ︸
n

). As usual, we have commu-

tation relations for Lie algebra of H, h

[Xa, Xb] = CcabXc. (41)

This metrization of P is right-invariant with respect to an action of H on P .
Now we should nonsymmetrically metrize M = G/G0. M is a homogeneous space for G

(with left action of group G). Let us suppose that the Lie algebra of G, g has the following
reductive decomposition

g = g0 +̇ m (42)
where g0 is a Lie algebra of G0 (a subalgebra of g) and m (the complement to the sub-
algebra g0) is AdG0 invariant, +̇ means a direct sum. Such a decomposition might be
not unique, but we assume that one has been chosen. Sometimes one assumes a stronger
condition for m, the so called symmetry requirement,

[m,m] ⊂ g0. (43)

Let us introduce the following notation for generators of g:

Yi ∈ g, Yı̃ ∈ m, Yâ ∈ g0. (44)
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This is a decomposition of a basis of g according to (42). We define a symmetric metric
on M using a Killing–Cartan form on G in a classical way. We call this tensor h0.
Let us define a tensor field h0(x) on G/G0, x ∈ G/G0, using tensor field h on G.

Moreover, if we suppose that h is a biinvariant metric on G (a Killing–Cartan tensor) we
have a simpler construction.
The complement m is a tangent space to the point {εG0} ofM , ε is a unit element of G.

We restrict h to the space m only. Thus we have h0({εG0}) at one point of M . Now we
propagate h0({fG0}) using a left action of the group G

h0({fG0}) = (L−1
f )∗(h0({εG0})).

h0({εG0}) is of course AdG0 invariant tensor defined on m and L∗fh0 = h0.
We define on M a skew-symmetric 2-form k0. Now we introduce a natural frame on M .

Let f ijk be structure constants of the Lie algebra g, i.e.

[Yj , Yk] = f ijkYi. (45)

Yj are generators of the Lie algebra g. Let us take a local section σ : V → G/G0 of a
natural bundle G 7→ G/G0 where V ⊂M = G/G0. The local section σ can be considered
as an introduction of a coordinate system on M .
Let ωMC be a left-invariant Maurer–Cartan form and let

ωσMC = σ∗ωMC . (46)

Using decomposition (42) we have

ωσMC = ωσ0 + ωσm = θ̂ıŶ
ı

+ tãYã. (47)

It is easy to see that θã is the natural (left-invariant) frame on M and we have

h0 = h0
ãb̃θ

ã ⊗ θb̃ (48)

k0 = k0
ãb̃θ

ã ∧ θb̃. (49)

According to our notation ã, b̃ = 5, 6, . . . , n1 + 4.
Thus we have a nonsymmetric metric on M

γãb̃ = r2(h0
ãb̃ + ζk0

ãb̃

)
= r2gãb̃. (50)

Thus we are able to write down the nonsymmetric metric on V = E ×M = E ×G/G0

γAB =
(
gαβ 0
0 r2gãb̃

)
(51)

where

gαβ = g(αβ) + g[αβ]

gãb̃ = h0
ãb̃ + ζk0

ãb̃

k0
ãb̃ = −k0

b̃ã

h0
ãb̃ = h0

b̃ã,

α, β = 1, 2, 3, 4, ã, b̃ = 5, 6, . . . , n1 + 4 = dimM + 4 = dimG− dimG0 + 4. The frame θã
is unholonomic:

dθã = 1
2 κ

ã
b̃c̃θ

b̃ ∧ θc̃ (52)
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where κãb̃c̃ are coefficients of nonholonomicity and depend on the point of the manifold
M = G/G0 (they are not constant in general). They depend on the section σ and on the
constants f ãb̃c̃.
We have here three groups H,G,G0. Let us suppose that there exists a homomorphism

µ between G0 and H,
µ : G0 → H (53)

such that a centralizer of µ(G0) in H, Cµ is isomorphic to G. Cµ, a centralizer of µ(G0)
in H, is a set of all elements of H which commute with elements of µ(G0), which is a
subgroup of H. This means that H has the following structure, Cµ = G.

µ(G0)⊗G ⊂ H. (54)

If µ is a isomorphism between G0 and µ(G0) one gets

G0 ⊗G ⊂ H. (55)

Let us denote by µ′ a tangent map to µ at a unit element. Thus µ′ is a differential of µ
acting on the Lie algebra elements. Let us suppose that the connection ω on the fiber
bundle P is invariant under group action of G on the manifold V = E × G/G0. This
means the following.
Let e be a local section of P , e : V ⊂ U → P and A = e∗ω. Then for every g ∈ G there

exists a gauge transformation ρg such that

f∗(g)A = Ad
ρ−1

g
A+ ρ−1

g dgg, (56)

f∗ means a pull-back of the action f of the group G on the manifold V . We are able to
write a general form for such an ω. We have

ω = ω̃E + µ′ ◦ ωσ0 + Φ ◦ ωσm. (57)

(An action of a group G on V = E × G/G0 means left multiplication on a homogeneous
space M = G/G0.) where ωσ0 + ωσm = ωσMC are components of the pull-back of the
Maurer–Cartan form from the decomposition (47), ω̃E is a connection defined on a fiber
bundle Q over a space-time E with structural group Cµ and a projection πE . Moreover,
Cµ = G and ω̃E is a 1-form with values in the Lie algebra g. This connection describes
an ordinary Yang–Mills’ field gauge group G = Cµ on the space-time E. Φ is a function
on E with values in the space S̃ of linear maps

Φ : m→ h (58)

satisfying
Φ([X0, X]) = [µ′X0, Φ(X)], X0 ∈ g0. (59)

Thus
ω̃E = ω̃iEYi, Yi ∈ g,

ωσ0 = θ̂ıŶ
ı
, Ŷ

ı
∈ g0,

ωσm = θãYã, Yã ∈ m.

(60)

Let us write condition (57) in the base of left-invariant form θ̂ı, θã, which span respec-
tively dual spaces to g0 and m. It is easy to see that

Φ ◦ ωσm = Φaã(x)θãXa, Xa ∈ h (61)
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and
µ′ = µa

ı̂
θ̂ıXa. (62)

From (59) one gets
Φcb̃(x)f b̃

ı̂ã
= µa

ı̂
Φbã(x)Ccab (63)

where f b̃
ı̂ã

are structure constants of the Lie algebra g and Ccab are structure constants of
the Lie algebra h. Eq. (63) is a constraint on the scalar field Φaã(x). For a curvature of ω
one gets

Ω = 1
2 H

C
ABθ

A ∧ θBXC = 1
2 H̃

i
µνθ

µ ∧ θναciXc +
gauge
∇µ Φcãθµ ∧ θãXc

+ 1
2 C

c
abΦ

a
ãΦ

b
b̃θ
ã ∧ θb̃Xc −

1
2 Φ

c
d̃f
d̃
ãb̃θ

ã ∧ θb̃Xc. (64)

Thus we have

Hc
µν = αciH̃

i
µν (65)

Hc
µã =

gauge
∇µ Φcã = −Hc

ãµ (66)

Hc
ãb̃ = Ccab · ΦaãΦbb̃ − µ

c

ı̂
f ı̂ãb̃ − Φ

c
d̃f
d̃
ãb̃ (67)

where
gauge
∇µ means gauge derivative with respect to the connection ω̃E defined on a bundleQ

over a space-time E with a structural group G

Yi = αciXc. (68)

