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Abstract

The multiple Try Metropolis (MTM) algorithm is an advanced MCMC tech-
nique based on drawing and testing several candidates at each iteration of
the algorithm. One of them is selected according to certain weights and then
it is tested according to a suitable acceptance probability. Clearly, since the
computational cost increases as the employed number of tries grows, one ex-
pects that the performance of an MTM scheme improves as the number of
tries increases, as well. However, there are scenarios where the increase of
number of tries does not produce a corresponding enhancement of the per-
formance. In this work, we describe these scenarios and then we introduce
possible solutions for solving these issues.

Keywords: Multiple Try Metropolis algorithm, Multi-point Metropolis
algorithm, MCMC methods, MTM with variable number of tries.

1. Introduction

Markov chain Monte Carlo (MCMC) methods are classical Monte Carlo
techniques (Robert and Casella, 2004), that produce a Markov chain converg-
ing to a target probability density function (pdf), usually to approximate an
otherwise-incalculable integral (Liu, 2004; Liang et al., 2010).

The Multiple-Try Metropolis (MTM) method (Liu et al., 2000) is an ex-
tension of the Metropolis-Hastings algorithm (Metropolis et al., 1953; Hast-
ings, 1970) in which the next state of the chain is selected among a set of
N independent and identically distributed (i.i.d.) samples. This enables the
MTM sampler to make large step-size jumps without a lowering in the accep-
tance rate; and thus MTM can explore easily a larger portion of the sample
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space in fewer iterations. Different MTM schemes has been proposed in lit-
erature (Frenkel and Smit, 1996, Chapter 13), (Qin and Liu, 2001; Casarin
et al., 2013; Pandolfi et al., 2010; Martino et al., 2012; Craiu and Lemieux,
2007) and have been studied in several works (Bédard et al., 2012; Mar-
tino and Read, 2013; Martino et al., 2014). More recently parallel MTM
algorithms have been proposed in (Martino et al., 2015a).

A well-designed MTM scheme improves its performance as the number of
tries, N , grows. Namely, when N grows approaching infinity, the correlation
among the generated samples should vanish to zero. Clearly, this is at the
expense of an increasing computational cost due to the use of a greater
number of tries. In this work, we describe certain scenarios where the use of
a greater N in a standard MTM method (Liu et al., 2000) and its extensions
(Casarin et al., 2013; Pandolfi et al., 2010; Martino et al., 2012; Martino and
Read, 2013) does not yield an improvement on the performance. We explain
the reasons of these drawbacks, and provide possible solutions for fixing these
issues. The first scenario involves the use of a single random-walk proposal
within a standard MTM structure, whereas, in the second scenario, the use
of multiple proposal pdfs independent from the previous state of the chains
is considered. In the first one, the increase of number of tries is always
prejudicial, regardless to the choice of the weight functions (involving the
target function in a suitable way (Liu et al., 2000; Martino and Read, 2013)).
In the second one, the increase of number of tries can help the mixing of the
chain using a certain class of the weight functions (clearly, at the expense
of a greater computational cost). However, we discuss different ways for
using the set of multiple independent proposal pdfs within an MTM scheme
improving the performance, in any case. For improving the performance in
the first scenario, we suggest to use an MTM with variable number of tries,
in a suitable way without jeopardizing the ergodicity of the chain.

2. Multiple Try Metropolis with a single random-walk proposal

Let denote the target density as π̄(x) ∝ π(x). First of all, we consider
the use of a single random-walk proposal density, q(z|xt−1) = q(z − xt−1).
Given a current state of the chain xt−1 ∈ X ⊆ RdX , t ∈ N, an MTM scheme
generates N independent candidates {z1, . . . , zN} from a proposal density q,
i.e.,

z1, . . . , zN ∼ q(z|xt−1).
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Table 1: Multiple Try Metropolis with a (single) random-walk proposal (RW-MTM).

1. Draw N independent samples from the proposal pdf,

z1, . . . , zN ∼ q(x|xt−1) = q(z− xt−1).

