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Foreword 

Since no fusion theory neither fusion rule 

fully satisfy all needed applications, the author has 

proposed since 2004 a Unification of Fusion 

Theories and a Unification /   Combination of 

Fusion Rules in solving problems/applications. For 

each particular application, one selects the most 

appropriate fusion space and fusion model, then the 

rules, and algorithms of implementation. 

We are working in the Unification of the 

Fusion Theories and Rules (UFTR), which looks 

like a cooking recipe, better we would say like a 

logical chart for a computer programmer, but we do 

not see another method to comprise/unify all things. 

The unification scenario presented herein, 

which is now in an incipient form, should 

periodically be updated incorporating new 

discoveries from the fusion and engineering 

research. 

The author has pledged in various papers, 

conference presentations, and scientific grant 

applications (between 2004-2015) for the 

unification of fusion theories, rules, image 

segmentation procedures, filter algorithms, and 

target tracking methods for more accurate 

applications to our real world problems (see 

References below). 
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1. Unification of Fusion Theories (UFT) 

1.1. Introduction. 
Each theory works well for some applications, but not 

for all. We extended the power set (from Dempster-Shafer 

Theory) and hyper-power set (from Dezert-Smarandache 

Theory) to a Boolean algebra called super-power set 

obtained by the closure of the frame of discernment under 

union, intersection, and complement of sets (for non-

exclusive elements one considers as complement the fuzzy 

or neutrosophic complement). All bba’s (basic belief 

assignments) and rules are redefined on this Boolean algebra. 

A similar generalization has been previously used by 

Guan-Bell (1993) for the Dempster-Shafer rule using 

propositions in sequential logic, herein we reconsider the 

Boolean algebra for all fusion rules and theories but using 

sets instead of propositions, because generally it is harder to 

work in sequential logic with summations and inclusions 

than in the set theory. 

1.2. Fusion Space. 

For n ≥ 2 let Θ =  {𝜃1, 𝜃2, … , 𝜃𝑛}  be the frame of 

discernment of the fusion problem/application under 

consideration. Then (Θ, ∪, ∩, 𝒞), Θ  closed under these 

three operations: union, intersection, and complementation 

of sets respectively, forms a Boolean algebra. With respect to 

the partial ordering relation, the inclusion ⊆, the minimum 

element is the empty set ϕ, and the maximal element is the 

total ignorance 𝐼 = ⋃ 𝜃𝑖𝑛
𝑖=1 . 
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Similarly one can define: (Θ, ∪, ∩, ∖),  for sets, Θ 

closed with respect to each of these operations: union, 

intersection, and difference of sets respectively. (Θ, ∪, ∩,

𝒞) and (Θ, ∪, ∩, ∖) generate the same super-power set 𝑆Θ 

closed under ∪, ∩, 𝒞 and ∖ because for any 𝐴, 𝐵 ∈ 𝑆Θ one 

has 𝒞𝐴 = 𝐼 ∖ 𝐴 and reciprocally 𝐴 ∖ 𝐵 = 𝐴 ∩ 𝒞𝐵. 

  If one considers propositions, then forms a Linden-

baum algebra in sequential logic, which is isomorphic with 

the above (Θ, ⋁, ⋀, ¬) Boolean algebra. 

By choosing the frame of discernment Θ closed under 

∪ only, one gets DST, Yager’s, TBM, DP theories. Then 

making Θ closed under both ∪, ∩, one gets DSm theory. 

While, extending Θ for closure under ∪, ∩ and 𝒞, one also 

includes the complement of set (or negation of proposition if 

working in sequential logic); in the case of non-exclusive 

elements in the frame of discernment one considers a fuzzy 

or neutrosophic complement. Therefore the super-power set 

(Θ, ∪, ∩, 𝒞) includes all the previous fusion theories. 

The power set 2Θ, used in DST, Yager’s, TBM, DP, 

which is the set of all subsets of Θ, is also a Boolean algebra, 

closed under ∪, ∩ and 𝒞, but does not contain intersections 

of elements from Θ. 

The Dedekind distributive lattice 𝐷Θ used in DSmT, 

is closed under ∪, ∩  and if negations/complements arise 

they are directly introduced in the frame of discernment, say 

Θ′, which is then closed under ∪, ∩. 

Unlike others, DSmT allows intersections, general-

izing the previous theories. 

