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The field of an electromagnetic (E) dipole has been examined using general relativistic (R) and
quantum mechanical (Q) points of view, and an E=Q=R equivalence principle presented whereas the
curvature of the electromagnetic streamlines of the field are taken to be evidence of the distortion
of spacetime, and hence of the presence of a gravitational field surrounding the dipole. Using a
quasi-refractive index function N , with the streamlines and equipotential surfaces as coordinates,
a new dipole relativistic metric is described, replacing Schwarzschild’s for a point mass. The same
principle equates the curvature and other physical features of the field with fundamental quantum
concepts such as the uncertainty principle, the probability distribution and the wave packet. The
equations of the dipole field therefore yield the three fields emerging naturally one from the other
and unified without resorting to any new dimensions. It is speculated whether this model can be
extended to dipolar matter-antimatter pairs.

I. INTRODUCTION

The quest for a unified theory of Electromagnetism
(E) Gravitational Relativity [R] and Quantum Mechan-
ics (Q) is hampered by the abstractness of quantum con-
cepts, compared to the other two. Feynman, in saying
that there is no physical ‘machinery’ causing quantum
effects [1] accepts Born’s probabilistic interpretation of
quantum events [2]. This lack of physical reality had al-
ways bothered Einstein, who advocated that a successful
unification entails “starting all over again” [3]. Super-
string unification theory [4] does indeed start afresh, but
is not yet a complete theory, and there is still room to
search for different starting points.

The present paper grew out of research in diffrac-
tion theory [5, 6], and no complete unification theory
was attempted or is of course claimed from this elemen-
tary treatment. Nevertheless, it was found that cer-
tain physical features of the electromagnetic dipole field
could have intriguing quantum probabilistic interpreta-
tions. And when it was discovered, through general rel-
ativistic analysis of the streamline curvature, that the
dipole might also possess a gravitational field, the ques-
tion arose whether the elements of a prototype unified
field theory were now at hand.

The diffraction of a dipole-photon is examined in Sec-
tion II as a more exact form of the Huygens-Fresnel prin-
ciple. In Section III the equipotential surfaces φ, and
the orthogonal streamlines S of a dipole field are pro-
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posed as the coordinates of a gµν relativistic metric sym-
metric around the dipole axis and plane only, replacing
the sphero-symmetric Schwarzschild metric for a parti-
cle: the severe curvature of the streamlines in the dipole
origin is interpreted as an indication of an unexpectedly
powerful gravitational field there. This field is character-
ized by a radial quasi-refractive index function N(R, θ)
of the distortion of spacetime. In Section IV the dipole
electric field is shown to coincide with the Gaussian prob-
ability function while the dipole’s frequency and ampli-
tude attenuations follow those of a quantum wave packet.
An E=Q=R equivalence principle is stated in Section V,
and it is speculated in Section VI whether the dipole uni-
fied field model may be adapted to other particles than
the photon, perhaps through the concept of virtual pairs
of matter-antimatter, and whether the strong force could
be attributed to a dipole gravitational field.

II. ELECTROMAGNETIC DIPOLE

DIFFRACTION

Using intuitive hydrodynamical arguments, Tamari
has proposed that an expanding photon field must have
both a foreword linear and a radial component [7], resem-
bling the bow wave of a boat. Miller [8] has shown that
Maxwell’s equations can yield a more exact form of the
Huygens-Fresnel principle for a point source, replacing it
by a dipole with a given spatio-temporal relation of the
phase and separation d of positive and negative charges
a, emitting a field with wavelength λ0 = 2π/k, and with
a potential field:

φ =
ad

4πR

[

k sin(kR)(1 + cos θ) + cos(kr)
cos θ

R

]

(1)

Both the bow-wave and the spatio-temporal dipole
models of the photon have a characteristic geometry
of expanding nested near-circular equipotential surfaces
joined at the origin. For the sake of simplifying the anal-
ysis here, an approximate dipole field is taken from the
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literature [9] whereby, for a dipole of moment D = ad/4π
aligned with the z-axis and symmetrical about the origin,
with a time harmonic phase term H , the potential is:

φ =
DH cos θ

R2
(2)

with orthogonal streamlines:

S =
R

sin2 θ
(3)

as shown in Figure 1. These approximations also omit
the magnetic and quadrupole components. While Eq. 2
and Eq. 3 are symmetrical about the x−y plane, both the
bow-wave and the spatio-temporal dipole field of Eq. 1
vanish in the −z regions.