H̃i
µν is the curvature of the connection ωE in the base {Yi}, generators of the Lie algebra

of the Lie group G, g, αci is the matrix which connects {Yi} with {Xc}. Now we would
like to remind that indices a, b, c refer to the Lie algebra h, ã, b̃, c̃ to the space m (tangent
space to M), ı̂, ̂, k̂ to the Lie algebra g0 and i, j, k to the Lie algebra of the group G, g.
The matrix αci establishes a direct relation between generators of the Lie algebra of the
subgroup of the group H isomorphic to the group G.
Let us come back to a construction of the Nonsymmetric Kaluza–Klein Theory on a

manifold P . We should define connections. First of all, we should define a connection
compatible with a nonsymmetric tensor γAB , Eq. (51),

ωAB = ΓABCθC (69)

DγAB = γADQ
D
BC(Γ)θC (70)

QDBD(Γ) = 0

where D is the exterior covariant derivative with respect to ωAB and QDBC(Γ) its torsion.
Using (51) one easily finds that the connection (69) has the following shape

ωAB =
(
π∗E(ωαβ) 0

0 ̂̄ωãb̃
)

(71)

where ωαβ = Γαβγθγ is a connection on the space-time E and ω̂ãb̃ = Γ̂ãb̃c̃θc̃ on the
manifold M = G/G0 with the following properties

Dgαβ = gαδQ
δ
βγ(Γ)θγ = 0 (72)
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Qαβα(Γ) = 0 (73)

D̂gãb̃ = gãd̃Q̂
d̃
b̃c̃(Γ̂). (74)

Q̂d̃b̃d̃(Γ̂) = 0

D is an exterior covariant derivative with respect to a connection ωαβ . Qαβγ is a tensor
of torsion of a connection ωαβ . D̂ is an exterior covariant derivative of a connection ω̂ãb̃
and Q̂ãb̃c̃(Γ̂) its torsion.
On a space-time E we also define the second affine connection Wα

β such that

Wα
β = ωαβ −

2
3 δ

α
βW, (75)

where
W = W γθ

γ = 1
2 (Wσ

γσ −Wσ
γσ).

We proceed a nonsymmetric metrization of a principal fiber bundle P according to (51).
Thus we define a right-invariant connection with respect to an action of the group H
compatible with a tensor κÃB̃

DκÃB̃ = κÃD̃Q
D̃
B̃C̃(Γ)θC̃ (76)

QD̃B̃D̃(Γ) = 0

where ωÃB̃ = ΓÃB̃C̃ θ̃C̃ . D is an exterior covariant derivative with respect to the connection
ωÃB̃ and QÃB̃C̃ its torsion. After some calculations one finds

ωÃB̃ =
(
π∗(ωAB)− `dbγMALdMBθ

b LaBCθ
C

`bdγ
AB(2Hd

CB − LdCB)θC ω̃ab

)
(77)

where

LdMB = −LdBM (78)

`dcγMBγ
CMLdCA + `cdγAMγ

MCLdBC = 2`cdγAMγMCHd
BC , (79)

LdCA is Ad-type tensor with respect to H (Ad-covariant on P )

ω̃ab = Γ̃abcθc (80)

`dbΓ̃dac + `adΓ̃dcb = −`dbCdac (81)

Γ̃dac = −Γ̃dca, Γ̃dad = 0. (82)

We define on P a second connection

W Ã
B̃ = ωÃB̃ −

4
3(m+ 2) δ

Ã
B̃W. (83)

Thus we have on P all (m+4)-dimensional analogues of geometrical quantities from NGT,
i.e.

W Ã
B̃ , ωÃB̃ and κÃB̃ .

Let P be a principal fiber bundle

P = (P, V, π,H,H) (84)
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over the base space V = E × S2 (where E is a space-time, S2—a two-dimensional sphere)
with a projection π, a structural group H, a typical fiber H and a bundle manifold P .
We suppose that H is semisimple. Let us define on P a connection ω which has values
in a Lie algebra of H, h. Let us suppose that a group SO(3) is acting on S2 in a natural
way. We suppose that ω is invariant with respect to an action of the group SO(3) on V in
such a way that this action is equivalent to SO(3) action on S2. This is equivalent to the
condition (56). If we take a section e : E → P we get

e∗ω = AaAθ
AXa = AAθ

A (85)

where θA is a frame on V and Xa are generators of the Lie algebra h.

[Xa, Xb] = CcabXc. (86)

We define a curvature of the connection ω

Ω = dω + 1
2 [ω, ω]. (87)

Taking a section e

e∗Ω = 1
2 F

a
ABθ

A ∧ θBXa = 1
2 FABθ

A ∧ θB (88)

F aAB = ∂AA
a
B − ∂BAaA − CacbAcAAcB . (89)

Let us consider a local coordinate systems on V . One has xA = (xµ, ψ, ϕ) where xµ are
coordinate system on E, θµ = dxµ, and ψ and ϕ are polar and azimuthal angles on S2,
θ5 = dψ, θ6 = dϕ. We have A,B,C = 1, 2, . . . , 6, µ = 1, 2, 3, 4. Let us introduce vector
fields on V corresponding to the infinitesimal action of SO(3) on V . These vector fields
are called δm = (δAm), m = 1, 2, 3, A = 1, 2, . . . , 6. Moreover, they are acting only on the
last two dimensions (A,B = 5, 6, ã, b̃ = 5, 6). We get:

δµm̄ = 0 and

δψ1 = cosϕ, δϕ1 = − cotψ sinϕ,

δψ2 = − sinϕ, δϕ2 = − cotψ cosϕ,

δψ3 = 0, δϕ3 = 1.

(90)

They satisfy commutation relation of the Lie algebra A1 of a group SO(3),

δAm̄∂Aδ
B
n̄ − δAn̄ ∂AδBm̄ = εm̄n̄p̄δ

B
p̄ . (91)

The gauge field AA is spherically symmetric (invariant with respect to an action of a group
SO(3)) iff for some Vm̄—a field on V with values in the Lie algebra h—

∂Bδ
A
m̄AA + δAm̄∂AAB = ∂BVm̄ − [AB , Vm̄]. (92)

It means that
L
δm̄

AA = ∂BVm̄ − [AA, Vm̄], (93)

a Lie derivative of AA with respect to δm̄ results in a gauge transformation (see also
Eq. (56)).