The Unifying Theory contains intersections and 

complements as well. 
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In a particular case, for a frame of discernment with 

two elements 𝛩 = {𝐴, 𝐵}, we remark that: 

a) in classical probability (Bayesian) theory:  

𝑃(𝐴) + 𝑃(𝐵) = 1,     (1) 

where 𝑃(𝑋) means probability of 𝑋;  

b) in Dempster-Shafer Theory, which is a 

generalization of Bayesian theory:  

𝑚𝐷𝑆𝑇(𝐴) + 𝑚𝐷𝑆𝑇(𝐵) + 𝑚𝐷𝑆𝑇(𝐴 ∪ 𝐵) = 1; (2) 

c) in Dezert-Smarandache Theory, which is a 

generalization of Dempster-Shafer Theory:  

𝑚𝐷𝑆𝑚𝑇(𝐴) + 𝑚𝐷𝑆𝑚𝑇(𝐵) + 𝑚𝐷𝑆𝑚𝑇(𝐴 ∪ 𝐵) + 

+ 𝑚𝐷𝑆𝑚𝑇(𝐴 ∩ 𝐵) = 1;   (3) 

d) while in the Unification of Fusion Theory, which is 

a generalization of all of the above:  

𝑚𝑈𝐹𝑇(𝐴) + 𝑚𝑈𝐹𝑇(𝐵) + 𝑚𝑈𝐹𝑇(𝐴 ∪ 𝐵) + 

+ 𝑚𝑈𝐹𝑇(𝐴 ∩ 𝐵) + 𝑚𝑈𝐹𝑇(¬𝐴) + 𝑚𝑈𝐹𝑇(¬𝐵) + 

+ 𝑚𝑈𝐹𝑇(¬𝐴 ∪ ¬𝐵) + 𝑚𝑈𝐹𝑇(¬𝐴 ∩ ¬𝐵) = 1, (4) 

as V. Christianto observed, where ¬𝑋 means the negation 

(or complement) of 𝑋. 

The number of terms in the left side of this relationship 

is equal to: 2^(2𝑛 − 1)  and represents the number of all 

possible combinations of distinct parts in the Venn diagram, 

where 𝑛 is the cardinal of 𝛩. 

Let’s consider a frame of discernment 𝛩  with 

exclusive or non-exclusive hypotheses, exhaustive or non-

exhaustive, closed or open world (all possible cases). 

We need to make the remark that in case when these 

𝑛 ≥ 2  elementary hypotheses 𝜃1, 𝜃2, … , 𝜃𝑛  are exhaustive 

and exclusive one gets the Dempster-Shafer Theory, Yager’s, 

Dubois-Prade Theory, Dezert-Smarandache Theory, while 
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for the case when the hypotheses are non-exclusive one gets 

Dezert-Smarandache Theory, but for non-exhaustivity one 

gets TBM. 

An exhaustive frame of discernment is called closed 

world, and a non-exhaustive frame of discernment is called 

open world (meaning that new hypotheses might exist in the 

frame of discernment that we are not aware of). 𝛩 may be 

finite or infinite.  

Let 𝑚𝑗: 𝑆Θ → [0, 1], 1 ≤ 𝑗 ≤ 𝑠,    (5) 

be 𝑠 ≥ 2 basic belief assignments, (when bba’s are working 

with crisp numbers), or with subunitary subsets,  

𝑚𝑗: 𝑆Θ → 𝜌[0. 1],     (6) 

where 𝜌[0. 1]  is the set of all subsets of the interval 

[0, 1] (when dealing with very imprecise information). 

Normally, the sum of crisp masses of a bba, 𝑚(. ), is 1,  

i.e. ∑ 𝑚(𝑋) = 1𝑋∈𝑆^𝑇 .     (7) 

1.3. Incomplete and Paraconsistent Information. 
For incomplete information the sum of a bba 

components can be less than 1 (not enough information 

known), while in paraconsistent information the sum can 

exceed 1 (overlapping contradictory information). 

The masses can be normalized (i.e. getting the sum of 

their components = 1), or not (sum of components < 1 in 

incomplete information; or > 1  in paraconsistent infor-

mation).  