The curvature of the dipole streamlines S, along which
the electromagnetic energy flows, is also a feature seen
in Braunbek and Laukien’s [10] analysis of Sommerfeld’s
rigorous solution of diffraction around an infinite half-
plane [11]. In Tamari’s Streamline Diffraction Theory [5]
the various curved diffracting streamlines inclined at an-
gles −π

2 ≤ θ ≤ +π
2 carry all the Fourier components of

the field [12] in a fan-shaped flow pattern. Along the
+z axis the dipole streamline is straight and carries the
electromagnetic field at a speed c, with equiphasals sep-
arated by the wavelength λ0. But what of all the other
curved S?

 

FIG. 1: Diagram of a dipole field. On the right, a Huygens-
Fresnel wavelet.

III. RELATIVISTIC DIPOLE GRAVITATION

By definition no energy flows between streamlines, and
each curved S can be considered a unique pathway car-
rying light. But according to Einstein’s general theory of
relativity it is the presence of a gravitational field that
causes a ray of light to bend [13]. Postponing for the
present the question of what the source of the dipole’s
gravitational field would be, the geometry of the stream-
lines themselves is considered. Since they carry light, S

 

FIG. 2: Gravitational acceleration → acts along stream-
lines (S) towards increasing potential (φ): its tangential and
normal components point towards increasingly curved space-
time.

must be geodesics of the field, i.e. following a minimum
path through the dipole’s spacetime [14]. Figure 2 illus-
trates the intuitive basis for regarding the dipole field as
a gravitational field. A new (φ, S, Q, t) coordinate sys-
tem based on Eq. 2 and Eq. 3 and symmetric about the
z-axis is therefore defined, whereby, for a time t = 0, the
distance element is:

ds2 = dφ2 + dS2 + R2 sin2 θdQ2 − c2dt2

N
= gµνx2

1x
2
2 (4)

ds2 =
[

1
sin4 θ

+ 4D2H2 cos2 θ
R6

]

dR2 . . . . . . g11

+
[

4D2H2 cos θ sin θ
R6 − 4R cos θ

sin5 θ

]

dRdθ . . . g12, g21

+
[

4R4 cos2 θ
sin6 θ

+ D2H2 sin2 θ
R2

]

dθ2 . . . . . . g22

+
[

R2 sin2 θ
]

dQ2 . . . . . . g33

+
[

c2R3

DH
√

3 cos2 θ+1

]

dt2 . . . . . . g44

(5)

with all the other gµν = 0. The N term is to be explained
at length below. A full treatment using tensor algebra
proving that the gµν obey Einstein’s equations for gen-
eral relativity, and finding the curvature tensor gµνGµν

although essential, is beyond the scope of this paper. For-
tunately, there is a mathematically simple and exact de-
vice, which helps conceive the curvature of spacetime in
vivid physical terms.

In dynamics the curvature of the path of a particle
is evidence of acceleration, and hence a change in local
velocity. According to Einstein, “A curvature of rays of
light can only take place when the velocity of propagation
of light varies with position” [15], a rather problematic
statement because of the constancy of c in his relativity
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theory. But as Eddington [16] explained, it is the “coor-
dinate velocity” v of light, which diminishes in the pres-
ence of a gravitational field, and hence a quasi-refractive
index of spacetime N can be defined where:

N =
c

v
(6)

Since the local velocity defines N , it is a measure of
both space contraction and time dilation, the more con-
ventional relativistic terms. Eddington, Lodge, and oth-
ers [17] used this concept of a variable density of space-
time, a gradient-index field N , akin to that in geometrical
optics [18] to describe relativistic phenomena such as the
properties of a black hole.

The use of N transforms a relativistic coordinate
system into a classical one: At first S are consid-
ered “straight” geodesics in the vacuum surrounding the
dipole. Alternately, the same S can be considered the
curved rays of light in a glass-like medium with a gradi-
ent index of refraction function N(R, θ). While the two
treatments in no way change the physical realities of the
field, a variable speed of light v can now be unambigu-
ously defined, and a geodesic can therefore be considered
the solution to the eikonal equation of geometrical op-
tics [18]:

N2 = (∇φ)2 (7)

In the absence of masses or charges, N = 1, but in
gravitational fields light ‘slows down’ and N > 1, reach-
ing infinity at the edge of a black hole. In dynamics,
the curvature k of the path of a moving particle is re-
lated to its acceleration A = (dv/dt)t + kv2

n, where t

and n are unit vectors tangent and normal to the path
respectively [20]. In the present case, A becomes the
gravitational acceleration, with its well-known relativis-
tic dependence on the curvature of space, as illustrated
in Figure 2. The streamline curvature k is derived from
the standard equation for line curvature, and from Eq. 3:

k =
R2 + 2

(

dR
dθ

)2 − R
(

d2R
dθ2

)