2. Select a sample z ∈ {z1, . . . , zN}, according the probabilities

w̄k =
w(zk|xt−1)∑N
n=1 w(zn|xt−1)

, where w(zk|xt−1) =
π(zk)

q(zk|xt−1)
, (1)

for k = 1, . . . , N .

3. Draw N − 1 auxiliary points from the proposal q given the previous selected
sample z, namely y1, . . . ,yN−1 ∼ q(x|z), and set yN = xt−1.

4. Compute the weights of the auxiliary points,

w(yk|z) =
π(yk)
q(yk|z)

, for k = 1, . . . , N. (2)

5. Set xt = z with probability

α(xt−1, z) = min

[
1,
∑N
n=1 w(zn|xt−1)∑N
n=1 w(yn|z)

]
. (3)

Otherwise, set xt = xt−1, with probability 1− α(xt−1, z).

Then, one sample z is selected among the set {z1, . . . , zN}, according to
certain weight functions (Liu et al., 2000; Martino and Read, 2013). The
movement from xt to z is accepted with a suitable probability α(xt−1, z),
which also depends on the rest of candidates. The probability α(xt−1, z)
is designed such that the kernel of the MTM algorithm fulfills the detailed
balance condition. Only for facilitating the comprehension, we consider the
importance weights

w(zk|xt−1) =
π(zk)

q(zk|xt−1)
, (4)

for choosing z ∈ {z1, . . . , zN}, i.e., z is selected according the probabilities

w̄k = w(zk|xt−1)PN
n=1 w(zn|xt−1)

. Different kind of weights could be used (Martino and

Read, 2013; Pandolfi et al., 2010), but without avoiding the problem that we
describe in the next section.
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Table 1 shows all the details of the MTM technique. Observe that, an RW-
MTM method requires the generation of N − 1 auxiliary points y1, . . . ,yN−1

from q(·|z) (see Step 3 of Table 1). Moreover, note that the selected sample
z is drawn from the empirical measure

π̂(N)(z) =
N∑
n=1

w̄nδ(z− zn), (5)

that approximates the distribution of π, via importance sampling (IS) (Robert
and Casella, 2004; Liu, 2004). Finally, we remark that the acceptance prob-
ability α(xt−1, z) in Eq. (3) can be expressed as

α(xt−1, z) = min

[
1,
Ẑ(z1, . . . , zN |xt−1)

Ẑ(y1, . . . ,yN |z)

]
, (6)

where the function Ẑ(·|r) : XN → R, with r ∈ X ,

Ẑ(v1, . . . ,vN |r) =
1

N

N∑
n=1

π(vn)

q(vn|r)
, (7)

is an estimator of the normalizing constant Z =
∫
X π(x)dx (Robert and

Casella, 2004), i.e., the area below π(x).

3. Problem in the RW-MTM mixing

The desired behavior of an MTM scheme is that the performance improves
as the number of used candidates N grows (jointly with the computational
cost). Indeed in general, as N increases, the chosen point z is selected from a
better IS approximation π̂(N), so that z is a better candidate to be tested as
new possible state of the chain. As a consequence, in a well-designed MTM
scheme the acceptance probability α(xt−1, z) should approach 1 when N →
∞. Thus, in general, MTM fosters greater “jumps” and, as a consequence,
the exploration of the state space. However, below we describe a scenario
where the increase of number N of tries could be even damaging.