For a bba valued on subunitary subsets, one can 

consider, as normalization of 𝑚(. ), either: 

∑ 𝑠𝑢𝑝 {𝑚(𝑋)} = 1𝑥∈𝑆^𝑇 ,    (8) 



Unification of Fusion Theories, Rules, Filters, Image 

Fusion and Target Tracking Methods (UFT)  

 

15 
 

or that there exist crisp numbers 𝑥 ∈ 𝑋 for each 𝑋 ∈ 𝑆Θ such 

that ∑ 𝑚(𝑥) − 1𝑋∈𝑆^𝑇
𝑥∈𝑋

.     (9) 

Similarly, for a bba 𝑚(. ) valued on subunitary subsets 

dealing with paraconsistent and incomplete information 

respectively: 

a) for incomplete information, one has 

∑ 𝑠𝑢𝑝 {𝑚(𝑋)} < 1𝑥∈𝑆^𝑇 ,   (10) 

b) while for paraconsistent information, one has 

∑ 𝑠𝑢𝑝 {𝑚(𝑋)} > 1𝑥∈𝑆^𝑇 ,     (11) 

and there do not exist crisp numbers 𝑥 ∈ 𝑋 for each 𝑋 ∈ 𝑆Θ 

such that  

∑ 𝑚(𝑥) = 1𝑥∈𝑆^𝑇
𝑥∈𝑋

.    (12) 

1.4. Specificity Chains. 
We use the min principle and the precocious/prudent 

way of computing and transferring the conflicting mass. 

Normally by transferring the conflicting mass and by 

normalization we diminish the specificity. 

If 𝐴 ∩ 𝐵 is empty, then the mass is moved to a less 

specific element 𝐴 (also to 𝐵), but if we have a pessimistic 

view on 𝐴  and 𝐵  we move the mass 𝑚(𝐴 ∩ 𝐵)  to 𝐴 ∪ 𝐵 

(entropy increases, imprecision increases), and even more if 

we are very pessimistic about 𝐴  and 𝐵 : we move the 

conflicting mass to the total ignorance in a closed world, or 

to the empty set in an open world. 

Specificity Chains: 

a) From specific to less and less specific (in a closed 

world):  

(𝐴 ∩ 𝐵) ⊂ 𝐴 ⊂ (𝐴 ∪ 𝐵) ⊂ 𝐼, 
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or    (𝐴 ∩ 𝐵) ⊂ 𝐵 ⊂ (𝐴 ∪ 𝐵) ⊂ 𝐼.   (13) 

Also from specific to unknown (in an open world): 

𝐴 ∩ 𝐵 → 𝜙.     (14) 

 b) And similarly for intersections of more elements:  

𝐴 ∩ 𝐵 ∩ 𝐶, etc. 

𝐴 ∩ 𝐵 ∩ 𝐶 ⊂ 𝐴 ∩ 𝐵 ⊂ 𝐴 ⊂ (𝐴 ∪ 𝐵) 

⊂ (𝐴 ∪ 𝐵 ∪ 𝐶) ⊂ 𝐼    (15) 

or  

(𝐴 ∩ 𝐵 ∩ 𝐶) ⊂ (𝐵 ∩ 𝐶) ⊂ 𝐵 ⊂ (𝐴 ∪ 𝐵) 

⊂ (𝐴 ∪ 𝐵 ∪ 𝐶) ⊂ 𝐼    (16) 

etc. in a closed world. 

Or 𝐴 ∩ 𝐵 ∩ 𝐶 → 𝜙 in an open world.  (17) 

c) Also, in a closed world:  

𝐴 ∩ (𝐵 ∪ 𝐶) ⊂ 𝐵 ∪ 𝐶 ⊂ (𝐵 ∪ 𝐶) ⊂ (𝐴 ∪ 𝐵 ∪ 𝐶) 

⊂ 𝐼      (18) 

or  

𝐴 ∩ (𝐵 ∪ 𝐶) ⊂ 𝐴 ⊂ (𝐴 ∪ 𝐵) ⊂ (𝐴 ∪ 𝐵 ∪ 𝐶) 

⊂ 𝐼      (19) 

Or 𝐴 ∩ (𝐵 ∪ 𝐶) → 𝜙 in an open world.  (20) 

1.5. Static and Dynamic Fusion. 
According to Wu Li from NASA we have the 

following classification and definitions: 

 Static fusion means to combine all belief functions 

simultaneously. 