(

(

dR
dθ

)2
+ R2

)
3

2

=
3

(

1 + 2
tan2 θ

)

R
(

1 + 4
tan2 θ

)
3

2

(8)

Or, from a geometrical optical relation for a ray in a
gradient index field, |k| = n∇ log N [21]. In Figure 3,
rays curve towards regions of increasing N , which can be
found directly from Eq. 7 and Eq. 2:

Nd =
DH

√
3 cos2 θ + 1

R3
(9)

The path of any geodesic can now be traced through
radial dθ segments of the N field with ease and precision
by using Snell’s law of refraction

N1 sin θ1 = N2 sin θ2 (10)

as shown in Fig 3. In making these calculations Eq. 9
cannot be applied as it is because successive N1, and N2

segments share the same R but different angles. There-
fore, from Eq. 2 and Eq. 9, and putting H = φ = D = 1
since they cancel out in Eq. 10:

Nd =

√
3 cos2 θ + 1

(cos θ)
3

2

(11)

(normalized value for N calculations)

 

FIG. 3: Schematic representation of the path streamlines
S and independent rays V through the quasi-refractive in-
dex fields Nd(R, θ) of a dipole (top) and in the Schwartschild
Ns(R) metric around a mass M (bottom). Typical refractive
angles θ1 and θ2 show bending of light through increments of
the N field.

 

FIG. 4: Physical basis of the uncertainty of position ∆x and
momentum ∆p in the dipole field and along a streamline.
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Since a dipole’s gravity causes the surrounding space to
curve, bending its own streamlines, then any other parti-
cle or ray will similarly experience the same gravitational
field. Based on this intuitive but unproven assumption,
Eq. 10 and Eq. 11 were used to trace the path of various
rays V initiated at given points P (R, θ) and angles of in-
cidence I within the N field. The path of the streamlines
S of Eq. 3, passing through a point P was confirmed if
fine angular increments < 0.1 deg were used to calculate
the refracted rays.

But what of the Schwarzschild [22] metric:

ds2 =
dR2

F
+ R2dθ2 − Fc2dt2 (12)

with F = (1−2GM/c2R), where G is the constant of uni-
versal gravitation? Here, instead of a dipole at the origin,
there is a mass M and space-time is distorted only radi-
ally. Putting ds = 0, the condition for a geodesic, and
dθ = 0 since the field is spherically symmetric, an expres-
sion for the local ‘velocity’ v = dR/dt is obtained. And
using Eq. 6, this give a quasi-refractive index function
NsR for this metric [16]:

Ns =
1

F
(13)

indicating the ‘density’ of space-time due to a single point

mass at the origin, the expression for a point charge being
similar. Substituting Eq. 13 back into Eq. 12, this result
can be generalized for all metrics: Space contracts by
a factor of

√
N along streamlines (due to the change in

potential) and time dilates by
√

N−1. But in the dipole
case N was derived from the (θ, S) coordinates, and does
not need to be included back in, which justifies Eq. 4.

The asymmetry of the dipole metric, compared to
Schwarzschild’s is due to the presence of two opposite

charges at the origin. Another difference is that Ns = ∞
at the origin, but Nd has no singularities anywhere. Very
near the charges, the dipole potential, and hence the Nd

value gets quite complicated, and no longer follows that
of Eq. 2. In general, the local N value at a point P is ob-
tained by the the vector addition of the all electric fields
at P caused by surrounding dipoles in different positions
and orientations.

IV. THE DIPOLE QUANTUM FIELD

Some of the dipole field’s physical features will now be
interpreted from a quantum mechanical point of view.
But as Hawking has remarked, “[in quantum mechanics]
the unpredictable, random element comes in only when
we try to interpret the wave in terms of the positions
and velocities of particles. But maybe that is our mis-
take: maybe there are no particle positions and veloci-
ties, but only waves.” [23] And Schrödinger always had
reservations on the probabilistic interpretation of quan-
tum mechanics. [24] Adopting these views is necessary
here to justify the following physical interpretations:

A. The particle-wave duality

The dipole moment D is a quantum quantity since it
depends on the distance between the charges and their
quantified strength, and therein lies the ‘particle’ aspect
of the field under consideration. The ‘wave’ aspect of the
field is simply the time-harmonic classical dipole field it-
self. This in no way disputes the results of quantum
mechanics, only the ‘causes’. For example, an intensity
distribution can be said to be the probabilistic accumu-
lation of many whole particle photons. Here the photon
will be described as a single continuous classical wave
with local intensity fluctuations, which then cause ran-
dom particle events during absorption or emission, and
occurring within the sensor.