For facilitating the explanation, we assume that the expected value of
the random variable Z ∼ q(z − xt−1) is exactly xt−1, i.e., E[Z] = xt−1,
e.g., when q is Gaussian, q(z − xt−1) = N (z; xt−1,C). Let us denote Ẑ1 =
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Ẑ(z1, . . . , zN |xt−1) and Ẑ2 = Ẑ(y1, . . . ,yN |z), so that we can rewrite the
acceptance probability as

α = min

[
1,
Ẑ1

Ẑ2

]
. (8)

Furthermore, consider a scenario where the state at the (t− 1)-th iteration,
xt−1, is placed in a region of low probability of π̄(x) ∝ π(x), nearby a region
of high probability mass (e.g., see Figure 1(a)). Assume also that the variance
of the proposal q(z − xt−1) is wide enough in order to (at least) reach the
region of high probability mass of π. In this situation, several drawn tries
are located in the region of small probability around the value E[Z] = xt−1.
On the other hand, it is possible that few of them are located close to the
mode of π; Figure 1(a) depicts a possible scenario of this kind, with only
N = 4 tries and one of them located in a mode of π. Thus, it is highly
probable that the MTM selected one well-located point as proposed sample
z, after the resampling at Step 2. For the same reasons, in general, many of
the N − 1 auxiliary points, y1, . . . ,yN−1 drawn from q(y|z), will be placed
around the mode of π. Hence, in this situation, we have that

Ẑ2 =
1

N

N∑
n=1

π(yn)

q(yn|z)
>> Ẑ1 =

1

N

N∑
n=1

π(zn)

q(zn|xt−1)
.

As a consequence,
α(xt−1, z) ≈ 0,

so that the chain can remain stuck at xt−1. It is important to observe that
this situation can become even worse if N grows. On the contrary, in this
scenario, the use of less number of tries can help to jump to the region of
high probability. Finally, we remark that the problem previously described
cannot be solved changing of analytical form of the weights (Liu et al., 2000;
Martino and Read, 2013).1

3.1. Proposed solution

Let us denote as Km(xt|xt−1, Nm) the kernel of an MTM scheme employ-
ing Nm tries. We consider a combination M different kernels using different

1A suitable acceptance function α for generic weight functions is shown in Appendix
A, for the case of multiple independent proposal densities.
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Figure 1: Graphical representation of a possible scenario described in Section 3, where
Ẑ2 > Ẑ1 (and Ẑ2 >> Ẑ1 when N grows). We show the contour plot of a bidimensional
target pdf π(x) with solid lines. The previous state of the chain xt−1 is depicted with a
square; the N = 4 candidates zj ’s are shown with circles, whereas the N − 1 = 3 auxiliary
points yi’s are illustrated with triangles. Dashed lines represent the scale parameters of
the proposal densities q(·|xt−1) and q(·|z), where z ∈ {z1, . . . , z4} is the selected candidate.

number of tries Nm, m = 1, . . . ,M , i.e.,

K(xt|xt−1) =
1

M

M∑
m=1

Km(xt|xt−1, Nm). (9)

It is straightforward to show that if each Km(xt|xt−1, Nm) leaves invariant
π, also K(xt|xt−1) has π as invariant pdf (Robert and Casella, 2004; Liu,
2004). Therefore, fixing the averaged computational effort, represented by
the averaged number or tries

Ñ =
1

M

M∑
m=1

Nm,

we choose M different values Nm ∈ N, such that Ñ is the desired one. The
idea is to use a variable number of tries, i.e., a different number of candidates
at each iteration. Namely, at each iteration, an index m′ is drawn uniformly
within 1, . . . ,M and then Nm′ tries are employed in the MTM scheme Km′ .
Note this is equivalent to use the kernel in Eq. (9). Choosing at least one
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small value, e.g., N1 = 1, this helps jumps of the chain in the awkward
scenario, previously described. See the numerical simulations for further
details.

4. Multiple Try Metropolis with different independent proposals

The MTM algorithm in Table 1 can be simplified if the proposal pdf q(x)
is independent from the previous state of the generated chain. Indeed, in
this case, Step 3 in Table 1 can be removed, in the sense that it is possible
to avoid the generation of the auxiliary points (Liu et al., 2000; Martino
and Read, 2013). Furthermore, it is also possible to employ simultaneously
different proposal pdfs q1(x), . . . , qN(x) (Casarin et al., 2013; Martino and
Read, 2013). The resulting algorithm is detailed in Table 2, considering the
use of importance weights. The acceptance probability α in Eq. (12) can be
written again as

α = min

[
1,
Ẑ1

Ẑ2

]
,

where, in this case,

Ẑ1 =
1

N

N∑
n=1

wn(zn),

Ẑ2 =
1

N

(
NẐ1 − wj(zj) + wj(xt−1)

)
. (10)

The general acceptance function α for I-MTM using generic (bounded and
positive) weights is shown in Eq. (A.1).