 Dynamic fusion means that the belief functions 

become available one after another sequentially, and 

the current belief function is updated by combining 

itself with a newly available belief function.  
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1.6. An Algorithm (or Scenario) for the 

Unification of Fusion Theories. 
Since everything depends on the application/problem 

to solve, this scenario looks like a logical chart designed by 

the programmer in order to write and implement a computer 

program, or like a cooking recipe. Here it is the scenario 

attempting for a unification and reconciliation of the fusion 

theories and rules:  

1) If all sources of information are reliable, then apply 

the conjunctive rule, which means consensus between them 

(or their common part). 

2) If some sources are reliable and others are not, but 

we don’t know which ones are unreliable, apply the 

disjunctive rule as a cautious method (and no transfer or 

normalization is needed). 

3) If only one source of information is reliable, but we 

don’t know which one, then use the exclusive disjunctive 

rule based on the fact that 𝑋1 ∨ 𝑋2 ∨ … ∨ 𝑋𝑛 means either 𝑋1 

is reliable, or 𝑋2, or and so on, or 𝑋𝑛, but not two or more in 

the same time.  

4) If a mixture of the previous three cases, in any 

possible way, use the mixed conjunctive-disjunctive rule. 

Suppose we have four sources of information and we 

know that: either the first two are telling the truth, or the 

third, or the fourth. The mixed formula becomes:  

𝑚∩∪(𝜙) = 0, and ∀𝐴 ∈ 𝑆Θ ∖ 𝜙, one has  (21) 

𝑚∩∪(𝐴)

= ∑ 𝑚1(𝑋1)𝑚2(𝑋2)𝑚3(𝑋3)𝑚4(𝑋4)𝑋1, 𝑋2,𝑋3,𝑋4∈𝑆^Θ 

((𝑋1∩𝑋2)∪𝑋3)𝑒∪𝑋4=𝐴

. 
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  5) If we know the sources which are unreliable, we 

discount them. But if all sources are fully unreliable (100%), 

then the fusion result becomes vacuum bba (i.e. 𝑚(Θ) = 1, 

and the problem is indeterminate. We need to get new 

sources which are reliable or at least they are not fully 

unreliable. 

6) If all sources are reliable, or the unreliable sources 

have been discounted (in the default case), then use the DSm 

classic rule (which is commutative, associative, Markovian) 

on Boolean algebra (Θ, ∪, ∩, 𝒞), no matter what contra-

dictions (or model) the problem has. I emphasize that the 

super-power set 𝑆Θ  generated by this Boolean algebra 

contains singletons, unions, intersections, and complements 

of sets. 

7) If the sources are considered from a statistical point 

of view, use Murphy’s average rule (and no transfer or 

normalization is needed). 

8) In the case the model is not known (the default case), 

it is prudent/cautious to use the free model (i.e. all 

intersections between the elements of the frame of dis-

cernment are nonempty)  and DSm classic rule on 𝑆Θ, and 

later if the model is found out (i.e. the constraints of empty 

intersections become known), one can adjust the conflicting 

mass at any time/moment using the DSm hybrid rule. 

9) Now suppose the model becomes known [i.e. we 

find out about the contradictions (=empty intersections) or 

consensus (=non-empty intersections) of the problem/ 

application]. Then: 

9.1) If an intersection (𝐴 ∩ 𝐵) is not empty, we keep 

the mass 𝑚(𝐴 ∩ 𝐵)  on (𝐴 ∩ 𝐵) , which means consensus 
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(common part) between the two hypotheses 𝐴  and 𝐵  (i.e. 

both hypotheses 𝐴 and 𝐵 are right) [here one gets DSmT]. 

9.2) If the intersection (𝐴 ∩ 𝐵) = 𝜙 is empty, meaning 

contradiction, we do the following: 

9.2.1) if one knows that between these two hypotheses 

𝐴 and 𝐵 one is right and the other is false, but we don’t know 

which one, then one transfers the mass 𝑚(𝐴 ∩ 𝐵) to (𝐴 ∪ 𝐵), 

since 𝐴 ∪ 𝐵 means at least one is right [here one gets Yager’s 

if 𝑛 = 2, or Dubois-Prade, or DSmT];  

9.2.2) if one knows that between these two hypotheses 

𝐴 and 𝐵 one is right and the other is false, and we know 

which one is right, say hypothesis 𝐴 is right and 𝐵 is false, 

then one transfers the whole mass 𝑚(𝐴 ∩ 𝐵)  to hypothesis 

𝐴 (nothing is transferred to 𝐵); 