Eq. (93) is satisfied if

V1 = Φ3
sinϕ
sinψ , V2 = Φ3

cosϕ
sinψ , V3 = 0 (94)
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and
Aµ = Aµ(x), Aψ = −Φ1(x) = A5 = Φ5, Aϕ = Φ2(x) sinψ − Φ3 cosψ = A6 = Φ6 (95)

with the following constraints
[Φ3, Φ1] = −Φ2,

[Φ3, Φ2] = Φ1,

[Φ3, Aµ] = 0.
(96)

Aµ, Φ1, Φ2 are fields on E with values in the Lie algebra of H(h), Φ3 is a constant element
of Cartan subalgebra of h. Let us introduce some additional elements according to the
Nonsymmetric Hermitian Kaluza–Klein Theory. We have on E a nonsymmetric Hermitian
tensor gµν , connections ωαβ and Wα

β . On S2 we have a nonsymmetric metric tensor
γãb̃ = r2gãb̃ = r2(h0

ãb̃ + ζk0
ãb̃

)
(97)

where r is the radius of a sphere S2 and ζ is considered to be pure imaginary,

h0
ãb̃ =

(
−1 0
0 − sin2 ψ

)
(98)

k0
ãb̃ =

(
0 sinψ

− sinψ 0

)
(99)

and a connection compatible with this nonsymmetric metric

gãb̃ =

5 6(
−1 ζ sinψ

−ζ sinψ − sin2 ψ

)
5

6
(100)

g̃ = det(gãb̃) = sin2 ψ(1 + ζ2) (101)

gãb̃ = 1
sin2 ψ(1 + ζ2)

5 6(
− sin2 ψ −ζ sinψ
ζ sinψ −1

)
5

6
, (102)

ã, b̃ = 5, 6. In this way we have to do with Kählerian structure on S2 (Riemannian,
symplectic and complex which are compatible). This seems to be very interesting in
further research connecting unification of all fundamental interactions. On H we define a
nonsymmetric metric

`ab = hab + ξkab (103)
where kab is a right-invariant skew-symmetric 2-form on H.
One can rewrite the constraints (96) in the form

[Φ3, Φ] = iΦ

[Φ3, Φ̃] = −iΦ̃
[Φ3, Aµ] = 0

(104)

where Φ = Φ1 + iΦ2, Φ̃ = Φ1 − iΦ2.
In this way our 6-dimensional gauge field (a connection on a fiber bundle) has been re-

duced to a 4-dimensional gauge one (a connection on a fiber bundle over a space-time E)
and a collection of scalar fields defined on E satisfying some constraints. According to our
approach there is defined on S2 a nonsymmetric connection compatible with a nonsym-
metric tensor gãb̃, ã, b̃ = 5, 6,

D̂gãb̃ = gãd̃Q
d̃
b̃c̃(Γ̂)θc̃

Qd̃b̃d̃(Γ̃) = 0
(105)



194 Conclusions, Remarks and Prospects

where D̂ is an exterior covariant derivative with respect to a connection ω̂ãb̃ = Γ̂ãb̃c̃θc̃ and
Qd̃b̃c̃(Γ̂) its torsion.
Let us metrize a bundle P in a nonsymmetric way. On V we have nonsymmetric tensor

γAB =
(
gµν 0
0 r2gãb̃

)
(106)

and a nonsymmetric connection ωAB = ΓABCθC compatible with this tensor

DγAB = γADQ
D
BC(Γ)θC

QDBD(Γ) = 0.
(107)

The form of this connection is as follows

ωAB =
(
ωαβ 0

0 ω̂ãb̃

)
(108)

where D is an exterior covariant derivative with respect to ωAB and QDBC(Γ) its torsion.
Afterwards we define on P a nonsymmetric tensor

κÃB̃θ
Ã ⊗ θB̃ = π∗(γABθA ⊗ θB) + `abθ

a ⊗ θb (109)

where
θÃ = (π∗(θA), λωa), (110)

ω = ω0Xa is a connection defined on P (Ã, B̃, C̃ = 1, 2, . . . , n+ 6).
We define on P two connections ωAB and WA

B such that ωAB is compatible with a
nonsymmetric tensor κÃB̃ ,

DκÃB̃ = κÃD̃Q
D̃
B̃C̃(Γ)θC̃

QD̃B̃D̃(Γ) = 0,
(111)

whereD is an exterior covariant derivative with respect to a connection ωÃB̃ and QD̃B̃C̃(Γ)
its torsion.

The second connection

W Ã
B̃ = ωÃB̃ −

4
3(n+ 4) δ

Ã
B̃W (n = dimH). (112)

In this way we have all quantities known from the Nonsymmetric non-Abelian Kaluza–
Klein theory with spontaneous symmetry breaking. We calculate a scalar of curvature
(Moffat–Ricci) for a connection W Ã

B̃ and afterwards an action

S = − 1
V1V2

∫
U

√
−g d4x

∫
H

√
|`| dnx

∫
S2

√
|g̃| dΩ R(W )

= − 1
r2V1V2

∫
U

√
−g d4x

∫
S2

√
|g̃| dΩ

(
R(W )

+ 8πGN
c4

(
LYM + 1

4πr2 Lkin(∇Φ)− 1
8πr2 V (Φ)− 1

2πr2 Lint(Φ, Ã)
)

+ λc

)
(113)

where V1 =
∫
U

√
|`| dnx, V2 =

∫
S2

√
|g̃| dΩ, U ⊂ E,

λc =
(
α2
s

`2pl
R̃(Γ̃) + 1

r2 P̃
)

(114)
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where R̃(Γ̃) is a Moffat–Ricci curvature scalar on a group H.

P̃ = 1
V2

∫
S2

√
|g̃| dΩ R̂(Γ̂) (115)

where R̂(Γ̂) is a Moffat–Ricci curvature scalar on S2 for a connection ω̂ãb̃.

LYM = − 1
8π `ij

(
H̃(iH̃j) − L̃iµνH̃j

µν

)
(116)

where
`ijgµβg

γµL̃iγα + `jigαµg
µγL̃iβγ = 2`jigαµgµγH̃i

βγ (117)
One gets from (78)

Lbãb̃ = hbc`cdH
d
b̃ã, (118)

V (Φ) = − 1
V2

∫ √
|g̃| dΩ

(
2hcd(Hc

ãb̃g
ãb̃)(Hd

c̃d̃g
c̃d̃)− `cdgãm̃gb̃ñLcãb̃H

d
m̃ñ

)
= 1
V2

2π2√
1 + ζ2

κ
(
(εr̄s̄t̄Φt̄ + [Φr̄, Φs̄]), (εr̄s̄t̄Φt̄ + [Φr̄, Φs̄])

)
(119)

κde = (1− 2ζ2)hde + ξ2kcdkce (120)

where

kcd = hcfkfd (121)

V2 =
∫
S2

√
|g̃| dΩ = 4π

√
1 + ζ2, (122)

r, s, t = 1, 2, 3, εr̄s̄t̄ is a usual antisymmetric symbol ε123 = 1.
We get also from (78)

`dcgµβg
γµLdγã + `cdL

d
βã = 2`cdF cβã. (123)

Using the equation

Lnωm̃ =
gauge
∇ω Φnm̃ + ξknd

gauge
∇ω Φdm̃ −

(
ζ

gauge
∇ω Φnãh0ãd̃k0d̃m̃ + g̃(αµ)gauge

∇α Φnm̃g[µω]
)

− 2ξζknd
gauge
∇ω Φdd̃g̃

(δα)g[αω]h
0d̃ãk0

ãm̃ + ξknd
(
ζ2hd̃ã

gauge
∇ω Φdãk0

d̃b̃k
0
m̃c̃h

0c̃b̃

+
gauge
∇β Φdm̃g̃(δβ)g[δα]g[ωµ]g̃

(αµ))− ξ2knbkbd
(
ζ

gauge
∇ω Φdãh0ãb̃k0

m̃b̃ + g̃(αβ)gauge
∇a Φdm̃g[ωβ]

)
where

knb = hnahbpkap,

one gets

Lnωm̃ =
gauge
∇ω Φnm̃ + ξknd

gauge
∇ω Φdm̃ − g̃(αµ)gauge

∇α Φnm̃g[µω]

+ ξknd
gauge
∇β Φdm̃g̃(δβ)g[δα]g[ωµ]g̃

(αµ) − ξ2knbkbdg̃
(αβ)gauge

∇ Φdm̃g[ωβ]. (124)