5. Problem in the I-MTM mixing

First of all, we can observe that the sums in Ẑ1 and Ẑ2 in Eq. (10) differ
only for one weight, i.e., Ẑ1 contains wj(zj) but does not involve wj(xt−1),

whereas Ẑ2 includes wj(xt−1), instead of wj(zj). Thus, using importance
weights, the probability α of an I-MTM scheme always approaches 1 when
N increases, if the employed weight functions are included in the class of
weights proposed in (Liu et al., 2000). This statement is not valid, in general,
for generic weight functions, as Eq. (A.1) shows. In this section we focus on
the use of importance weights, which are contained in class discussed in (Liu
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Table 2: Multiple Try Metropolis with different independent proposals (I-MTM).

1. Draw N independent samples

z1 ∼ q1(x)., . . . , zN ∼ qN (x).

2. Select a sample zj ∈ {z1, . . . , zN}, according the probabilities

w̄k =
w(zk)∑N
n=1 w(zn)

, where wk(zk) =
π(zk)
qk(zk)

, (11)

for k = 1, . . . , N .

3. Set xt = zj with probability

α(xt−1, zj) = min

[
1,

∑N
n=1 wn(zn)∑N

n=1 wn(zn)− wj(zj) + wj(xt−1)

]
. (12)

Otherwise, set xt = xt−1, with probability 1− α(xt−1, zj).

et al., 2000). The solutions that we discuss later on are valid in any cases.
Note that, in I-MTM, the j-th weight involves the j-th proposal pdf, i.e.,

wj(x) =
π(x)

qj(x)
.

We need to evaluate the j-th weight wj, involving the j-th proposal qj, at zj
and xt−1. The sample zj is drawn from qj by definition, whereas xt−1 is the
previous state of the chain (it could be generated from any possible qn in the
previous iterations of the I-MTM algorithm). Hence, with high probability
zj is located nearby a mode of qj, since zj ∼ qj(z), whereas xt−1 could be
placed close to a mode or a tail of qj with equal chance, in general. Thus,
since the proposal qj appears in the denominator of the weights wj, in general
we have wj(zj) < wj(xt−1), producing small values of acceptance probability
α, if N is not enough big. This scenario becomes even more complicated,
if the proposal pdf qj is placed close to a mode of the target π, and the
previous state xt−1 is located in a tail of qj. In this case, if π(xt−1) 6= 0,
the value of wj(xt−1) can be huge and wj(xt−1) >> wj(zj). Hence, the I-
MTM scheme tends to select several times the sample drawn from qj, i.e.,
zj, as “good” candidate (step 2 of Table 2), but the movement from xt−1

8



to zj is often rejected since α ≈ 0. As a consequence, the chain can remain
indefinitely trapped in this situation. Figure 2 represents graphical sketch of
this situation.

−5 0 50
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⇡(x) qj(x)

zjxt�1

wj(xt�1)

wj(zj)

Figure 2: Graphical representation of the scenario described in Section 5. The contour
plot of a bimodal (unnormalized) target pdf π(x) is depicted with solid line whereas the
j-th (unnormalized) proposal pdf qj(x) is shown with dashed line.

