
PACS : 98.80.Es, 04.50.Kd, 04.60.Bc

Cosmological consequences of the model of low-energy quantum gravity

Michael A. Ivanov

Physics Dept., Belarus State University of Informatics and Radioelectronics, Minsk, Belarus

( Dated: 19 June 2015)

The model of low-energy quantum gravity by the author is based on the conjecture about

an existence of the graviton background. An interaction of photons and moving bodies with

this background leads to small additional effects having essential cosmological consequences.

In the model, redshifts of remote objects and the dimming of supernovae 1a may be in-

terpreted without any expansion of the Universe and without dark energy. Some of these

consequences are discussed and confronted with supernovae 1a and long GRBs observations

in this paper. It is shown that the two-parametric theoretical luminosity distance of the

model fits observations with high confidence levels (100% for the SCP Union 2.1 and JLA

compilations and 99.81% for long GRBs). These parameters are computable in the model.
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I. INTRODUCTION

In contrast with classical electrodynamics in the XIX century or quantum electrodynamics in

the XX century, at present we have a complete lack of experimental evidence to construct a theory

of quantum gravity. From dimensional reasons only, if one assumes that the Newton constant

is universal for any scales, the effects of quantum gravity are expected to be measurable over

extremely small distances or very high energies. There are proposals how to detect some effects in

a laboratory - for example, [1, 2], - or to observe a possible small violation of the Lorentz invariance

for remote sources, but we have not any results in a frame of current paradigms which may pave

us to the goal. Another constrain is, as I think, the common expectation that the future theory

should be some symbiosis of the geometrical theory of general relativity and quantum mechanics.

Geometry is useful for a description of the average motion of big bodies due to the universality of

gravitation, but it is not the fact that quantum effects may be described geometrically. It is also

necessary to keep in mind that the nature of gravity as well as the nature of quantum behavior

of microparticles are unknown - we have remarkable descriptions in different languages but not

understanding in both cases.

I describe here briefly some consequences of my approach to quantum gravity [3, 4], in which the

phenomenon is a very-low-energy one and is caused by the background of super-strong interacting

gravitons. The main quantum effect of this approach is the Newtonian attraction; its small effects

enforce us to look at the known results of astrophysical observations from another point of view

and give us the reasons to doubt in the validity of the current standard cosmological model.

II. THE MODEL OF LOW-ENERGY QUANTUM GRAVITY

The geometrical description of gravity in general relativity does not involve any mechanism of

interaction. It is similar to the Newtonian model: we don’t know how it works. In my model of

low-energy quantum gravity [3, 4], gravity is considered as the screening effect. It is suggested

that the background of super-strong interacting gravitons exists in the universe. Its temperature

should be equal to the one of CMB. Screening this background creates for any pair of bodies both

attraction and repulsion forces due to pressure of gravitons. For single gravitons, these forces are

approximately balanced, but each of them is much bigger than a force of Newtonian attraction.

If single gravitons are pairing, an attraction force due to pressure of such graviton pairs is twice

exceeding a corresponding repulsion force if graviton pairs are destructed by collisions with a
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body. This peculiarity of the quantum mechanism of gravity leads to the difference of inertial and

gravitational masses of a black hole. In such the model, the Newton constant is connected with

the Hubble constant that gives a possibility to obtain a theoretical estimate of the last. We deal

here with a flat non-expanding universe fulfilled with super-strong interacting gravitons; it changes

the meaning of the Hubble constant which describes magnitudes of three small effects of quantum

gravity but not any expansion or an age of the universe.

III. SMALL EFFECTS OF THE MODEL DUE TO ITS QUANTUM NATURE

There are two small effects for photons in the sea of super-strong interacting gravitons [3]:

average energy losses of a photon due to forehead collisions with gravitons and an additional

relaxation of a photonic flux due to non-forehead collisions of photons with gravitons. The first

effect leads to the geometrical distance/redshift relation:

r(z) = ln(1 + z) · c/H0, (1)

where H0 is the Hubble constant, c is the velocity of light. The both effects lead to the luminosity

distance/redshift relation:

DL(z) = c/H0 · ln(1 + z) · (1 + z)(1+b)/2 ≡ c/H0 · f1(z), (2)

where f1(z) ≡ ln(1+z) ·(1+z)(1+b)/2; the ”constant” b belongs to the range 0 - 2.137 [5] (b = 2.137

for very soft radiation, and b → 0 for very hard one). For an arbitrary source spectrum, a value of

the factor b should be still computed. It is clear that in a general case it should depend on a rest-

frame spectrum and on a redshift. Because of this, the Hubble diagram should be a multivalued

function of a redshift: for a given z, b may have different values for different kinds of sources.

