Three conjectures in Euclidean geometry

Dao Thanh Oai

July 30, 2015

Abstract

In this note, I introduce three conjectures of generalization of the Lester circle theorem, the Parry circle theorem, the Zeeman-Gossard perspector theorem respectively

1 A conjectures of generalization of the Lester circle theorem

Theorem 1 (Lester). Let ABC be a triangle, then the two Fermat points, the nine-point center, and the circumcenter lie on the same circle.

Conjecture 2 ([1], [2], [3]). Let P be a point on the Neuberg cubic. Let P_A be the reflection of P in line BC, and define P_B and P_C cyclically. It is known that the lines AP_A , BP_B , CP_C concur. Let Q(P) be the point of concurrence. Then two Fermat points, P, Q(P) lie on a circle.

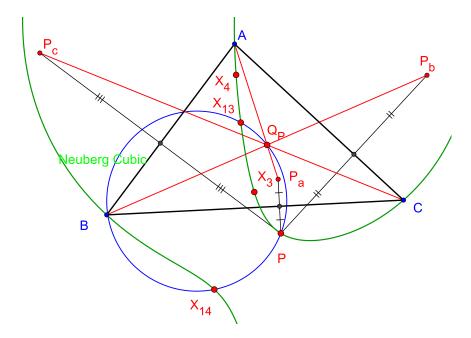


Figure 1: Conjecture 2

When P = X(3), it is well-know that Q(P) = Q(X(3)) = X(5), the conjucture becomes Lester theorem.

2 A conjecture of generalization of the Parry circle theorem

Theorem 3 (Parry). Let ABC be a triangle, then the triangle centroid, the first and the second isodynamic points, the far-out point, the focus of the Kiepert parabola, the Parry point and two points in Kimberling centers X(352) and X(353) lie on a circle.

Conjecture 4 ([4], [5]). Let a rectangular circumhyperbola of ABC, let L be the isogonal conjugate line of the hyperbola. The tangent line to the hyperbola at X(4) meets L at point K. The line through K and center of the hyperbola meets the hyperbola at F_+ , F_- . Let I_+ , I_- , G be the isogonal conjugate of F_+ , F_- and K respectively. Let F be the inverse point of G with respect to the circumcircle of ABC. Then five points I_+ , I_- , G, X(110), F lie on a circle. Furthermore K lie on the Jerabek hyperbola.

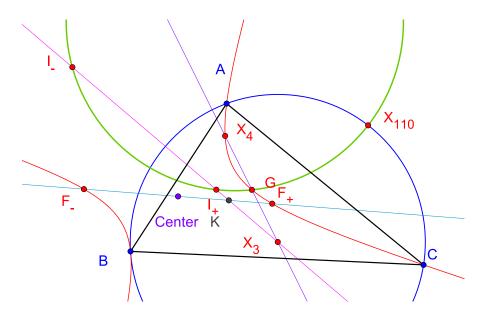


Figure 2: Conjecture 4

When the hyperbolar is the Kiepert hyperbolar the conjecture be comes Parry circle theorem.

3 A conjecture of generalization of the Zeeman-Gossard perspector theorem and related

Theorem 5 ([6]). Let ABC be a triangle, the three Euler lines of the triangles formed by the Euler line and the sides, taken by twos, of a given triangle, form a triangle perspective with the given triangle and having the same Euler line.

Conjecture 6 ([7], [8]). Let ABC be a triangle, Let P_1, P_2 be two points on the plane, the line P_1P_2 meets BC, CA, AB at A_0, B_0, C_0 respectively. Let A_1 be a point on the plane such that B_0A_1 parallel to CP_1 , C_0A_1 parallel to BP_1 . Define B_1, C_1 cyclically. Let A_2 be a point on the plane such that B_0A_2 parallel to CP_2 , C_0A_2 parallel to BP_2 . Define B_2, C_2 cyclically. The triangle formed by three lines A_1A_2, B_1B_2, C_1C_2 homothety and congruent to ABC, the homothetic center lie on P_1P_2 .

Conjecture 7 ([7], [8]). Notation in conjecture 6, then the Newton lines of four quadrilaterals bounded by four lines AB, AC, A_1A_2 , L; four lines BC, BA, B_1B_2 , L; four lines CA, CB, C_1C_2 , L; and four lines AB, BC, CA, L pass through the homothetic center.

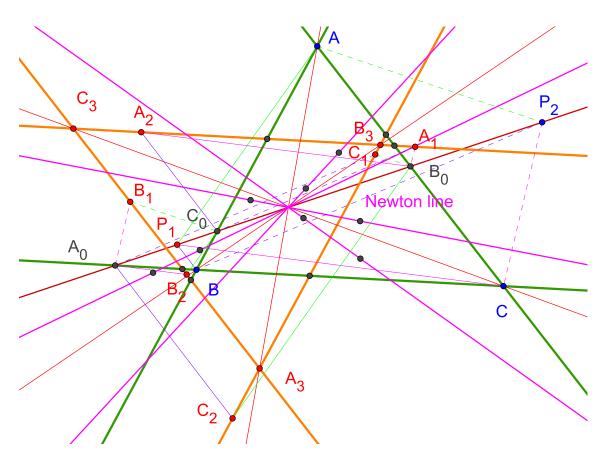


Figure 3: Conjectures 6 and 7

References

- [1] http://faculty.evansville.edu/ck6/encyclopedia/ETCPart5.html#X7668
- [2] https://groups.yahoo.com/neo/groups/AdvancedPlaneGeometry/conversations/topics/2546
- [3] http://tube.geogebra.org/m/1276919
- $[4] \ https://groups.yahoo.com/neo/groups/AdvancedPlaneGeometry/conversations/messages/2255$
- [5] http://tube.geogebra.org/material/show/id/1440565
- [6] http://faculty.evansville.edu/ck6/tcenters/recent/gosspersp.html
- [7] https://groups.yahoo.com/neo/groups/AdvancedPlaneGeometry/conversations/messages/2643
- [8] http://tube.geogebra.org/m/1430179

Dao Thanh Oai: Cao Mai Doai-Quang Trung-Kien Xuong-Thai Binh-Viet Nam E-mail address: daothanhoai@hotmail.com