Moreover, now we have to do with Minkowski space gµν = ηµν and

Lnωm̃ = Hn
ωm̃ + ξkndH

d
ωm̃. (125)
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We remember that m̃ = 5, 6 or ϕ,ψ and that

Hn
µm̃ =

gauge
∇µ Φnm̃. (126)

We have
Lkin(Hn

µm̃) = 1
V2

∫ √
|g̃| dΩ (`abηβµLaβb̃H

b
µãg

b̃ã). (127)

Finally we get

Lkin(∇µΦm̄) = 2π2

V2

ηµν√
1 + ζ2

κ̄
(gauge
∇µ Φm̄,

gauge
∇ν Φm̄

)
(128)

κad = (had + ξ2kabk
b
d) (129)

where gauge
∇µ Φm̄ = ∂µΦ

a
m̄ − [Aµ, Φm̄]. (130)

Now we suppose rankH = 2 and afterwards H = G2. In this way our lagrangian
can go to the GSW model where SU(2) × U(1) is a little group of Φ3. We get also a
Higgs’ field complex doublet and spontaneous symmetry breaking and mass generation for
intermediate bosons. For simplicity we take ξ = 0 and also we do not consider an influence
of the nonsymmetric gravity on a Higgs’ field. We get also a mixing angle θW (Weinberg
angle). If we choose H = G2 we get θW = 30◦. We get also some predictions of masses

MH

MW
= 1

cos θW
·
√

1− 2ζ2 (131)

where ζ is an arbitrary constant

MH

MW
=

2
√

1− 2ζ2
√

3
. (132)

We take MH ' 125GeV and MW ' 80GeV.
One gets

ζ = ±0.911622i. (133)
Thus ζ is pure imaginary. This means we can explain mass pattern in GSW model. r gives
us a scale of mass and is an arbitrary parameter.
Moreover, a scale of energy is equal to M = ~c

r
√

2π
√

1+ζ2
which we equal to MEW

(electro-weak) energy scale, i.e. to MW . One gets r ' 2.39 × 10−18 m. In the original
Manton model Higgs’ boson is too light. We predict here masses for W,Z0 and Higgs
bosons in the theory taking two parameters, ζ (Eq. (133)) and r ' 2.39×10−18 m in order
to get desired pattern of masses. The value of the Weinberg angle derived here for H = G2
has nothing to do with “GUT driven” value 1

4 for 1
4 is a value of our sin2 θW , not sin θW .

A Lie group H should have a Lie algebra h with rank 2. We have only three possibilities:
G2, SU(3) and SO(5). The angle between two roots plays a role of a Weinberg angle. For
SO(5) θ = 45◦ and for SU(3) θ = 60◦. Only for G2, θ = θW = 30◦, which is close to the
experimental value. In this way a unification chooses H = G2.
Let us notice that dimG2 = 14 and for this dimP = 20.
Moreover, we have

MZ = MW

cos θ = MW

cos θW
= 2√

3
MW ' 92.4 (134)
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and we get from the theory

sin2 θW = 0.25 (θW = 30◦). (135)

However from the experiment we get

sin2 θW = 0.2397± 0.0013 (136)

which is not 0.25.
Moreover, from theoretical point of view the value 0.25 is a value without radiation

corrections and it is possible to tune it at Q = 91.2GeV/c in the MS scheme to get the
desired value.
Let us notice the following fact. In the electroweak theory we have a Lagrangian for

neutral current interaction

LN = qJem
µ Aµ + g

cos θW
(J3
µ − sin2 θWJ

em
µ )Z0µ

= qJem
µ Aµ +

∑
f

ψfγµ(gfV − g
f
Aγ

5)ψfZ0µ (137)

where gfV and gfA are coupling constants for vector and axial interactions for a fermion f .
One gets

gfV = 2q
sin 2θW

(T 3
f − 2qf sin2 θW )

gfA = 2q
sin 2θW

(138)

where T 3
f is the third component of a weak isospin of a fermion f and qf is its electric

charge measured in elementary charge q,

qf = T 3
f + Yf

2 (139)

where Yf is a weak hypercharge for f . It is easy to see that for an electron we get gfV = 0
if θW = 30◦.
Moreover, we know from the experiment that

gfV 6= 0. (140)

We use the following formulae

Φ5 = 1
2(ϕ∗1x−α + ϕ∗2x−β − ϕ1xα − ϕ2xβ) (141)

Φ6 = sinψ
2i (ϕ1xα + ϕ2xβ + ϕ∗1x−α + ϕ∗2x−β)− Φ3 cosψ. (142)

Φ3 is constant and commutes with a reduced connection. SU(2) × U(1) is a little group
of Φ3,

Φ3 = 1
2 i(2− 〈γ, α〉)

−1(hα + hβ), (143)

xα, x−α, xβ , x−β are elements of a Lie algebra h of H corresponding to roots α,−α, β,−β,
hα and hβ are elements of Cartan subalgebra of h such that

hα = 2αi
α · α Hi = [xα, x−α], (144)
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where α = (α1, . . . , αk), k = rank(h), γ = α − β, [Hi, xω] = ωixω, Hi form Cartan
subalgebra of h, [xω, xτ ] = Cω,τxω+τ if ω + τ is a root, if ω + τ is not a root xω and xτ
commute. We take k = 2.

〈γ, α〉 = 2γ · α
α · α = 2 |γ||α| cos θ. (145)

In this way we get a Higgs’ doublet
(
ϕ1
ϕ2

)
= ϕ̃.

The SU(2)×U(1) generators are given by

t1 = 1
2 i(xγ + x−γ), t2 = 1

2(xγ − x−γ), t3 = 1
2 ihγ , y = 1

2 ih. (146)

h is an element of Cartan subalgebra orthogonal to hγ with the same norm. Now everything
is exactly the same as in symmetric theory except the fact that

k̄ad = had − ξ2kabk
b
d (147)

kad = (1− 2ζ2)had − ξ2kabk
b
d. (148)

In symmetric theory
k̄ad = kad = had. (149)

A four-potential of Yang–Mills’ field (a connection ωE) can be written as

Aµ =
3∑
i=1

Aµti +Bµy (150)

or Aµ = 1
2 i(A

−
µ xγ +A+

µ x−γ +A3
µhγ +Bµh) (151)

A±µ = A1
µ ± iA2

µ. (152)

We have

h(ti, tj) = − 1
γ · γ δij

h(y, y) = − 1
γ · γ

h(ti, y) = 0

Fµν =
(
∂µA

a
ν − ∂νAaµ + εabcA

b
µA

c
ν

)
ta + (∂µBν − ∂νBµ)y = F aµνta +Bµνy (153)

h(Fµν , Fµν) = − δab
γ · γ F

a
µνF

bµν − 1
γ · γBµνB

µν (154)
gauge
∇µ Φ =

(
∂µϕ1 −

1
2 iA

−
µϕ2 −

1
2 iA

3
µϕ1 −

1
2 i tan θBµϕ1

)
xα

+
(
∂µϕ2 −

1
2 iA

+
µϕ1 + 1

2 iA
3
µϕ2 −

1
2 i tan θBµϕ2

)
xβ (155)

gauge
∇µ Φ̃ = −

(
∂µϕ

∗
1 + 1

2 iA
+
µϕ
∗
2 + 1

2 iA
3
µϕ
∗
1 + 1

2 i tan θBµϕ∗1
)
x−α

−
(
∂µϕ

∗
2 + 1

2 iA
−
µϕ
∗
1 −

1
2 iA

3
µϕ
∗
2 + 1

2 i tan θBµϕ∗2
)
x−β (156)