9.2.3) if we don’t know much about them, but one has 

an optimistic view on hypotheses 𝐴  and 𝐵 , then one 

transfers the conflicting mass 𝑚(𝐴 ∩ 𝐵)  to 𝐴  and 𝐵  (the 

nearest specific sets in the Specificity Chains) [using 

Dempster’s, PCR2-5]; 

9.2.4) if we don’t know much about them, but one has 

a pessimistic view on hypotheses 𝐴 and 𝐵, then one transfers 

the conflicting mass 𝑚(𝐴 ∩ 𝐵)  to (𝐴 ∪ 𝐵)  (the more 

pessimistic the further one gets in the Specificity Chains: 

(𝐴 ∩ 𝐵) ⊂ 𝐴 ⊂ (𝐴 ∪ 𝐵) ⊂ 𝐼 ; this is also the default case 

[using DP’s, DSm hybrid rule, Yager’s]; if one has a very 

pessimistic view on hypotheses 𝐴 and 𝐵, then one transfers 

the conflicting mass 𝑚(𝐴 ∩ 𝐵) to the total ignorance in a 

closed world [Yager’s, DSmT], or to the empty set in an open 

world [TBM]; 
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9.2.5.1) if one considers that no hypothesis between 𝐴 

and 𝐵 is right, then one transfers the mass 𝑚(𝐴 ∩ 𝐵) to other 

non-empty sets (in the case more hypotheses do exist in the 

frame of discernment) - different from 𝐴, 𝐵, 𝐴 ∪ 𝐵 - for the 

reason that: if 𝐴 and 𝐵 are not right then there is a bigger 

chance that other hypotheses in the frame of discernment 

have a higher subjective probability to occur; we do this 

transfer in a closed world [DSm hybrid rule]; but, if it is an 

open world, we can transfer the mass 𝑚(𝐴 ∩ 𝐵)  to the 

empty set leaving room for new possible hypotheses [here 

one gets TBM]; 

9.2.5.2) if one considers that none of the hypotheses 𝐴, 

𝐵  is right and no other hypothesis exists in the frame of 

discernment (i.e. 𝑛 = 2  is the size of the frame of 

discernment), then one considers the open world and one 

transfers the mass to the empty set [here DSmT and TBM 

converge to each other]. 

Of course, this procedure is extended for any 

intersections of two or more sets: 𝐴 ∩ 𝐵 ∩ 𝐶, etc. and even 

for mixed sets: 𝐴 ∩ (𝐵 ∪ 𝐶), etc. 

If it is a dynamic fusion in a real time and associativity 

and/or Markovian process are needed, use an algorithm 

which transforms a rule (which is based on the conjunctive 

rule the previous result of the conjunctive rule and, 

depending of the rule, other data. Such rules are called quasi-

associative and quasi-Markovian. 

Some applications require the necessity of decaying 

the old sources because their information is considered to be 

worn out. 
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If some bba is not normalized (i.e. the sum of its 

components is < 1 as in incomplete information, or > 1 as 

in paraconsistent information) we can easily divide each 

component by the sum of the components and normalize it. 

But also it is possible to fusion incomplete and para-

consistent masses, and then normalize them after fusion. Or 

leave them unnormalized since they are incomplete or para-

consistent. 

PCR5 does the most mathematically exact (in the 

fusion literature) redistribution of the conflicting mass to the 

elements involved in the conflict, redistribution that exactly 

follows the tracks of the conjunctive rule. 

1.7. Examples. 

1.7.1. Bayesian Example. 

Let Θ = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸} be the frame of discernment.  
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Table 1. Part 1. Bayesian Example using the Unified Fusion 

Theories rule regarding a mixed redistribution of partial conflicting 

masses. 

 
Table 1. Part 2. Bayesian Example using the Unified Fusion 

Theories rule regarding a mixed redistribution of partial conflicting 

masses. 
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Table 1. Part 3. Bayesian Example using the Unified Fusion 

Theories rule regarding a mixed redistribution of partial conflicting 

masses. 