5.1. Proposed solutions

Below, we discuss different possible solutions, ordered for increasing the-
oretical complexity and practical interest. It is important to remark that
the change of the analytic form of the weights is not a solution as shown in
Appendix A.
First solution. First of all, let us consider the possibility of using a greater
number of tries keeping fixed the number N of proposal pdfs, i.e., denoting
with P the number of tries we have P > N with P = kN with k ∈ N. The
problem described above could be solve increasing P , when the used weights
are importance weights (with other kind of weights is not guaranteed). If
xt−1 is located in a tail of qj, the value P , required to solve the issue, could
be huge. However, this trivial solution entails an increase of the computa-
tional cost in terms of evaluations of the target function. In the sequel, we
introduce alternative solutions which do not require to increase the compu-
tational cost and are valid for any possible kind of weight functions, used
within I-MTM.
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Second solution. The problem described above disappears if we consider
a unique proposal pdf defined as mixture, i.e.,

ψ(x) =
1

N

N∑
n=1

qn(x).

Hence, in this case, we draw z1, . . . , zN from ψ(x) and the weights are

w(zn) =
π(zn)

ψ(zn)
.

We can observe that in the denominator of the importance weight all the
components qn’s, in this case. Let us assume that the previous state of the
chain xt−1 was generated from the k-th component of the mixture, i.e., qk(x),
in a previous iteration, and the selected candidate zj has been drawn from
qj(x), by definition. In this scenario, both pdfs, qk and qj, are involved simul-
taneously in the denominator of importance weights, avoiding the problem
previously described. Although the mixture ψ(x) takes into account all the
proposal pdfs qn’s, unlike in the I-MTM in Table 2, in this case only a subset
of the components {q1(x), . . . , qN(x)} participates providing candidates, at
each iteration. To avoid this drawback, see below the next solution.
Third solution. The joint use of the functions q1(x), . . . , qN(x) (with equal
proportion, at each iteration) in general increases the robustness of the re-
sulting algorithm. Namely, if no information is available to choose the best
proposal in the set {q1(x), . . . , qN(x)}, a more robust strategy consists on
employing always the complete set of functions. The deterministic mixture
(DM) approach (Veach and Guibas, 1995; Owen and Zhou, 2000; Elvira et al.,
2015), successfully applied in different sophisticated Monte Carlo algorithms
(Cornuet et al., 2012; Martino et al., 2015b,c), provides a possible solution.
Indeed, using the DM approach, we can draw one sample zn from each pro-
posal pdf qn(x), i.e.,

z1 ∼ q1(x), . . . , zN ∼ qN(x),

exactly as in step 1 of Table 2, and then assign the corresponding DM weights

w(zn) =
π(zn)

ψ(zn)
=

π(zn)
1
N

∑N
n=1 qn(x)

, n = 1, . . . , N.

It is possible to show that this approach is valid and it can be interpreted as
variance reduction technique for sampling from a mixture of pdfs. Namely,
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we use a quasi-Monte Carlo approach for generating the indices jn’s, i.e., the
determinist sequence j1 = 1, j2 = 2, . . . , jn = N , and then zn ∼ p(x|jn) =
qn(x) for n = 1, . . . , N . The DM approach improves the performance of
the IS numerical approximation (Owen and Zhou, 2000; Elvira et al., 2015).
Observe that, also in this case, we solve the issue, since again all the proposals
are included in the denominator of the weights, and we always use all the
proposals q1, . . . , qN at each iteration (as in Table 2).

6. Numerical simulations: localization in a wireless sensor network

We consider the problem of positioning a target in a two-dimensional
space using range measurements Ali et al. (2007); Fitzgerald (2001). More
formally, we consider a random vector X = [X1, X2]

> denoting the target’s
position in R2. The measurements are obtained from 6 sensors located at
h1 = [−5, 1]>, h2 = [−2, 6]>, h3 = [0, 0]>, h4 = [5,−6]>, h5 = [6, 4]> and
h6 = [−4,−4]>, and the observation equations are given by

Rj = −10 log

(
||X− hj||

0.3

)
+ Ωj, j = 1, . . . , 6, (13)

where Ωj are i.i.d. Gaussian random variables, Ωj ∼ N (ωj; 0, 5). Let us
assume to receive the observation vector r = [26, 26.5, 25, 28, 28, 25.3]>. In
order to perform Bayesian inference, we consider a non-informative prior over
X (i.e., an improper uniform density on R2), and study the posterior pdf,
π̄(x) = p(x|r) ∝ p(r|x)p(x). A contour plot of π̄(x) ∝ π(x) is shown in
Figure 1.

