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Abstract

The adaptive rejection sampling (ARS) algorithm is a universal
random generator for drawing samples efficiently from a univariate
log-concave target probability density function (pdf). ARS generates
independent samples from the target via rejection sampling with high
acceptance rates. Indeed, ARS yields a sequence of proposal functions
that converge toward the target pdf, so that the probability of accepting a
sample approaches one. However, sampling from the proposal pdf becomes
more computational demanding each time it is updated. In this work, we
propose a novel ARS scheme, called Cheap Adaptive Rejection Sampling
(CARS), where the computational effort for drawing from the proposal
remains constant, decided in advance by the user. For generating a large
number of desired samples, CARS is faster than ARS.

keyword: Monte Carlo methods; Rejection Sampling; Adaptive
Rejection Sampling

1 Introduction

Random variate generation is required in different fields and several applications,
such as Bayesian inference and simulation of complex systems [Devroye, 1986,
Hörmann et al., 2003, Robert and Casella, 2004, Luengo and Martino, 2012].
Rejection sampling (RS) [Robert and Casella, 2004, Chapter 2] is a universal
sampling method which generates independent samples from a target probability
density function (pdf). The sample is either accepted or rejected by an adequate
test of the ratio of the two pdfs. However, RS needs to establish analytically a
bound for the ratio of the target and proposal densities.

Given a target density, the adaptive rejection sampling (ARS) method [Gilks
and Wild, 1992, Gilks, 1992] produces jointly both a suitable proposal pdf and
the upper bound for the ratio of the target density over this proposal. Moreover,
the main advantage of ARS is that ensures high acceptance rates, since ARS
yields a sequence of proposal functions that actually converge toward the target
pdf when the procedure is iterated. The construction of the proposal pdf is

1



obtained by a non-parametric procedure using a set of support points (nodes),
with increasing cardinality. When a sample is rejected in the RS test, it is added
to the set of support points. One limitation of ARS is that it can be applied
only with (univariate) log-concave target densities.1 For this reason, several
extensions have been proposed [Hörmann, 1995, Hirose and A.Todoroki, 2005,
Evans and Swartz, 1998, Görür and Teh, 2011, Martino and Mı́guez, 2011],
even mixing with MCMC techniques [Gilks et al., 1995, Martino et al., 2013,
2015a]. A related RS-type method, automatic but non-adaptive, that employs a
piecewise constant construction of the proposal density obtained with a pruning
of the initial nodes, has been suggested in [Martino et al., 2015b]. Another
variant has been provided in [Martino, 2017].

In this work, we focus on the computational cost required by ARS. The
ARS algorithm obtains high acceptance rates improving the proposal function,
which becomes closer and closer to target function. Hence, this enhancement
of the acceptance rate is obtained building more complex proposals, which
become more computational demanding. The overall time of ARS depends on
both the acceptance rate and the time required for sampling from the proposal
pdf. The computational cost of ARS remains bounded since the probability of
updating the proposal pdf, Pt, vanishes to zero as the number of iterations t
grows. However, for a finite t, there is always a positive probability Pt > 0 of
improving the proposal function, producing an increase of the acceptance rate.
This enhancement of the acceptance rate could not balance out the increase of
the time required for drawing from the new updated proposal function. Namely,
if the acceptance rate is enough close to 1, a further improvement of the proposal
function could become prejudicial.

Thus, we propose a novel ARS scheme, called Cheap Adaptive Rejection
Sampling (CARS), employing a fixed number of nodes, i.e., the computational
effort required for sampling from the proposal remains constant, selected in
advance by the user. The new technique is able to increase the acceptance rate
on-line in the same fashion of the standard ARS method, improving adaptively
the location of the support points. The configuration of the nodes converges to
the best possible distribution which maximizes the acceptance rate achievable
with a fixed number of support points. Clearly, the maximum obtainable
acceptance rate with CARS is always smaller than 1, in general. However,
for large value of required samples, the CARS algorithm is faster than ARS
for generating independent samples from the target, as shown the numerical
simulations.

