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Abstract

Two conflicting theoretical structures, one using the non-relativistic Schroedinger
equation and the other using relativistic energy, are used simulataneously to
derive the expression, for example for Pνµ→ντ (t), to study the neutrino oscil-
lations. This has been confirmed experimentally. Here we try to resolve the
above theoretical inconsistency. We show that this can be done in a single
consistent theoretical framework which demands that the neutrinos be super-
luminal. We therefor predict that in the neutrino appearance experiments (
for example Pνµ→ντ (t) ) the neutrinos shall be seen to travel with velocities
which are faster than that of light. The experimentalists are urged to try to
confirm this prediction.
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Neutrino oscillation is a well confimed phenomenon. As to mass, what
is measured empirically is | ∆m2 | = | m1

2 −m2
2 |, i. e. the difference of

mass-squared of neutrino oscillation from flavour-1 to flavour-2.
The derivation of the theoretical expression for neutrino oscillations be-

tween different flavours, for example Pνµ→ντ (t) is well defined in text books.
Below we point out an inconsistency in these derivations, for example in
Pνµ→ντ (t) and which we discuss in detail below.

Given three generations of particles, we have three flavours of neutrinos
(νe, νµ, ντ ) with mass eigenstates (ν1, ν2, ν3). For the sake of simplicity we
confine ourselves to the two flavours (νµ, ντ ). An orthogonal transormation
links it with mass eigenstates (ν2, ν3) as(

νµ
ντ

)
=

(
cos θ23 sin θ23
− sin θ23 cos θ23

)(
ν2
ν3

)
(1)

We work non-relativistically with the Schroedinger equation giving the
energy eigenstates as

ih̄
∂

∂t

(
ν2
ν3

)
= H

(
νµ
ντ

)
=

(
E2 0
0 E3

)(
ν2
ν3

)
(2)

Then the time evolution of these states is given by

| νµ〉t = cosθ eiE2t) | ν2〉+ sinθ eiE3t) | ν3〉 (3)

| ντ 〉t = −sinθ eiE2t) | ν2〉+ cosθ eiE3t) | ν3〉 (4)

The probability of obtaining a ντ at some later time (t > 0) from an
initial (t=0) pure νµ beam is

Pνµ→ντ (t) = | 〈ντ | νµ〉 |2 = sin2(2θ)sin2(
1

2
(E2 − E3)t) (5)

The next step is done by ”everyone” but we quote ref. [1. p.487], ”Now
I will make an approximation that goes beyond what I have assumed in us-
ing the non-relativistic Schroedinger equation (above), but which is valid for
high-energy neutrinos, namely the rest-mass energy of neutrino is small com-
pared to the total energy”. In the first breath one takes the non-relativistic
approximation and in the next breath (below) one uses the relativistic energy
as:
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E2 =
√

(p2c2 +m2
2c4)→∼ pc(1 +

m2
2c4

2p2c2
) (6)

Next we assume (and this too is a major assumption) that at high energies
all the neutrinos have the same momenta and then

E2 − E3 =
c4

2pc
(m2

2 −m3
@) =

c4

2pc
∆(m2) =

∆(m2c4)

2E
(7)

where E is the average energy of the neutrinos. For time t the path
travelled is L/c and so

Pνµ→ντ (t) = sin2(2θ)sin2(
| ∆(m2c4)L |

4Eh̄c
) (8)

The above equation has been well tested experimentally and has allowed
the extraction of mass-squared difference of neutrinos. However the fact re-
nains that we have clearly mixed up conflicting aspects of the non-relativistic
and the relativistic realities in the same formalism. It apparently works well,
but clearly it is a quick-fix of some kind and points that somewhere some-
thing is amiss in our understanding of the phenomenon. What could that
be?

Note that a Lagrangian is given as L(q,q̇) in terms of the generalized
coordinate q and its time derivative as q̇. The Hamiltonian H(q,p) is given
in terms of q and the generalized momenta p. The H and L are related
through the Legendre transformation defined as

H(q, p) = p q̇ − L(q, q̇) (9)

With equation of motion

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
(10)

We know that the relativistic energy can be written in terms of phase
velocity as

E = p vp (11)

where
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vp = c

√
1 +

m0
2c4

p2c2
(12)

Let us assume that our neutrinos obey the above relationship and as we
know that the phase velocity vp > c, they are superluminal. Next we use the
standard approximation that for these high energy neutrinos, the rest mass
is much smaller than its energy and thus

vp ∼ c(1 +
m0

2c4

2p2c2
) = c+ vf (13)

where

vf =
m0

2c4

2p2c2
c (14)

Here vf stands for the velocity of neutrino in excess of the velocity of
light c ( vf << c )

And so

E = pc+ pvf (15)

E − pc = pvf (16)

Next we assume that there exists a Lagrangian L(q,vf ) where q̇ = vf .
Then as per Legendre transformation above we define an Hamiltonian

H(q, p) = pvf − L(q, vf ) (17)

and so

(E − pc)− L(q, vf ) = pvf − L(q, vf ) = H(q, p) (18)

Now from equation of motion

vf = q̇ =
∂H

∂p
(19)

This is good and consistent. Next we require that
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ṗ = −∂H
∂q

=
∂L

∂q
= 0 (20)

Now we use the virtue of having two first order equation of motion for an
Hamiltonian to a single second order equation of motion for a Lagrangian.
As we see below, it allows/demands first order superluminal Hamiltonian
equations of motion while none of the second order. In the above the Hamil-
tonian structure holds even if the Lagrangian is set to zero or is a constant.
A motivation for this may be as follows. For a non-zero (or constant) La-
grangian, with the Lagrange equation of motion, in the canonical manner,
this would mean that the linear momentum is conserved. This in turn would
mean that the space is homogeneous. Thus if the above were true, then it
would mean that the above may hold for any homogeneous space, including
ours, and then superluminosity would hold for all the particles. But this is
not so. And hence for eqn (20) to hold, then we have to demand that the
Lagrangian itself is zero or a constant. Then the above equation will hold
but would not demand homogeneity of space. It will just mean that all the
neutrinos will have the same and conserved momentum for all. Remember
that above we had assumed that at high energies all the neutrinos would
have the same momenta (see statement before eqn. (7)). Now it is this, that
is demanded by the above equation. Thus

H(q, p) = pvf − L(constant) (21)

Where L(constant) may be set equal to zero also. Thus we have obtained
a proper Hamitonian which gives the correct energy difference in eqn. (7) and
thus the above good results for neutrino oscillation in a consistent manner.
What is important is that the neutrino is superluminal and that the Hamil-
tonian depends upon vf the velocity above the velocity of light c. Hence
superluminosity of neutrinos is a clear prediction of our model here. The
OPERA experiment which observes the appearance experiment Pνµ→ντ (t),
should be able to observe the neutrinos travelling with velocities faster than
that of the light. These and others doing similar experements, or studying
Pνe→νµ(t), are urged to confirm this clearcut prediction of our model.
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