We perform different MTM schemes for drawing samples from the poste-
rior π̄(x). In order to highlight the described issues, we decide the starting
point of the chain at x0 = [−6,−6]> forcing the chain to escape from a
region of low probability of π̄(x). We run 500 independent simulations of
different MTM schemes with t = 1, . . . , T = 2000, and compute the expected
time needed for the chain to escape from the region around x0 and reach the
region containing the modes of the target. For this purpose, at each itera-
tion of the algorithm, we calculate the Euclidean distances d1,t = ||xt − x0||
and d2,t = ||xt − µ|| where µ = Eπ[X] = [−0.753, 0.037]> is the expected
value of X ∼ π̄(x).2 At each run, we obtain the first iteration τ ∗ such that

2We have computed the vector Eπ[X] numerically, using a computational expensive
thin grid in R2.
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d1,τ∗ > d2,τ∗ , hence τ ∗ can interpreted as the time that the chain remained
trapped around x0, in the specific run ( see Figures 3 as examples of τ ∗).
Cleary, in our case, 1 ≤ τ ∗ ≤ T = 2000. We repeat the procedure for 500
independent runs, in order to approximates the expected time E[τ ∗].
RW-MTM. For the random walk MTM method, we consider a Gaussian
proposal q(x|xt−1) = N (x; xt−1,Σ) where Σ = σ2I2 with σ ∈ {0.5, 0.8, 1}.
We test different averaged number of tries Ñ ∈ {50, 100, 200, 500, 1000}.
Thus, in the standard RW-MTM scheme, we set N = Ñ , whereas in the pro-
posed mixture of MTM kernels in Eq. (9), we consider M = 3 and N1 = 1,

N2 = Ñ , N3 = 2Ñ − 1, so that we have always

Ñ =
N1 +N2 +N3

3
.

Therefore, the averaged computational cost is the same in both schemes,
in terms of evolutions of the target distribution. The results, in terms of
the expected number of iterations E[τ ∗], are provided in Table 3. First of
all, observe that, in general, E[τ ∗] grows if the number of tries N increases
especially for the standard RW-MTM method (recall that for the standard

RW- MTM scheme N = Ñ). The expected number of iterations E[τ ∗] of
the novel MTM technique with variable number of tries (introduced in Sec-
tion 3.1) is always a smaller than the corresponding value of the standard
RW-MTM method. Namely, the novel scheme always outperforms the stan-
dard one, escaping from the region around x0 and reaching the modes of π̄(x)
more quickly, whereas the standard RW-MTM method remains stuck around
x0 for several iterations, prejudicing its performance. Figures 3 shows the
improvement in the mixing with the proposed solution with respect to the
standard RW-MTM technique.
I-MTM. For the I-MTM scheme, we consider N = 2 proposal pdfs and the
also P = N = 2 number of tries (exactly as in the algorithm described in
Table 2). Furthermore, the proposal pdfs as both Gaussians, specifically,
qn(x) = N (x; µn,Σ), with n = 1, 2 and µ1 = [−6,−6]>, µ2 = [0, 0]> in the
first configuration (denoted as Conf1), and µ1 = [−6,−6]>, µ2 = [−1,−2]>

in a second one (denoted as Conf2). Thus, the second proposal pdf is al-
ways well-located, unlike the first one. The covariance matrix is the same
for both proposals, Σ = σ2I2, and we test several values of σ,, i.e., σ ∈
{1.25, 1.3, 1.35, 1.4}. As alternative scheme we consider the use of the de-
terminist mixture approach proposed in Section 5.1. We compute again the
expected number of iterations E[τ ∗] for reaching the modes starting from
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x0 = [−6,−6]> and set T = 4000 as length of the chain, in this case. The
results are provided in Table 4. We can observe that with the determinist
mixture approach the chain is able to jump easily to the regions of high prob-
ability of π, unlike with the standard I-MTM scheme. This occurs for every
value of σ. With the standard I-MTM scheme the chain remains trapped
around x0 for several iterations jeopardizing the performance of the algo-
rithm.