1The possibility of applying ARS for drawing for multivariate densities depends on the
ability of constructing a sequence of non-parametric proposal pdfs in higher dimensions.
See, for instance, the piecewise constant construction in [Martino et al., 2015a] as a simpler
alternative procedure.
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2 Adaptive Rejection Sampling

We denote the target density as

π̄(x) =
1
cπ
π(x) =

1
cπ

exp
(
V (x)

)
, x ∈ X ⊆ R, (1)

with V (x) = log[π(x)] and cπ =
∫
X π(x)dx. The adaptive proposal pdf is

denoted as
q̄t(x) =

1
ct
qt(x), (2)

where ct =
∫
X qt(x)dx, and t ∈ N. In order to apply rejection sampling (RS), it

is necessary to build qt(x) as an envelope function of π(x), i.e.,

qt(x) ≥ π(x), or Wt(x) ≥ V (x), (3)

where Wt(x) = log[qt(x)], for all x ∈ X and t ∈ N. As a consequence, it is
important to observe that

ct ≥ cπ, ∀t ∈ N. (4)

Let us assume that V (x) = log π(x) is concave, and we are able to evaluate the
function V (x) and its first derivative V ′(x).2 The adaptive rejection sampling
(ARS) technique [Gilks, 1992, Gilks and Wild, 1992] considers a set of support
points at the t-th iteration,

St = {s1, s2, . . . , smt} ⊂ X , (5)

such that s1 < . . . < smt and mt = |St|, for constructing the envelope function
qt(x) in a non-parametric way. We denote as wi(x) as the straight line tangent
to V (x) at si for i = 1, . . . ,mt. Thus, we can build a piecewise linear function,

Wt(x) = min[w1(x), . . . , wmt(x)], x ∈ X . (6)

Hence, the proposal pdf defined as q̄t(x) ∝ qt(x) = exp(Wt(x)), is formed by
exponential pieces in such a way that Wt(x) ≥ V (x), so that qt(x) ≥ π(x),
when V (x) is concave (i.e., π(x) is log-concave). Figure 1 depicts an example
of piecewise linear function Wt(x) built with mt = 3 support points.

Table 1 summarizes the ARS algorithm for drawing N independent samples
from π̄(x). At each iteration t, a sample x′ is drawn from q̄t(x) and accepted with
probability π(x′)

qt(x′)
, otherwise is rejected. Note that a new point is added to the

support set St whenever it is rejected in the RS test improving the construction
of qt(x). Clearly, denoting as T the total number of iterations of the algorithm,
we have always T ≥ N since several samples are discarded.

2The evaluation of V ′(x) is not strictly necessary, since the function qt(x) can also construct
using a derivative-free procedure (e.g., see [Gilks, 1992] or the piecewise constant construction
in [Martino et al., 2015a]). For the sake of simplicity, we consider the construction involving
tangent lines.
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Figure 1: Example of construction of the piecewise linear function Wt(x) (black
line) with mt = 3 support points, such that Wt(x) ≥ V (x) (where V (x) is shown
in blue line). The support points, s1, s2 and s3 are depicted with circles.

Table 1: Adaptive Rejection Sampling (ARS) algorithm.
Initialization:

1. Set t = 0 and n = 0. Choose an initial set S0 = {s1, . . . , sm0}.

Iterations (while n < N):

2. Build the proposal qt(x), given the set of support points St =
{s1, . . . , smt}, according to Eq. (6).

3. Draw x′ ∼ q̄t(x) ∝ qt(x) and u′ ∼ U([0, 1]).

4. If u′ > π(x′)
qt(x′)

, then reject x′, update

St+1 = St ∪ {x′},

and set t = t+ 1. Go back to step 2.

5. If u′ ≤ p(x′)
πt(x′)

, then accept x′, setting xn = x′.

6. Set St+1 = St, t = t+ 1, n = n+ 1 and return to step 2.

Outputs: The N accepted samples x1, . . . , xN .

3 Computational cost of ARS

The computational cost of an ARS-type method, in a specific iteration t,
depends on two elements:
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1. The number of samples accepted in RS test (averaged over different runs),
i.e., the acceptance rate.

2. The computational effort required for sampling from qt(x).

We desire that the acceptance rate is close to 1 and, simultaneously, that the
spent time required for drawing from qt(x) is small. In general, there exists a
trade-off since an increase of the acceptance rate requires the use of a more
complicated proposal density qt(x). ARS is an automatic procedure which
provides a possible compromise. Below, we analyze some important features
of a standard ARS scheme.