Further more, the Hubble diagram may depend on the used procedure of observations: different

parts of rest-frame spectrum will be characterized with different values of the parameter b.

Actually, the factor b describes an analog of the blurring effect of tired-light models. Due to

the quantum nature of this effect in the model, non-forehead collisions of photons with gravitons

should lead to relatively big average angles of deviations of photons of visible range:

Δϕ ∼ 10−3 eV

2.5 eV
= 4 · 10−4 rad,

where 10−3 eV and 2.5 eV are average graviton and photon energies. By multiple collisions,

deviated photons will not be recognized as emitted by a small-angle remote object. But images of

high-z objects may be partly blurred due to a fraction of low-energy gravitons.
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The third small effect of this model is the constant deceleration of massive bodies due to

forehead collisions with gravitons. It is an analog of the redshift in this model. We get for the

body acceleration w by a non-zero velocity v:

w = −ac2(1 − v2/c2). (3)

For small velocities we have for it: w � −H0c. If the Hubble constant H0 is equal to 2.14 ·10−18s−1

(it is the theoretical estimate of H0 in this approach), a modulus of the acceleration will be equal to

|w| � H0c = 6.419 · 10−10 m/s2, that is of the same order of magnitude as a value of the observed

additional acceleration (8.74 ± 1.33) · 10−10m/s2 for NASA probes Pioneer 10/11 [6].

IV. COSMOLOGICAL CONSEQUENCES OF THE MODEL

There are the two circumstances introduced in the model to rich the needed strength of grav-

itational attraction: 1) gravitons should be super-strong interacting, and 2) a part of gravitons

should be paired and the pairs must be destructed by interaction with bodies. It leads to the very

unexpected consequence: in the model, a black hole should have different gravitational and inertial

masses, i. e. its possible existence contradicts to general relativity. Another unexpected feature of

this approach is a necessity of ”an atomic structure” of matter, because the considered mechanism

doesn’t work without it.

The property of asymptotic freedom of this model at very short distances leads to the important

consequences, too. First, a black hole mass threshold should exist. A full mass of black hole should

be restricted from the bottom with m0; the rough estimate for it is: m0 ∼ 107M�. The range of

transition to gravitational asymptotic freedom for a pair of protons is between 10−11−10−13 meter,

and for a pair of electrons it is between 10−13 − 10−15 meter. This transition is non-universal; it

means, second, that a geometrical description of gravity on this or smaller scales, for example on

the Planck one, is not valid.

Any massive body moving relative to the graviton background should suffer in the model the

constant deceleration of the order of ∼ H0c, i. e. of the same order as an anomalous acceleration of

the NASA’s deep space probes (the Pioneer anomaly) [6]. Recently, it was shown by S. Turyshev et

al [7], that the thermal origin of the Pioneer anomaly is very possible. From another side, the mass

discrepancy in spiral galaxies appears at very low accelerations less than some a0 and not much

above a0 [8], where the boundary acceleration a0 has the same order. The need for dark matter in

spiral galaxies appears at very low accelerations. A simple alternative to dark matter is MOND by
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M. Milgrom [9], in which such the boundary acceleration is introduced by hand. The main feature

of MOND is the strengthening of gravitational attraction in a case of low accelerations; I do not

think that an exact form of this strengthening has been guessed in MOND. But MOND gives us

a clear hint that general relativity may be not valid on galactic or bigger scales of distances, and

its application in cosmology is in doubt. In my model, the universal deceleration of bodies should

lead in any bound system to an additional acceleration of them relative to the system’s center of

inertia. Some additional strengthening of gravitation on a periphery of galaxies may be caused

in the model by the destruction of graviton pairs flying through their central parts whereas pairs

flying to the center are destructed in a less degree. The problem is open in this model.