B. The uncertainty principle

Heisenberg himself cited diffraction [25] as one illus-
tration of his uncertainty relations. But it will be ar-
gued here that uncertainty relations exist precisely be-

cause waves diffract. As in Figure 4, at the origin, the
dipole field is basically concentrated in one point, so
∆x = 0, but the streamline directions carrying the field’s
momentum p point in an infinite number of directions,
hence ∆p = ∞. Very far from the origin, the streamlines
are basically parallel to the +z axis and ∆p = 0, but
the wavefront has spread very widely and ∆x = ∞. At
intermediate points ∆x and ∆p can be mathematically
related in several ways. For example, along any single
streamline, ∆p amounts to the curvature the streamline
(when the streamline is straight, ∆p = 0), while ∆x is
the distance element along the streamline. The physical
basis of Planck’s constant h in the relation ∆x∆p ≥ h
is elusive, but must be sought in the relation between
charge quanta and the geometry of the dipole field at the
origin.

C. The probability function

It is well known that −∇φ = E, the electric field
strength, the vectorial version of N . Using an alterna-
tive derivation [26] for the dipole’s electric field intensity
parallel to the z−axis, again with D = H = 1:

Ez =
3 cos2 θ − 1

R3
(14)

Putting 3 cos2 θ = 1 gives a cut-off angle Tw =
54.73 deg beyond which Ez = 0 and there is no foreword
momentum, as shown in Figure 1, where:

C = B tan Tw = 1.4139B (15)

In Figure 5, the Ez values (normalized by an ampli-
tude factor of 2.363B−2) of the dipole field along z = B,
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was compared to the Gaussian probability distribution,
related to the quantum probability function [27].

P (x) =
1

j
√

2π
e
− x2

2j2 (16)

Where j = C/3 = 0.4713B, (the standard deviation, a
third of the significant width before the curve dwindles
asymptotically to zero), was chosen so that the Gaussian
fits over Ez(x). Figure 5 shows that there are only minor
differences between P (x) and Ez(x) for |x| < |C|. For
|x| > |C|, Ez becomes negative, and more significantly,
no energy reaches a screen at B, since all the streamlines
curve down before reaching it. What are the quantum
implications of such a field, particularly the cut-off angle
C? The probability amplitude can be directly related
to the curvature of S: Increasing the curvature increases
the angle of incidence of S on B, and hence the smaller
the Ez vector.

 

FIG. 5: Physical basis of probability in dipole field.

D. The Wave Packet

In the case of a time-harmonic dipole, using Eq. 2 and
Eq. 9, and the fact that the wavelength is λ0 along the
+z axis, it was found that along the line z = B:

Ez(t=0) = cos

(

2πB

λ0(cos θ)
3

2

)

3 cos2 θ − 1

R3
(17)

so that the equipotentials occur at ever-decreasing dis-
tances. In quantum mechanics, the photon field is found
to comprise a wave packet, with a spectral function f(k)

specifying the infinitely diminishing wavelengths and am-
plitudes fitting within a Gaussian envelope [27]. It is seen
in Figure 5 how Ez(t=0) resembles such a function in all
details, as to amplitude and wavelength diminuation: as
the wave packet expands, the equiphasals intersect B and
S at ever shorter intervals, as in Fig. 1: there is a blue-
shift in the field until the wavelength I(R, θ), and hence
v, becomes zero on the x axis.

V. E=R=Q PRINCIPLE

According to the analysis above, an electromagnetic-
relativistic-quantum-mechanical equivalence principle
can now be generalized as follows: “in the field sur-
rounding a system of electromagnetic charges, the gravi-
tational field is equivalent to the curvature of the diffract-
ing streamlines, while the local quantum mechanical state
is equivalent to the gradient of the potential.”

This of course has only been examined in the single
case cited above, the first-order dipole approximation of
Eq. 2. But other configurations produce curved stream-
lines, such as two point emitters of like charge, diffraction
through an aperture in an opaque screen, diffraction from
any continuous distribution of sources, and others.

VI. CONCLUSION

The electromagnetic dipole field has been examined
from relativistic and quantum mechanical points of view,
with preliminary evidence that it makes up a unified field
in which an E=Q=R equivalence principle can be as-
serted: The three fields here appear to emerge, one from
the other, in a satisfying and elegant way, and without
the need for any new dimensions. Can Dirac’s oppositely
charged virtual pairs of particles (matter-antimatter) [28]
be considered a kind of dipole, with electromagnetic,
gravitational and quantum fields such as those discussed
above? Is the atomic strong force the result of some kind
of short-range gravitational field such as the one modelled
above? These are some of the questions that emerge from
the present study.
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