3.1 Acceptance rate

The averaged number of accepted samples, i.e., the acceptance rate, is

ηt =
∫

π(x)
qt(x)

q̄t(x)dx =
cπ
ct
, (7)

that is 0 ≤ ηt ≤ 1 since ct ≥ cπ, ∀t ∈ N, by construction. Note that in an ARS
scheme, ηt varies from a realization to other since ct is different due to the set
St and, as a consequence, qt are randomly constructed at each run.3 Defining
the L1 distance between πt(x) and p(x) as

D(qt, π) = ‖qt(x)− π(x)‖1 =
∫
X
|qt(x)− π(x)|dx, (8)

ARS ensures that D(qt, π) → 0 when t → ∞, and as a consequence ct → cπ.
Thus, ηt tends to one as t→∞. Indeed, as ηt → 1, ARS becomes virtually an
exact sampler after a some iterations.

3.2 Drawing from the proposal pdf

Let us denote the exponential pieces as

hi(x) = ewi(x), i = 1, . . . , N, (9)

so that

qt(x) = hi(x), for x ∈ Ii = (ei−1, ei], i = 1, . . . , N,

where ei is the intersection point between the straight lines wi(x) and wi+1(x),
for i = 2, . . . , N−1, and e0 = −∞ and eN = +∞ (if X = R). Thus, for drawing
a sample x′ from q̄t(x) = 1

ct
qt(x), we need to:

3In the following, we denote as E[ηt] the acceptance rate, at the t-th iteration, averaged
over several (theoretically infinite) runs.
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1. Compute analytically the area Ai below each exponential piece, i.e.,
Ai =

∫
Ii hi(x)dx and obtain the normalized weights

ρi =
Ai∑N
n=1An

=
Ai
ct
, (10)

where we have observed that ct =
∑N
n=1An =

∫
X qt(x)dx.

2. Select an index j∗ (namely, one piece) according to the probability mass
ρi, i = 1, . . . , N .

3. Draw x′ from hj∗(x) restricted within the domain Ij∗ = (ej∗−1, ej∗ ], and
zero outside (i.e., from a truncated exponential pdf).

Observe that, at step 2, a multinomial sampling is required. It is clear that the
computational cost for drawing one sample from qt(x) increases as the number of
pieces grows or, equivalently, the number of support points grows. Fortunately,
the computational cost in ARS is automatically controlled by the algorithm,
since the probability of adding a new support point

Pt = 1− ηt =
1
ct
D(qt, π), (11)

tends to zero as t → ∞, since the distance in Eq. (8) vanishes to zero, i.e.,
D(qt, π)→ 0.

4 ARS with fixed number of support points

We have seen that the probability of adding a new support point Pt vanishes
to zero as t→∞. However, for a finite t, we have always a positive probability
Pt > 0 of adding a new point (although small), so that a new support point
could be incorporated producing an increase of the acceptance rate. After a
certain iteration τ , i.e., t > τ , this improvement of the acceptance rate could
not balance out the increase of the time required for drawing from the proposal,
due to the addition of the new point. Namely, if the acceptance rate is enough
close to 1, a further addition of a support point could slow down the algorithm,
becoming prejudicial.

In this work, we provide an alternative adaptive procedure for ARS, called
Cheap Adaptive Rejection Sampling (CARS), which uses a fixed number of
support points. When a sample is rejected, a test for swapping the rejected
sample with the closest support point within St is performed, so that the total
number of points remains constant. Unlike in the standard ARS method, in
the new adaptive scheme the test is deterministic. The underlying idea is based
on the following observation. The standard ARS algorithm yields a decreasing
sequence of normalizing constants {ct}t∈N of the proposal pdf converging to
cπ =

∫
X π(x)dx, i.e.,

c0 ≥ c1 . . . ≥ ct . . . ≥ c∞ = cπ. (12)
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Clearly, since the acceptance rate is ηt = cπ
ct

this means that ηt → 1. In
CARS, we provide an alternative way for producing this decreasing sequence of
normalizing constants {ct}. Indeed, an exchange between two points is accepted
if it produces a reduction in the normalizing constant of the corresponding
proposal pdf. More specifically, consider the set

St = {s1, s2, . . . , sM},

contained M support points. When a sample x′ is rejected in the RS test, the
closest support point s∗ in St is obtained, i.e.,

s∗ = arg min
si∈St

|si − x′|.

We recall that we denote with qt(x) the proposal pdf built using St and with ct
its normalizing constant. Then, we consider a new set

G = St ∪ {x′}\{s∗}, (13)

namely, including x′ and removing s∗. We denote with g(x) the proposal built
using the alternative set of support points G, and cg =

∫
X g(x)dx. If

cg < ct,

then the swap is accepted, i.e., we set St+1 = G for the next iteration, otherwise
the set remains unchanged, St+1 = St. The complete algorithm is outlined
in Table 2. Note that ct is always computed (in any case, for both ARS and
CARS) at the step 3, for sampling from qt(x). Furthermore observe that, after
the first iteration, step 2 can be skipped since the new proposal pdf qt+1(x) has
been already constructed in the previous iteration, i.e., qt+1(x) = qt(x), or at
step 4.3, i.e., qt+1(x) = g(x).