We keep the mass 𝑚12(𝐵 ∩ 𝐶) = 0.06  on 𝐵 ∩ 𝐶 

(eleventh column in Table 1. Part 1) although we do not know 

if the intersection 𝐵 ∩ 𝐶 is empty or not (this is considered 

the default model), since in the case when it is empty one 

considers an open world because 𝑚12(𝜙) = 0.06, meaning 

that there might be new possible hypotheses in the frame of 

discernment, but if 𝐵 ∩ 𝐶 ≠ 𝜙  one considers a consensus 

between 𝐵 and 𝐶. Later, when finding out more information 

about the relation between 𝐵  and 𝐶 , one can transfer the 

mass 0.06 to 𝐵 ∪ 𝐶 , or to the total ignorance 𝐼, or split it 

between the elements 𝐵, 𝐶, or even keep it on 𝐵 ∩ 𝐶. 

 𝑚12(𝐴 ∩ 𝐶) = 0.17 is redistributed to A and C using 

the PCR5:  

𝑎1/0.2 = 𝑐1/0.1 = 0.02(0.2 + 0.1),  

whence  𝑎1 = 0.2(0.02/0.3)  =  0.013, 

𝑐1 =  0.1(0.02/0.3)  =  0.007. 

𝑎2/0.5 =  𝑐2/0.3 =  0.15(0.5 + 0.3), 

whence  𝑎2 =  0.5(0.15/0.8)  =  0.094, 

𝑐2 =  0.3(0.15/0.8)  =  0.056. 

Thus 𝐴 gains:  

𝑎1 + 𝑎2 = 0.013 + 0.0.094 = 0.107  

and 𝐶 gains:  
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𝑐1 + 𝑐2 =  0.007 + 0.056 =  0.063 

𝑚12(𝐵 ∩ 𝐸) = 0.02 is redistributed to 𝐵  and 𝐸  using 

the PCR5: 

𝑏/0.2 = 𝑒/0.1 = 0.02/(0.2 + 0.1), 

whence  𝑏 = 0.2(0.02/0.3) = 0.013, 

𝑒 = 0.1(0.02/0.3) = 0.007. 

Thus 𝐵 gains 0.013 and 𝐸 gains 0.007. 

Then one sums the masses of the conjunctive rule 

𝑚12 and the redistribution of conflicting masses 𝑚𝑟 

(according to the information we have on each intersection, 

model, and relationship between conflicting hypotheses) in 

order to get the mass of the Unification of Fusion Theories 

rule 𝑚𝑈𝐹𝑇. 

𝑚𝑈𝐹𝑇 , the Unification of Fusion Theories rule, is a 

combination of many rules and gives the optimal 

redistribution of the conflicting mass for each particular 

problem, following the given model and relationships 

between hypotheses; this extra-information allows the 

choice of the combination rule to be used for each 

intersection. The algorithm is presented above. 

𝑚𝑙𝑜𝑤𝑒𝑟, the lower bound believe assignment, the most 

pessimistic/prudent belief, is obtained by transferring the 

whole conflicting mass to the total ignorance (Yager’s rule) 

in a closed world, or to the empty set (Smets’ TBM) in an 

open world herein meaning that other hypotheses might 

belong to the frame of discernment. 

𝑚𝑚𝑖𝑑𝑑𝑙𝑒 , the middle believe assignment, half opti-

mistic and half pessimistic, is obtained by transferring the 

partial conflicting masses 𝑚12(𝑋 ∩ 𝑌) to the partial 

ignorance 𝑋 ∪ 𝑌 (as in Dubois-Prade theory or more general 
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as in Dezert-Smarandache theory). Another way to compute 

a middle believe assignment would be to average the 𝑚𝑙𝑜𝑤𝑒𝑟 

and 𝑚𝑢𝑝𝑝𝑒𝑟 . 

𝑚𝑢𝑝𝑝𝑒𝑟 , the upper bound believe assignment, the most 

optimistic (less prudent) belief, is obtained by transferring 

the masses of intersections (empty or non-empty) to the 

elements in the frame of discernment using the PCR5 rule of 

combination, i.e. 𝑚12(𝑋 ∩ 𝑌)  is split to the elements 

𝑋, 𝑌 (see Table 2). We use PCR5 because it is more exact 

mathematically (following backwards the tracks of the 

conjunctive rule) than Dempster’s rule, minC, and PCR1-4. 

 
Table 2. Redistribution of the intersection masses to the singletons 

A, B, C, D, E using the PCR5 rule only, needed to compute the upper 

bound belief assignment 𝑚𝑢𝑝𝑝𝑒𝑟. 