We redefine the fields Aaµ, Bµ and ϕ̃ with some rescaling (g is a coupling constant)

A′aµ = L1A
a
µ, B′µ = L1Bµ, ϕ̃′ = L2ϕ̃ (157)
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where

L1 = 1
g

1
(γ · γ)1/2 (158)

L2 = 1
g

(
γ · γ
α · α

)1/2
(159)

We proceed the following transformation(
Z0
µ

Aµ

)
=
(

cos θ − sin θ
sin θ cos θ

)(
A3
µ

Bµ

)
. (160)

According to the classical results we also have g′

g
= tan θ, assuming q = g sin θ, where q

is an elementary charge and g and g′ are coupling constants of Aaµ and Bµ fields. The spon-
taneous symmetry breaking and Higgs’ mechanism in the Manton model works classical if
we take for minimum of the potential

ϕ̃0 =
(

0
v√
2

)
eiα, α arbitrary phase, (161)

and we parametrize ϕ̃ =
(
ϕ1
ϕ2

)
in the following way

ϕ̃(x) = exp
(
i

1
2v σ

ata(x)
)( 0

v+H(x)√
2

)
. (162)

For a vacuum state we take
ϕ̃0 =

(
0
v√
2

)
, (163)

ta(x) and H(x) are real fields on E. ta(x) has been “eaten” by Aaµ, a = 1, 2, and Z0
µ fields

making them massive. H(x) is our Higgs’ field. σa are Pauli matrices.
In the formulae (147)–(148) we take ξ = 0. One gets in the Lagrangian mass terms:

M2
WW

+
µ W

−µ + 1
2 M

2
ZZ

0
µZ

0µ − 1
2 M

2
HH

2,

where W+
µ = A+

µ , W−µ = A−µ , getting masses for W±, Z0 bosons and a Higgs boson (see
Eqs (131)–(135)). For G2 〈γ, α〉 = 3 and θ = 30◦, θ is identified with the Weinberg angle
θW .
In order to proceed a Higgs’ mechanism and spontaneous symmetry breaking in this

model we use the following gauge transformation

ϕ̃(x) 7→ U(x)ϕ̃(x) = 1√
2

(
0

v +H(x)

)
, (164)

where
v = 2

√
2

rg
cos θ (165)

a vacuum value of a Higgs field

U(x) = exp
(
− 1

2v t
a(x)σa

)
. (166)

H(x) is the remaining scalar field after a symmetry breaking and a Higgs’ mechanism.
One gets

Aµ 7→ Auµ = ad′U−1(x)Aµ + U−1(x)∂µU(x) (167)
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Fµν 7→ Fuµν = ad′U−1(x)Fµν . (168)

Using some additional fields Φ1, Φ2, Φ3 and also Φ and Φ̃, we can write
gauge
∇µ Φ5 and

gauge
∇µ Φ6 in terms of Higgs’ fields ϕ1 and ϕ2,

gauge
∇µ Φ5 = 1

2
gauge
∇µ (Φ+ Φ̃) = 1

2

[(
∂µϕ1 −

1
2 iA

−
µϕ2 −

1
2 iA

3
µϕ1 −

1
2 i tan θBµϕ1

)
xα

+
(
∂µϕ2 −

1
2 iA

+
µϕ1 + 1

2 iA
+
µϕ2 −

1
2 iBµϕ2 tan θ

)
xβ

−
(
∂µϕ

∗
1 + 1

2 iA
+
µϕ
∗
2 + 1

2 iA
3
µϕ
∗
1 + 1

2 iBµϕ
∗
1 tan θ

)
x−α

−
(
∂µϕ

∗
2 + 1

2 iA
−
µϕ
∗
1 −

1
2 iA

3
µϕ
∗
2 + 1

2 i tan θBµϕ∗2
)
x−β

]
(169)

gauge
∇µ Φ6 = sinψ

2i
gauge
∇µ (Φ− Φ̃) = sinψ

2i

[(
∂µϕ1 −

1
2 iA

−
µϕ2 −

1
2 iA

3
µϕ1 −

1
2 i tan θBµϕ1

)
xα

+
(
∂µϕ2 −

1
2 iA

+
µϕ1 + 1

2 iA
+
µϕ2 −

1
2 iBµϕ2 tan θ

)
xβ

−
(
∂µϕ

∗
1 + 1

2 iA
+
µϕ
∗
2 + 1

2 iA
3
µϕ
∗
1 + 1

2 iBµϕ
∗
1 tan θ

)
x−α

−
(
∂µϕ

∗
2 + 1

2 iA
−
µϕ
∗
1 −

1
2 iA

3
µϕ
∗
2 + 1

2 i tan θBµϕ∗2
)
x−β

]
(170)

where

e∗ωE = Aiµθ
µti +Bµθ

µy (171)

e∗ω = αciA
i
µθ
µt̃i + Φaãθ

ãXa, (172)

t̃i = ti, i = 1, 2, 3, t̃4 = y. (173)

Let us proceed a spontaneous symmetry breaking and Higgs’ mechanism. In this way
we transform gauge

∇µ Φã 7→ ad′U−1(x)

gauge
∇µ Φã =

gauge
∇µ Φuã , ã = 5, 6, (174)

where
gauge
∇µ Φu5 = 1

2
√

2

[
∂µH(x)(xβ − x−β)

+ i

2(v +H(x))
(
A3u
µ (xβ + x−β) +Bµ tan θ(x−β − xβ)−A+u

µ x−α +A−uµ xα
)]

(175)
gauge
∇µ Φu6 = sinψ

2i

[
∂µH(x)(xβ + x−β)

+ i

2(v +H(x))
(
A+u
µ x−α −A−uµ xα +A3u

µ (xβ − x−β) +Bµ tan θ(x−β − xβ)
)]

(176)

where

Hu
56 = − sinψ(v +H(x))

2

(
(v +H(x)) βi

β · β Hi +
√

2 cosψ(xβ + x−β)
)

(177)

Hu
56 = −Hu

65 (178)

where

A+
µ 7→ A+u

µ =
(
ad′U−1(x)Aµ

)+ + i

2v ∂µt
+(x) (179)
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get nonsingular, stationary and axially-symmetric solution in this theory.
The last remarks concern canonical quantum gravity, i.e. loop quantum

gravity, known also as Ashtekar–Lewandowski formalism. The theory is able
to quantize surface area, length of curves and a volume (the so-called quan-
tum geometry). This approach is able to derive Bekenstein–Hawking formula
for a black hole entropy and gives some instants of quantum field theory in a
curved space-time. There are also some important achievements in quantum
cosmology to resolve cosmological singularity. Superstring theory has also
some achievements to derive a formula for black hole entropy.

A−µ 7→ A−uµ =
(
ad′U−1(x)Aµ

)− + i

2v ∂µt
−(x) (180)

A3
µ 7→ A3u

µ =
(
ad′U−1(x)Aµ

)3 + i

2v ∂µt
3(x). (181)

Let us suppose that H = G2. In this case one gets

|β| = |α| =
√

2, |γ| =
√

6,
α · α = β · β = 2, γ · γ = 6,

〈γ, α〉 = 3, 〈γ, β〉 = 〈α, β〉 = −1,
γ1α2 − γ2α1

γ · γ =
√

3
6 ,

θ = 30◦, cos θ =
√

3
2 , sin θ = 1

2 .