Therefore, with the CARS algorithm, we obtain again a decreasing sequence
of {ct}t∈N

c0 ≥ c1 . . . ≥ ct . . . ≥ c∞,

but c∞ 6= cπ so that ηt → η∞ < 1, in general. The value η∞ is the highest
acceptance rate that can be obtained with M support points, given the target
function π(x). Therefore, CARS yields a sequence of sets S1, . . . ,St, . . . that
converges to the stationary set S∞ containing the best configuration of M
support points for maximizing the acceptance rate, when the target function
is π(x) and given a specific construction procedure for the proposal qt(x).4

In Table 2, the possibility of changing the current set St is given only
if x′ is rejected in the RS test. Namely, only a subset of all the generated
samples x′ from the proposal q̄t are considered as a possible new support point.
However, sampling and adaptation could be completely divided. For instance,
the alternative proposal pdf g(x) could be constructed (and then cg could

4The best configuration S∞ depends on the specific construction procedure employed for
building the sequence of proposal functions q1, q2 . . . , qt, . . .
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Table 2: Cheap Adaptive Rejection Sampling (CARS) algorithm.
Initialization:

1. Set t = 0 and n = 0. Choose a value M and an initial set
S0 = {s1, . . . , sM}.

Iterations (while n < N):

2. Build the proposal qt(x), given the current set St, according to Eq.
(6) or other suitable procedures.

3. Draw x′ ∼ q̄t(x) ∝ qt(x) and u′ ∼ U([0, 1]).

4. If u′ > π(x′)
qt(x′)

, then reject x′ and:

4.1 Find the closest point s∗ in St,

s∗ = arg min
si∈St

|si − x′|.

4.2 Build the alternative proposal g(x) based on the set of points

G = St ∪ {x′}\{s∗}

and compute cg =
∫
X g(x)dx.

4.3 If cg < ct, set St+1 = G, otherwise, if cg ≥ ct, set St+1 = St. Set
t = t+ 1 and go back to step 2.

5. If u′ ≤ p(x′)
πt(x′)

, then accept x′, setting xn = x′.

6. Set St+1 = St, t = t+ 1, n = n+ 1 and return to step 2.

Outputs: The N accepted samples x1, . . . , xN .

be computed) considering any sample x′ generated by q̄t(x) at Step 3 of the
algorithm (not only the rejected ones). In this case, Steps 4.1, 4.2, 4.3 of Table
2 would be performed at each iteration, so that the corresponding algorithm
would be probably slowed down with respect to version of CARS described in
Table 2.
About the choice of M . The user can choose the number of nodes M
according to the available computational resources. Note that, when M grows,
the computational effort for sampling from q̄t(x) increases but, at the same time,
a greater acceptance rate can be obtained. This trade-off explains the possible
existence of an optimal value M∗, as shown in Figure 4(b). The optimal value
M∗(when exists) depends on the target pdf and the capability of the employed
processor/machine.
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5 Numerical simulations

In order to show the capability of the novel technique, we compare the
performance the standard ARS and CARS methods consider two well-known
log-concave target densities, Gaussian and Gamma pdfs, as typical examples of
log-concave, symmetric and skewed distributions, respectively.

5.1 Gaussian distribution

We consider a Gaussian density as (typical) log-concave target pdf and test both
ARS and CARS. Namely, we consider

π̄(x) ∝ π(x) = exp
(
− x2

2σ2

)
, x ∈ R,

with σ2 = 1
2 . We compare ARS and CARS in terms of the time required for

generating N ∈ {5000, 10000, 50000} samples. In all cases and both techniques,
we consider a initial set of support points S0 = {s1, . . . , sm0} with cardinality
m0 = |S0| ∈ {3, 5, 10} (clearly, M = m0 in CARS) where the initial points are
chosen uniformly in [−2, 2] at each simulation, i.e., si ∼ U([−2, 2]).5