The standard cosmological model is based on the assumption that redshifts of remote objects

arise due to an expansion of the Universe. The model was re-builded a few times to save this base,

the last innovation of it is an introduction of dark energy. Many people are searching for dark energy

now or plan to do it, for example, with the help of big colliders. This basic cosmological assumption

is considered by the community as a dogma, an invioalable sanctuary of present cosmology. For

example, all observations of remote objects in the time domain are corrected for time dilation -

but this effect is an attribute only of the standard model. In my model this assumption does not

seem to be absolutely necessary. There exists a possibility in the model to interpret observations

in another manner, without any expansion of the Universe.

A. The Hubble diagram of this model

In this model, the luminosity distance is given by Eq. 2. The theoretical value of relaxation factor

b for a soft radiation is b = 2.137. Let us consider the Hubble constant as a single free parameter

to fit observations. The theoretical Hubble diagram of this model is compared with Supernovae 1a

observational data by Riess et al. [10] (corrected for no time dilation as: μ(z) → μ(z)+2.5·lg(1+z))

in Fig. 1. As you can see, the theoretical diagram fits observations very well without any dark

energy.

To demonstrate how similar are predictions about distance moduli as a function of redshift of

this model and of the concordance cosmology, the two theoretical Hubble diagrams are sown in Fig.

2: μ0(z) of this model with b = 1.137 taking into account the effect of time dilation of the standard

model (solid); and μc(z) for a flat Universe with the concordance cosmology by ΩM = 0.27 and

w = −1 (dash). You can see a good accordance of this diagrams up to z ≈ 4.

At present, two big compilations of SN 1a observations are available: the SCP Union 2.1 com-
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FIG. 1. The theoretical Hubble diagram μ0(z) of this model (solid); Supernovae 1a observational data

(circles, 82 points) are taken from Table 5 of [10] and corrected for no time dilation.

FIG. 2. The two theoretical Hubble diagrams: μ0(z) of this model with b = 1.137 taking into account

the effect of time dilation of the standard model (solid); μc(z) for a flat Universe with the concordance

cosmology by ΩM = 0.27 and w = −1 (dash).

pilation (580 supernovae) [11] and the JLA compilation (740 supernovae) [12]. These compilations

may be used to evaluate the Hubble constant in this approach. Using the definition of distance

modulus: μ(z) = 5lgDL(z)(Mpc) + 25, we get from Eq. 2 for the theoretical distance modulus

μ0(z): μ0(z) = 5lgf1(z) + k, where the constant k is equal to:

k ≡ 5lg(c/H0) + 25.
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If the model fits observations, then we shall have for k(z):

k(z) = μ(z) − 5lgf1(z), (4)

where μ(z) is an observational value of distance modulus. The weighted average value of k(z) :

< k(z) >=
∑

k(zi)/σ2
i∑

1/σ2
i

, (5)

where σ2
i is a dispersion of μ(zi), will be the best estimate of k. Here, σ2

i is defined as: σ2
i =

σ2
i stat + σ2

i sys. The average value of the Hubble constant may be found as:

< H0 >=
c · 105

10<k(z)>/5 · Mpc
. (6)

FIG. 3. The theoretical Hubble diagram μ0(z) of this model (solid); Supernovae 1a observational data (580

points of the SCP Union 2.1 compilation) are taken from [11] and corrected for no time dilation.

For a standard deviation of the Hubble constant we have:

σ0 =
ln10· < H0 >

5
· σk, (7)

where σ2
k is a weighted dispersion of k, which is calculated with the same weights as < k(z) > .

The theoretical Hubble diagram μ0(z) of this model with < k(z) > which is calculated using the

SCP Union 2.1 compilation [11] is shown in Fig. 3 together with observational points corrected for

no time dilation. Values of k(z) (580 points) and < k(z) >, < k(z) > +σk, < k(z) > −σk (lines)
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FIG. 4. Values of k(z) (580 points) and < k(z) >, < k(z) > +σk, < k(z) > −σk (lines) for the SCP Union

2.1 compilation.

are shown in Fig. 4. For this compilation we have: < k > ±σk = 43.216 ± 0.194. Calculating the

χ2 value as:

χ2 =
∑ (k(zi)− < H0 >)2

σ2
i

, (8)

we get χ2 = 239.635. By 579 degrees of freedom of this data set, it means that the hypothesis that

k(z) = const cannot be rejected with 100% C.L. Using Eqs. 6, 7, we get for the Hubble constant

from the fitting:

< H0 > ±σ0 = (2.211 ± 0.198) · 10−18 s−1 = (68.223 ± 6.097)
km

s · Mpc
.