(182)

Thus we have (in principle) a lagrangian for a bosonic part of all physical interactions:
gravitation, electro-weak and strong. We have also “interference effects” among all of those
interactions. The lagrangian of fermions can be obtained as multidimensional generaliza-
tion of Dirac lagrangian with multidimensional spinor. The Yukawa coupling can be easily
got after dimensional reduction. In this way we can find equations from Palatini varia-
tional principle, looking for exact solutions of obtained equations. We can expect many
“interference effects” from these solutions, testable in experiments. An interesting point
here is a generalized Kerner–Wong–Kopczyński equation in a case with spontaneous sym-
metry breaking. In particular for a GSW model we get some additional charges coupled
to Higgs’ field. These charges (if they are not zero) can force a test particle to move along
fifth and sixth dimensions (formed a sphere of very small radius). This can be testable
and implicate many physical, technological and philosophical consequences. All of these
mentioned problems are classical (in a meaning of classical field theory). Moreover, we can
indicate a way to quantize a theory. As we mention in the main text, there are two ways.
The first is a canonical quantization in an Ashtekar–Lewandowski-like approach. The sec-
ond is a non-local quantization in an Efimov–Yukawa approach coming to renormalizable
theory of all mentioned interactions. Moreover, we have a possibility of hierarchy of sym-
metry breaking in our geometrical setting, having in mind GUT idea. Moreover, because
gravitational waves seem to exist (in a linearized GR, which means in any valiable theory
of gravity), our gravito-electromagnetic waves in the Nonsymmetric Kaluza–Klein can also
exist in the reality.
Thus we get geometric, unified, non-linear, quantum non-local theory of physical inter-

actions.



202 Conclusions, Remarks and Prospects

The problem of “dark matter” originates from the so-called flat veloc-
ity curve in our Galaxy and also in different spiral galaxies. According to
these results there is missing non-luminous mass in galaxies. Moreover, it is
possible to explain the flat velocity curve using Modified Newtonian Dynam-
ics (MOND) by Milgrom. This dynamics can be derived from scalar-tensor
gravitational theory by Milgrom and Bekenstein. Thus a “dark matter” can
be non-necessary or almost non-necessary. Moreover, we need also a dark
matter in galactic clusters outside galaxies. This problem seems to be solved
also by using alternative theories of gravitation. Thus up to now we can-
not settle the controversy. Probably we need both “dark matter” and an
alternative theory of gravitation. The problem with “dark energy” is more
subtle. We need a cosmological constant in order to explain expansion of
the Universe. The origin of the cosmological constant can be dynamical. It
means, a quintessence — scalar field (or multiplet of scalar fields). Probably
we can merge problems with a “dark matter” with a “dark energy” getting
an alternative theory of gravitation with scalar fields. The solution will be
in this case really holistic. There is a possibility to avoid a “dark energy”
problem (cosmological constant) if we consider inhomogeneous cosmologi-
cal solutions of Einstein equations using Lemaître–Tolman–Bondi models or
even anisotropic Szekeres models as Krasiński, Bolejko, Hellaby and Céléner.

It is important to mention on A. Connes’ noncommutative geometry
and its Standard Model (noncommutative). In noncommutative geometry
we abandon points on a differential manifold and we consider an algebra
of smooth functions which is an Abelian algebra. In terms of the algebra
we can describe all geometrical notions. Let us take a non-Abelian algebra,
e.g. matrix algebra. Now for us an algebra is a fundamental notion (not
manifold). We can formulate geometrical notions in terms of an algebra.
Moreover, we cannot reduce them to some notions defined on a manifold
(such a manifold does not exist). The general definition is as follows. It is a
spectral triple (A,H,D) where A is a C∗-algebra with a representation in the
Hilbert space H, and D is an unbounded operator on H. D has a compact
resolvent and [D, a] is a bounded operator on H, where a is an element of a
dense subalgebra of A. It is possible to construct a Standard Model using
a spectral triple getting Higgs’ field and spontaneous symmetry breaking.
This model has some experimental predictions. However, some of them
are inconsistent with experiment. Someone can introduce noncommutative
Yang–Mills’ fields fields using Moyal brackets and noncommutative gravity.
Quantum groups by S. L. Woronowicz and quantum sphere by P. Podleś are
similar notions. Moreover, a quantum space-time with quantum Poincaré
group can give us some experimental or observational consequences. They
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are so-called rainbow gravities. The curved momentum space by J. Kowalski-
Glikman also results in a rainbow gravity.

Looking backwards onto the 2.5 thousand years of development of the
European philosophy, we are able to see lot of different views. They were
being put forward and then faded away. They were being rediscovered again,
had continued for some time and again get abandoned. However, lot of them
endured, which also might be witnessed for instance in our treatment con-
cerning the geometrization and unification of the fundamental physical in-
teractions. Pythagoras, Plato, Aristotle, Prothagoras, Kant, Leibniz, Engels
or Lenin were advancing such a different philosophical standpoints. This was
due to the fact that they were finding partial truths, but seemed to have dealt
with them as with ultimate truths. The urge of obtaining an ultimate model
of the world, prompted them to look upon their own creations as the accom-
plished laws, building blocks of the philosophical systems embedded around
these partial truths; often presuming that these philosophical systems are
capable of explaining whatever questions one might advance against them.
Their followers in turn were adding the contributions of their own, developing
thus these systems to such a level of sophistication, until they become mutu-
ally contradictory. In spite of all this, the partial truths endured, get refined
and or complemented, have led to the advancement of yet new problems
and the finding still new solutions. In this fashion, philosophy and science
kept advancing and it might well be that this mode of self-transformation
provides the only possible and adequate development pattern. The geom-
etry and unification plus Einstein programme undoubtedly belong to the
thread of this type, so much eager to find the basic principle of the world
— world’s arche. The relationships this approach enjoys with both theoret-
ical and experimental physics, makes it far more scientifically-minded than
was the case of treatment cultivated by Plato or Aristotle. Nonetheless this
contemporary approach generously adopts the valuable ideas inherited after
ancient philosophers, including Plato, Pythagoras, Aristotle plus the tradi-
tion of Scholasticism, complemented suitably even by the ones belonging to
a tradition of the philosophies of the East. The programme of unification
and geometrization provides an answer to a question: what does constitute
a principle of the world, its arche? This is geometry. (It is interesting to
mention that after more than 2500 years after Thales3 we get a Standard