We run 500 independent simulations for each case and compute the required
time for generating N samples (using a Matlab code), the averaged number
of final support points (denote as E[mT ]) and the acceptance rate reached in
the final iteration (denoted as E[ηT ]; averaged over the 500 runs), for both
techniques. Table 3 shows the results. The time is normalized with respect to
(w.r.t.) the time spent by ARS with N = 5000, m0 = |S0| = 3. The results show
that CARS is always faster than ARS. We can observe that both methods obtain
acceptance rates close to 1. CARS reaches acceptance rates always greater of
0.87 using only 3 nodes. CARS obtains an acceptance rate E[ηT ] more than 0.98
employing only 10 nodes and after generating N = 5000 independent samples.
Fig. 2 depicts the spent time, the final acceptance rate and the final number
of nodes, as function of number N of generated samples. We can observe that
CARS is significantly faster than ARS when N grows, owing to ARS yields
a sensible increase of the number of support points that corresponds to an
infinitesimal increase of the acceptance rate, whereas in CARS the number of
nodes remains constant. Figure 3 shows a sequence of proposal pdfs constructed
by CARS, using 3 nodes and starting with S0 = {−1.5,−1, 1.8}. The L1

distance D(qt, π) is reduced progressively and the acceptance rate improved.
The final set of support point is St = {−1.0261,−0.0173, 1.0305}, close to the
optimal one S∞ = {−1, 0, 1}.

5Clearly, the configurations of either all negative or all positive are discarded since they
yield improper proposal pdf by construction.
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Table 3: Results as function of the desired number of samples N and the
cardinality |S0| of the initial set of support points S0. We show the normalized
spent time, the averaged final number of support points, E[mT ], and the
averaged final acceptance rate, E[ηT ].

Scheme N |S0| = 3 |S0| = 5 |S0| = 10

ARS 5000
Time=1 Time=0.9709 Time=0.9801

E[ηT ] = 0.9942 E[ηT ] = 0.9945 E[ηT ] = 0.9952
E[mT ] = 32.36 E[mT ] = 32.69 E[mT ] = 34.17

CARS 5000
Time=0.9599 Time=0.9477 Time=0.9694
E[ηT ] = 0.8721 E[ηT ] = 0.9224 E[ηT ] = 0.9556
E[mT ] = M = 3 E[mT ] = M = 5 E[mT ] = M = 10

ARS 10000
Time=2.2843 Time=1.9862 Time=1.9983
E[ηT ] = 0.9963 E[ηT ] = 0.9964 E[ηT ] = 0.9968
E[mT ] = 40.60 E[mT ] = 41.09 E[mT ] = 42.16

CARS 10000
Time=1.9716 Time=1.7311 Time=1.8969
E[ηT ] = 0.8784 E[ηT ] = 0.9350 E[ηT ] = 0.9631
E[mT ] = M = 3 E[mT ] = M = 5 E[mT ] = M = 10

ARS 50000
Time=11.2196 Time=11.2887 Time=11.7599
E[ηT ] = 0.9987 E[ηT ] = 0.9987 E[ηT ] = 0.9988
E[mT ] = 68.63 E[mT ] = 69.56 E[mT ] = 70.09

CARS 50000
Time=8.7756 Time=8.4322 Time=9.0704
E[ηT ] = 0.8855 E[ηT ] = 0.9540 E[ηT ] = 0.9861
E[mT ] = M = 3 E[mT ] = M = 5 E[mT ] = M = 10

5.2 Gamma distribution

In this section, we consider a Gamma density

π̄(x) ∝ π(x) = xr−1 exp
(
−x
a

)
, x ∈ R,

with r = 2 and a = 2. In all the experiments, we consider an initial set of support
points S0 = {s1 = 0.01, . . . , si, . . . , sm0 = 4} with cardinality m0 = |S0|, where
si ∼ U([0, 4]), with i = 2, . . . ,m0 − 1. Recall that M = m0 in CARS. We
consider different number of desired samples N ≥ 5, and compute the spent
time, the averaged number of final support points (denote as E[mT ]) and the
acceptance rate reached in the final iteration (denoted as E[ηT ]) averaged over
the 500 independent runs.

Figure 4(a) shows the averaged time spent by ARS (with m0 = 10) and
CARS (with M = 10) as function of the desired number N samples. All the
values are normalized w.r.t. the time obtained by CARS with N = 104. Figure
4(b) provides the averaged time values (fixing N = 105) required by CARS as
function of M (normalized w.r.t. the value obtained by CARS with M = 3). We
can observe that the time variation is small. However, it seems that an optimal
value M∗ exists around M = 6. Figures 5 show the averaged final acceptance
rate and final number of nodes in log-log-scale, with m0 ∈ {3, 10}.