Table 3: Expected number of iterations E[τ∗] required to escape from the region around
x0 = [−6,−6]> with RW-MTM.

Scheme σ Ñ = 50 Ñ = 100 Ñ = 200 Ñ = 500 Ñ = 1000
standard 0.5 101.922 165.320 276.454 431.606 601.050

novel 67.237 72.349 81.253 92.798 88.444
standard 0.8 205.299 367.358 612.442 1098.5 1363.1

novel 49.711 51.557 49.405 49.706 56.145
standard 1 237.326 443.080 709.808 784.644 699.614

novel 43.436 41.236 33.906 37.812 39.270

Table 4: Expected number of iterations E[τ∗] required to escape from the region around
x0 = [−6,−6]> with I-MTM.

Scheme Conf σ = 1.25 σ = 1.3 σ = 1.35 σ = 1.4
standard 1 2967.6 1185.6 128.102 15.610

novel 7.338 10.198 13.652 10.834
standard 2 3015.6 1212.9 139.816 20.548

novel 10.130 20.454 6.989 15.920

7. Conclusions

In this work, we have described different scenarios where MTM schemes
have not the desired behavior, preventing the fast exploration of the state
space. These drawbacks cannot be solved simply increasing the computa-
tional effort, in terms of used number of tries. We have restricted the descrip-
tion of the problematic cases considering only the importance weights for the
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Figure 3: (a)-(b)-(c) Realizations of the standard RW-MTM method with (a) N = Ñ =
200 (τ∗ = 750, in this specific run), (a) N = Ñ = 500 (τ∗ = 1214) and (c) N = Ñ = 1000
(τ∗ = 1558). (d)-(e)-(f) Realizations of the novel method with (a) Ñ = 200 (τ∗ = 43, in
this run), (a) Ñ = 500 (τ∗ = 52) and (c) Ñ = 1000 (τ∗ = 15).

sake of simplicity, but the issues persist with other generic weight functions.
Furthermore, we provide and discuss different solutions that solved the pre-
viously described problems, as also shown with numerical simulations. The
proposed MTM schemes are in general more robust than the corresponding
standard MTM techniques.
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Appendix A. Alternative weights in I-MTM

Other possible weight functions can be employed within MTM schemes
without jeopardizing the ergodicity of the Markov chain. Let us consider the
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I-MTM scheme in Table 2 using a generic weight function wn(x), bounded
and positive, i.e., wn(x) ≥ 0, for all n. As shown in (Martino and Read,
2013; Pandolfi et al., 2010), the adequate probability for accepting the jump
from xt−1 to zj in this case is

α(xt−1, zj) = min

[
1,
π(zj)qj(xt−1)

π(xt−1)qj(zj)

WX

WZ

]
, (A.1)

where

WZ =
wj(zj)∑N
n wn(zn)

, WX =
wj(xt−1)∑N

n wn(zn)− wj(zj) + wj(xt−1)
.

If the chosen weights are the importance weights, wn(x) = π(x)
qn(x)

, then Eq.

(A.1) coincides with Eq. (12). Moreover, note that, in any case, 0 ≤ WZ ≤ 1
and 0 ≤ WX ≤ 1. As explained in Section 5, in general, it often occurs that
qj(zj) > qj(xt−1) since zj whereas xt−1 has been generated from a generic

qk with k ∈ {1, . . . , N}. Thus,
π(zj)qj(xt−1)

π(xt−1)qj(zj)
tends to be close to zero and as

consequence often α ≈ 0, regardless to the choice of the weight functions.
Observe that if we employ the set of proposal pdfs qj(x)’s as a mixture

ψ(x) = 1
N

∑N
n=1 qn(x) as suggested in Section 5.1, the problem is solved also

in this case.
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