The theoretical value of the Hubble constant in the model: H0 = 2.14 · 10−18 s−1 = 66.875 km ·
s−1 · Mpc−1 belongs to this range. The traditional dimension km · s−1 · Mpc−1 is not connected

here with any expansion.

To repeat the above calculations for the JLA compilation, I have used 31 binned points from

Table F.1 of [12]. Given equal weights for points, we have for this compilation: < k > ±σk =

43.219 ± 0.104 with χ2 = 0.337. By 30 degrees of freedom of this data set, it means that the

hypothesis that k(z) = const cannot be rejected with 100% C.L., too. For the Hubble constant we

have in this case:

< H0 > ±σ0 = (2.207 ± 0.106) · 10−18 s−1 = (68.140 ± 3.269)
km

s · Mpc
.

Results of the fitting are shown in Figs. 5,6.
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We have proved the important mathematical fact: SNe 1a observational data may be fitted

with the two-parametric law of Eq. 2; it is impossible to decrease the number of parameters or to

increase the confidence level of the fitting. It is strange that big teams of professionals in the field

did not recognize this fact in the last 17 years.

FIG. 5. The theoretical Hubble diagram μ0(z) of this model (solid); Supernovae 1a observational data (31

binned points of the JLA compilation) are taken from Table F.1 of [12] and corrected for no time dilation.

FIG. 6. Values of k(z) (31 binned points) and < k(z) >, < k(z) > +σk, < k(z) > −σk (lines) for the JLA

compilation.

If observations of long Gamma-Ray Bursts (GRBs) for small z are calibrated using SNe 1a,

observational points are fitted with this theoretical Hubble diagram, too [4]. But for hard radiation
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of GRBs, the factor b may be smaller, and the real diagram for them may differ from the one for SNe

1a. With this limitation, the long GRBs observational data (109 points) are taken from Tables 1,2 of

[13] and fitted in the same manner with b = 2.137. In this case we have: < k > ±σk = 43.262±8.447

with χ2 = 70.39. By 108 degrees of freedom of this data set, it means that the hypothesis that

k(z) = const cannot be rejected with 99.81% C.L. Results of the fitting are shown in Figs. 7,8.

FIG. 7. The theoretical Hubble diagram μ0(z) of this model (solid); long GRBs observational data (109

points) are taken from Tables 1,2 of [13] and corrected for no time dilation.

FIG. 8. Values of k(z) (109 points) and < k(z) >, < k(z) > +σk, < k(z) > −σk (lines) for long GRBs.

We may try to fit all three data sets using the theoretical values of b and H0 - without free

parameters. It is easy to do replacing < k(z) > with k = 43.259 which corresponds to the theoretical
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value of H0. For the first two data sets we get: χ2 = 251.585 and χ2 = 0.386 respectively, with

100% C.L. in both cases. For long GRBs we get: χ2 = 70.416 and 99.81% C.L.

B. The Hubble parameter H(z) of this model

If the geometrical distance is described by Eq. 1, for a remote region of the universe we may

introduce the Hubble parameter H(z) in the following manner:

dz = H(z) · dr

c
, (9)

to imitate the local Hubble law. Taking a derivative dr
dz , we get in this model for H(z) :

H(z) = H0 · (1 + z). (10)

It means that in the model:

H(z)
(1 + z)

= H0. (11)

The last formula gives us a possibility to evaluate the Hubble constant using observed values

of the Hubble parameter H(z). To do it, I use here 28 points of H(z) from [14] and one point

for z < 0.1 from [15]. The last point is the result of HST measurement of the Hubble constant

obtained from observations of 256 low-z supernovae 1a. Here I refer this point to the average

redshift z = 0.05. Observed values of the ratio H(z)/(1 + z) with ±σ error bars are shown in Fig.

9 (points). The weighted average value of the Hubble constant is calculated by the formula:

< H0 >=

∑ H(zi)
1+zi

/σ2
i∑

1/σ2
i

. (12)

The weighted dispersion of the Hubble constant is found with the same weights:

σ2
0 =

∑
(H(zi)

1+zi
− < H0 >)2/σ2

i∑
1/σ2

i

. (13)

Calculations give for these quantities:

< H0 > ±σ0 = (64.40 ± 5.95) km s−1 Mpc−1. (14)

The weighted average value of the Hubble constant with ±σ0 error bars are shown in Fig. 9 as

horizontal lines.