We can observe the number of nodes in the standard ARS increases withe the
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same speed regardless the initial value m0. Furthermore, CARS with M = 10
virtually obtains the same curve of acceptance rate than the corresponding
standard ARS. We see again that CARS is faster than ARS when N grows,
owing to ARS yields a sensible increase of the number of support points that
corresponds to an infinitesimal increase of the acceptance rate, whereas in CARS
the number of support points remains constant.

6 Conclusions

In this work, we have introduced a novel ARS scheme, the Cheap Adaptive
Rejection Sampling (CARS), which employs a fixed number of nodes for the
construction of the non-parametric proposal density. As a consequence, the
computational effort required for sampling from the proposal remains constant,
selected in advance by the user. The new technique is able to increase the
acceptance rate on-line in the same fashion of the standard ARS method,
improving adaptively the location of the support points. The numerical
experiments have shown that, in order to generate a large number of desired
samples, CARS is faster than ARS.
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W. Hörmann. A rejection technique for sampling from T-concave distributions.
ACM Transactions on Mathematical Software, 21(2):182–193, 1995.

H. Hirose and A.Todoroki. Random number generation for the generalized
normal distribution using the modified adaptive rejection method.
International Information Institute, 8(6):829–836, March 2005.

M. Evans and T. Swartz. Random variate generation using concavity properties
of transformed densities. Journal of Computational and Graphical Statistics,
7(4):514–528, 1998.

Dilan Görür and Yee Whye Teh. Concave convex adaptive rejection sampling.
Journal of Computational and Graphical Statistics, 20(3):670–691, September
2011.

L. Martino and J. Mı́guez. A generalization of the adaptive rejection sampling
algorithm. Statistics and Computing, 21(4):633–647, October 2011.

W. R. Gilks, N. G. Best, and K. K. C. Tan. Adaptive Rejection Metropolis
Sampling within Gibbs Sampling. Applied Statistics, 44(4):455–472, 1995.

L. Martino, R. Casarin, F. Leisen, and D. Luengo. Adaptive Sticky Generalized
Metropolis. arXiv:1308.3779, 2013.

L. Martino, H. Yang, D. Luengo, J. Kanniainen, and J. Corander. A fast
universal self-tuned sampler within Gibbs sampling. Digital Signal Processing,
47:68–83, 2015b.

L. Martino. Parsimonious adaptive rejection sampling. IET Electronics Letters,
53(6):1115–1117, 2017.

12



1 2 3 4 5
N 104

0

2

4

6

8

10

12

no
rm

al
iz

ed
 ti

m
e

Required Time
ARS
CARS

(a)

1 2 3 4 5
N 104

0.6

0.8

1

E[
T]

Final Acceptance Rate

ARS
CARS

(b)

1 2 3 4 5
N 104

0

20

40

60

E[
m

T]

Final number of support points
ARS
CARS

(c)

Figure 2: (a) Spent time (normalized w.r.t. the time required by ARS with
N = 5000, m0 = 3), (b) final acceptance rate, and (c) final number of support
points, as function of the number N of drawn samples, for ARS (squares) and
CARS (triangles).
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Figure 3: Example of sequence of proposal pdfs obtained by CARS, starting
with S0 = {−1.5,−1, 1.8}. We can observe that the L1 distance D(qt, π) is
reduced progressively. The proposal function qt(x) is depicted with dashed line,
the target function π(x) with solid line and the support points with circles. The
configuration of the nodes in figure (c) is St = {−1.0261,−0.0173, 1.0305} with
t ≥ N = 104. The optimal configuration with 3 nodes and π(x) = exp

(
−x2

)
is

S∞ = {−1, 0, 1}.
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Figure 4: (a) Normalized spent time as function of the number N of drawn
samples, for ARS (squares) and CARS (triangles), fixing m0 = 10 (recall that
M = m0 for CARS). The values are normalized w.r.t. the value obtained by
CARS with N = 104. (a) Spent time as function of the number of nodes M
fixing N = 105 (normalized w.r.t. the value obtained by CARS with M = 3).
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Figure 5: (a) Final averaged acceptance rate E[ηT ] and (b) final number of
nodes E[mT ] for ARS (dashed lines) and CARS (solid lines) with m0 ∈ {3, 10}
(recall M = m0 in CARS), as function of the desired number N of samples.
Both plots are provided in log-log-scale.
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