3Thales of Miletus (c. 624 – c. 546 BC) is considered as the first philosopher. Moreover,
it seems that the first philosopher was Gilgamesh (Epic of Gilgamesh), the Second Dynasty
ruler of Lagash (Uruk) (2144–2124 BC). Gilgamesh by no means is a historical personality,
a Summerian king (lugal) of Uruk (Summerian Unug). In this way he is one of the first
kings in the history of the human culture known from his name. Simultaneously he is
a king of the first nation in human culture known from its name (Summerian — “black
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Model (SM) of fundamental interactions which can be geometrized in lines
described here.) One has to find it out and later it out and later be able to
respond the questions which would follow, plus check them experimentally.
Looking back onto the development of philosophy we see that a need of hav-
ing an overall all-encompassing system was universally encountered. Only
the methods and the aspirations striven for were again and again different.
At present the goals one tries to achieve are tremendously ambitious, even
extremely so. All this results from the fact that a situation was reached,
where we possess a lot of partial truths. The urge which keeps a human
being searching for such an overall synthesis, a drive toward finding that
ultimate principle of the world, seems to constitute a very characteristic fea-
ture of the human mind. This property probably results from the fact that
we live in the so called cultural reality, that is, as R. Ingarden (Ingarden
1998) had put it — in a quasi-reality. Just by reproducing this quasi-reality
we are urged to answer still new and newer questions, extending thus the ap-
plicability range of partial truths. In this fashion the quasi-reality is evolving
and becomes still closer to an objective reality. This last claim constitutes
of course also a certain philosophical thesis per se, one which we could at-
tribute as e.g. the viewpoint maintained by scientific materialism advocated
for instance by W. Krajewski. On the other hand, we have to keep in mind,
recalling again the history of the human thought, that there might occur the
case of the so called “contact points of the principal oppositions”. This is to
be understood in such a way that any pair of philosophical systems, in spite
of being in principle contradictory (or even constituting mutually exclusive
solutions) could possess very similar partial solutions and partial truths. In
this fashion e.g. materialism might be enriched by Thomism and vice versa.
The passage from one system to another, with jumps from a contradiction

heads”). Due to his very important achievements during the reining he was deificated after
his death. After that he became an hero of the Epic of Gilgamesh. In this Epic except
many adventures of Gilgamesh, his friend Enkidu, a fight with Humbaba (Huwawa) and
influences of gods and goddesses (Innane–Ishtar) there are a lot of philosophical reflections.
In this way Gilgamesh started to be a philosopher, to be “He who Saw the Deep” and “He
Sees the Unknown”. Simultaneously these philosophical reflections are connected to an old
dream of all mankind — to be immortal and forever young. Gilgamesh (as an hero of the
Epic) is a son of the goddess Ninsun and the halfgod Lugalbanda. Thus he is not a full
god, he must die. He is looking for immortality despite the fact he knows that gods want
immortality only for themselves, not for humans. Eventually he failed in his efforts. He
obtained some advices what to do. They are: “Be happy of all of these you have, you will
never be immortal”. During my classes on philosophy with my students we agreed that
Gilgamesh got some kind of immortality. It passed about five thousand years and we still
are taking and discussing about him. However this immortality has nothing to do with the
immortality he wanted to get. In some sense we can consider him as a first philosopher
with a distinction from religio-philosophical gnosis.
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to yet another one, seems to fit into the pattern of philosophy development
sketched above. The role of practice (praxis), to be understood either in
dialectic way or quite pragmatically is therefore rightfully emphasized here.

Philosophy is apodictic and thus always takes the partial truths as the
all-encompassing and the ultimate ones. This explains why the history of
science and the history of philosophy seems to assume that much importance
whenever we try to comprehend the sense of what is observed today in
contemporary physics.

To conclude, let us notice also that physics4 (and hence the philoso-
4Physics is the most fundamental of all natural sciences. Since 1928 (after the invention

of the Dirac equation) chemistry started to be applied physics. On the molecular level there
is no difference between chemistry and physics. There is only physics. Quantum chemistry
(or even relativistic quantum chemistry) is still applied quantum mechanics. Biochemistry
and molecular biology (in simulations) are also reduced to quantum or classical physics in
molecular dynamics (QMD, MD).
In simulations we are using several well established methods. One of them is Car–

Parinello method (Car–Parinello dynamics). The lagrangian of electrons and nuclei are
given as follows:

L = 1
2

(∑
i

~̇R2
i +m ·

∑
j

dr |ψj(r, t)|2
)
− V

(
{ψ̇j}, {~Ri}

)
where V

(
{ψj}, {~Ri}

)
is a Kohn–Sham energy density functional and ψj are electron wave

functions (orbitals). Equation of motion are obtained by a variational principle with
respect to ψj and ~Ri (nuclei positions) supposing orthogonality of ψi. The Car–Parinello
method is a generalization of Born–Oppenheimer approximation.
From this point of view on the molecular level there is no difference between physics,

(bio)chemistry, biology or medicine (human biology). There is only physics. This seems to
be a reduction. Moreover, this is a holistic type of reduction. Biological identities (cells,
organella) can be considered as molecular machines governed by laws of quantum mechan-
ics with some supposed interacting potentials. Such molecular machines can be simulated
by using existing computer programmes. In this way we can simulate fundamental life
processes on a molecular level: DNA replication, RNA synthesis and protein synthesis
via simulated gene’s expression. We can also simulate a full cell of existing bacterium
(Mycobacterium (Mycoplasma) genitalium), however with smaller number of genes (100 in
place of 300 of the original bacterium). Many known life processes in higher organisms
can also be simulated. In the case of a single bacterium cell we can see in simulations all
important life processes as: gene’s expression (from a genom of bacterium), DNA to RNA
translation, protein synthesis and transport, also a death or replication of a bacterium cell.
We can see in simulations a bacterium genom replication. This is of course in silico.

If we want to prove our theory we should synthetize a bacterium cell in vitro. Up to
now we can do it only using existing “parts” of a living cell. We can also synthetize
artificial chromosomes. The reduction of life processes to physics seems to be proved.
Moreover, it is a holistic reduction. In the case of an evolution on the molecular level we
suspect several physical processes important in contemporary organism, e.g. an origin of
chirality of proteins, which can be connected to polarization of β-decays electrons (parity
breaking in GSW model). Moreover, an evolution of organisms on the Earth can be
described by RNA-systems (RNA-life) afterwards DNA, RNA, also PNA, protein systems
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which can be simulated using molecular-like dynamics. Evolution on higher level (i.e. with
living cells) can be also modeled using some elementary (physical) processes. A very
important problem appears for extremophiles (e.g. Archea) and their metalloenzymes with
heavy metals group. This problem is connected to relativistic effects (relativistic quantum
chemistry). Are these relativistic effects important for a function of these enzymes? If
so, an evolution (in a known sense) cannot be proceeded without relativistic effects. This
is really interesting. In this way physics can (in principle) explain life processes and also
evolution of organisms. There is also a very difficult and interesting problem, a problem of
consciousness. According to evolutionary ideas an intelligence (a human intelligence) and
also a consciousness is a product of the evolution. However, we still do not understand a
consciousness from physical point of view.
This is a problem similar but more complicated to other physiological processes in higher

organisms. One of the interesting solutions to this problem is a consideration of conscious-
ness as a macroscopic quantum phenomenon. We know several macroscopic quantum
phenomena: superconductivity and superfluidity. They are described by one wave func-
tion (a wave function of a superfluid or a wave function of a superconductor). These wave
functions are quantum states electrical-magnetic properties of a superconductor, or fluid
properties of a superfluid. Everybody sees a piece of a superconductor without properties
known from the book by G. Gamow Mr. Tompkins in Wonderland (Gamow 1940) (I mean
here billiard balls), because superconductivity does not concern mechanical properties of
a piece of the superconductor. In this way consciousness described by one quantum state
has nothing to do with mechanical properties of a brain. The brain need not be a billiard
ball from the mentioned book by G. Gamow. The macroscopic quantum phenomenon
described by a wave function (by a quantum state) — consciousness can be lost in a deco-
herence process. In this way we loose consciousness. In this way physics can be employed
even in psychology.
Let us consider the following interesting problem: Is a Standard Model (SM) able to