Calculating the χ2 value as:

χ2 =
∑ (H(zi)

1+zi
− < H0 >)2

σ2
i

, (15)
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FIG. 9. The ratio H(z)/(1 + z) ± σ and the weighted value of the Hubble constant H0 ± σ0 (horizontal

lines). Observed values of the Hubble parameter H(z) are taken from Table 1 of [14] and one point for

z < 0.1 is taken from [15].

we get χ2 = 16.491. By 28 degrees of freedom of our data set, it means that the hypothesis described

by Eq. 11 cannot be rejected with 95% C.L.

If we use another set of 21 cosmological model-independent measurements of H(z) based on the

differential age method [16], we get (see Fig. 10):

< H0 > ±σ0 = (63.37 ± 4.56) km s−1 Mpc−1. (16)

The value of χ2 in this case is smaller and equal to 3.948. By 21 degrees of freedom of this new

data set, it means that the hypothesis described by Eq. 11 cannot be rejected with 99.998% C.L.

Some authors try in a frame of models of expanding universe to find deceleration-acceleration

transition redshifts using the same data set (for example, [14]). The above conclusion that the ratio

H(z)/(1 + z) remains statistically constant in the available range of redshifts is model-independent.

For the considered model, it is an additional fact against dark energy as an admissible alternative

to the graviton background.
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FIG. 10. The ratio H(z)/(1 + z) ± σ and the weighted value of the Hubble constant H0 ± σ0 (horizontal

lines). Observed values of the Hubble parameter H(z) are taken from [16].

C. The Alcock-Paczynski test of this model

The Alcock-Paczynski cosmological test consists in an evaluation of the ratio of observed angular

size to radial/redshift size [17]. Recently, this test has been carried out for a few cosmological

models by Fulvio Melia and Martin Lopez-Corredoira [18]. They used new model-independent

data on BAO peak positions from [19] and [20]. For two mean values of z (< z >= 0.57 and

< z >= 2.34), the measured angular-diameter distance dA(z) and Hubble parameter H(z) give

for the observed characteristic ratio yobs(z) of this test the values: yobs(0.57) = 1.264 ± 0.056 and

yobs(2.34) = 1.706 ± 0.076. In this model we have: dcom(z) = dA(z) = r(z), where dcom(z) is the

cosmological comoving distance. Because the Universe is static here, the ratio y(z) for this model

is defined as:

y(z) =
r(z)

z · d
dz r(z)

=
r(z) · H(z)

cz
= (1 +

1
z
) · ln(1 + z), (17)

where H(z) is defined by Eq. 10. This function without free parameters characterizes any tired

light model (model 6 in [18]). We have only two observational points to fit them with this function.
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Calculating the χ2 value as:

χ2 =
∑ (yobs(zi) − y(zi))2

σ2
i

, (18)

we get χ2 = 0.189, that corresponds to the confidence level of 91% for two degrees of freedom.

V. CONCLUSION

The key cosmological question is a mechanism of redshift: is it local or non-local one? If this

mechanism is local as in the considered model, the quantum gravitational nature of redshifts may

be verified in a ground-based laser experiment [21].

As it is shown above, the Hubble diagram of supernovae 1a corrected for no time dilation

and GRBs (when their luminosity is calibrated with the help of SN 1a observations), the Hubble

parameter H(z) and the ratio of observed angular size to radial/redshift size are well fitted in this

model. The Hubble diagram for GRBs may differ in the model from the diagram for SNe 1a, but

one should calibrate the GRB luminosity independently of supernovae 1a to discover this difference.

In the model, space-time is flat, and the geometrical distance as a function of the redshift coincides

with the angular diameter distance. Given that a galaxy number density is constant in the no-

evolution scenario, theoretical predictions for galaxy number counts in this model have been found

using only the luminosity and geometrical distances defined by Eqs.1, 2 [22]. The geometrical

distance r(z) of this model is very different from the one of the standard model; for example, GRB

090429B with z = 9.4 [23] took place 24.6 Gyr ago in a frame of this model; the age of the Universe

of the standard model: ∼ 13.5 Gyr corrseponds here to z � 2.6.

At present this model is not a full cosmological one; it is necessary to develop many open

problems to bring it closer to the pursuable completeness. But even now it has an interesting

advantage: one can describe the observed Hubble diagram of supernovae 1a by Eq. 2 with the

computable parameter b = 2.137 without dark energy.
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