cover all the physical reality on the Earth or not? It seems it is. Why? We consider SM
as a Quantum Field Theory (renormalizable) describing all physical interactions except
gravity. Due to the Bethe–Salpeter equation we can apply SM in Atomic, Molecular, Solid
State Physics and in Quantum Chemistry (via reduction of SM to Quantum Mechanics
with electromagnetic interactions). We can neglect weak and strong interactions in men-
tioned branches of physics. This achievement has been beautifully described in Slater’s
book Quantum Theory of Matter and in full in many volume work on Quantum Theory of
Atom, Quantum Theory of Molecules, Quantum Theory of Metals, Semiconductors, Isola-
tors, Dielectrics, Chemical Bonds, and so on, i.e. Quantum Theory of Atomic Structure,
Quantum Theory of Molecules and Solids, vol. 1: Electronic Structures of Molecules, vol. 2:
Symmetry and Energy Bands of Crystals, vol. 3: Insulators, Semiconductors and Metals,
vol. 4: The Self-Consistent Field for Molecules and Solids, Solid-State and Molecular The-
ory. A Scientific Biography (Slater 1968, 1966, 1975, 1963–74). In this way we can (in
principle) obtain macroscopic properties of solid state materials, liquids, gases.
There are some experimental results from LHC which if confirmed will be a signature

of new interactions of TeV scale. Moreover, it does not change our conclusions of a power
of SM to describe physical reality of the Earth. This is a triumph of SM.
Using SM we can get also Nuclear Physics (in principle) from QCD and many properties

of nuclear models and nuclei. The theory of quarks and gluons can (in principle) explain
Nuclear Physics (with additional simplifications). Thus SM (via Quantum Mechanics) can
explain several macroscopic theories: elasticity, plasticity, and also optics. The last theory
is quite easily obtained from QED with ingredients from quantum solid state physics. The
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quantum optics is the greatest achievement of these investigations.
Thus we get from SM also such macroscopic theories as thermoelasticity, rheology, mag-

netic properties of macroscopic materials, magnetooptics, dynamics of polymers. Mean-
time we use Ehrenfest theorems to get from Schrödinger equations (or Dirac) Newtonian
(or relativistic) equations of motion and also statistical mechanics. In this way we get
foundations of engineering.
The applications of SM with ingredients of GR are also very important. Thus as our

conclusion we can say SM+GR explains (in principle) all physical phenomena. It does not
mean that science has been finished. In some sense this is not end, this really a beginning,
because we go in the right direction.
Moreover, we have the following problem: our world (and also we as a mankind) is

classical (from the point of view of classical physics). SM is a quantum theory. Thus we
need a transition from quantum world to classical world. This gives us a decoherence.
Roughly speaking, this is obtained in the following way. The whole Universe is described
by one wave function (one quantum state), say |Ψ〉. This quantum state is a projector
|Ψ〉〈Ψ| = ρu. In this way we have ρu — density matrix of the whole Universe. Now we
divide the degrees of freedom of the Universe into three parts:

1◦ environment
2◦ object
3◦ observer

with corresponding hamiltonians He, Hobj, Hobs and corresponding ρ-matrices ρe, ρobj,
ρobs. We have also interaction hamiltonians Hint1, Hint2, Hint3 and so on. Every of the
considered ρ-matrices is a trace of ρu with respect to the remaining degrees of freedom
from whole Universe. In this way after some simplification and additional assumptions
concerning hamiltonians we get a master equation for ρobj, which in a locality limit (not
memory) can be reduced to Lindblad–Kossakowski equation. In this equation we can see
decoherence for ρobj. This means that the off-diagonal elements of ρobj go to zero. If ρobj
is finite-dimensional we see also that diagonal elements of ρobj are going to the limit 1

N
,

where N is the dimension of ρobj. Let us notice the following fact. Even if we have a
decoherence we can still have entanglement (as in a classical Aspect experiment).
The problem of Lorentz invariance of decoherence is still under investigations. The same

problem to include GR (or any relativistic theory of gravitation). In this way our world is
classical (in the sense of non-quantum physics). Moreover, our methodology to quantize
our classical theories is different. We are using classical field theory describing physical
interactions and afterwards we quantize these theories using several prescriptions which
we mention in the main text. The geometrization of the classical theories, it means, to
use as an arche a geometry, can help to find a right classical theory to be quantized.
In this way the Standard Model (SM) can explain all physical phenomena (natural phys-

ical reality) on the Earth including chemistry, biochemistry, molecular biology, chemical
and biological evolution and even intelligence and psychology of consciousness, which we
mention above. It is interesting to mention that we should work with quantum information
theory (also in the relativistic case).
Even the scheme described above seems to be a reductionist scheme, the holistic aspects

are evident, because in order to get properties e.g. of solids from Quantum Theory we
suppose many holistic ingredients.
This is of course a truism, but geology, climatology, meteorology, planetology etc. can be

reduced to physics. We have here only some computational problems to apply microphysics
to physics of clouds, rains, snows, rivers, seas and oceans. We have several aspects of
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phy of physics, too) plays a certain culture-advancing role. Great problems
of physics become problems of an overall human culture, being involved
into the process of reproducing the reservoir of the cultural quasi-reality in
R. Ingarden’s casting, just referred to above. In this fashion the role of the
philosophy of physics within the framework of an overall human culture is
substantially greater than the one played by either philosophy of science or
by physics alone. In this way philosophy is the highest wisdom.

Let us give some historical remarks. In the history of philosophy we have
several periods. Some of them are critical periods, some of them are periods
of great philosophical systems. Now we are after a critical period. Maybe
in a next future in XXI century some great philosophical systems would
be created. The role of physics in such systems will be very important.
Moreover, this is only a historical remark.

There are some prospects for further research. They consist in finding
a place of a geometrization and unification of fundamental physical interac-
tions with holistic ingredients in a realistic philosophical phenomenology by
R. Ingarden. However this achievement should be preceded by an introduc-
tion of Quantum World to philosophical phenomenology as we sketched in
the Introduction (A. Szczepański’s criticism). A similarity between a con-
struction of an aesthetic object in R. Ingarden’s aesthetics and a process of
measurement in Quantum Mechanics can help in the problem.

What is the ontological status of our unification and geometrization?
It is easy to see that someone can say this philosophy is materialistic. It
means, in the old controversy: what is first, a matter or a spirit, it says:
a matter is first. Why? It is easy to see that we reduce anything to physics,
to physical world, which is strictly materialistic. It means, three types of
beings from the classifications of beings by W. Krajewski have been reduced
to space-time beings. Moreover, this is not an end of the reduction. Our
“arche” of the world is a geometry (multidimensional geometry with some
holistic ingredients). A space-time is a conclusion of a geometry. All space-
time beings are emerging from a geometry and also via them remaining
types of beings. This means that our conception is idealistic (in the sense of
Plato, matter in this philosophy is an illusion, Maya). Simultaneously this
philosophy is monistic. This is a geometrical monism. Someone can call the
geometry a new kind of matter, but this is not necessary.

atmospheric physics, which can cover climate changes going to physics of climate. In all of
these case of applications we need many holistic assumptions. However, the geometry and
unification of fundamental interactions are absent on this level of investigations. Moreover,
we should remember the origin of classical physics we applied here. Thus the overall picture
of all natural phenomena seems to be coming from a geometrization and unification of
fundamental physical interactions with holism.
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