  

1.7.2. Negation/Complement Example. 

Let Θ = {𝐴, 𝐵, 𝐶, 𝐷}  be the frame of discernment. 

Since (Θ,∪,∩, 𝒞)  is Boolean algebra, the super-power set 

𝑆𝜃 includes complements/negations, intersections and 

unions. Let’s note by 𝒞(𝐵) the complement of B.  
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Table 3. Part 1. Negation/Complement Example using the 

Unified Fusion Theories rule regarding a mixed redistribution of partial 

conflicting masses. 

 
Table 3. Part 2. Negation/Complement Example using the 

Unified Fusion Theories rule regarding a mixed redistribution of partial 

conflicting masses. 
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Table 3. Part 3. Negation/Complement Example using the 

Unified Fusion Theories rule regarding a mixed redistribution of partial 

conflicting masses. 

 

Model of Negation/Complement Example. 

𝐴 ∩ 𝐵 = 𝜙, 𝐶 ⊂ 𝐵, 𝐴 ⊂ 𝒞(𝐵). 

 
Figure 1. 

 

𝑚12(𝐴 ∩ 𝐵) = 0.14. 

𝑥1/0.2 = 𝑦1/0.1 = 0.02/0.3, 

whence  𝑥1 = 0.2(0.02/0.3) = 0.013, 

𝑦1 = 0.1(0.02/0.3) = 0.007; 
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𝑥2/0.4 =  𝑦2/0.3 =  0.12/0.7, 

whence  𝑥2 =  0.4(0.12/0.7)  =  0.069, 

𝑦2 =  0.3(0.12/0.7)  =  0.051. 

Thus, 𝐴 gains: 

0.013+0.069=0.082  

and 𝐵 gains  

0.007 + 0.051 = 0.058. 

For the upper belief assignment 𝑚𝑢𝑝𝑝𝑒𝑟  one 

considered all resulted intersections from results of the 

conjunctive rule as empty and one transferred the partial 

conflicting masses to the elements involved in the conflict 

using PCR5. 

All elements in the frame of discernment were 

considered non-empty. 

1.7.3. Example with Intersection. 

Look at this: 

Suppose 

𝐴 = {𝑥 < 0.4}, 𝐵 = {0.3 < 𝑥 < 0.6}, 𝐶 = {𝑥 > 0.8} . 

The frame of discernment 𝑇 = {𝐴, 𝐵, 𝐶}  represents the 

possible cross section of a target, and there are two sensors 

giving the following bbas: 

𝑚1(𝐴) = 0.5,  𝑚1(𝐵) = 0.2,  𝑚1(𝐶) = 0.3; 

𝑚2(𝐴) = 0.4, 𝑚2(𝐵) = 0.4, 𝑚2(𝐶) = 0.2. 

 
Table 4. 
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We have a DSm hybrid model (one intersection 

A&B=nonempty). This example proves the necessity of 

allowing intersections of elements in the frame of 

discernment. [Shafer’s model does not apply here.] Dezert-

Smarandache Theory of Uncertain and Paradoxist 

Reasoning (DSmT) is the only theory that accepts 

intersections of elements. 

 

1.7.4. Another Multi-Example of UFT. 

Cases: 

1. Both sources reliable: use conjunctive rule [default 

case]: 

1.1. 𝐴 ∩ 𝐵 = 𝜙: 

1.1.1. Consensus between A and B; mass →

𝐴 ∩ 𝐵;  

1.1.2. Neither 𝐴 ∩ 𝐵  nor 𝐴 ∪ 𝐵  interest us; 

mass → 𝐴, 𝐵;  

1.2. 𝐴 ∩ 𝐵 = 𝜙: 

1.2.1. Contradiction between 𝐴  and 𝐵 , but 

optimistic in both of them; mass →

𝐴, 𝐵; 

1.2.2. One right, one wrong, but don’t know 

which one; mass → 𝐴 ∪ 𝐵; 

1.2.3. Unknown any relation between 𝐴 and 

𝐵 [default case]; mass → 𝐴 ∪ 𝐵; 

1.2.4. Pessimistic in both 𝐴 and 𝐵; mass →

𝐴 ∪ 𝐵; 

1.2.5. Very pessimistic in both 𝐴 and 𝐵; 

1.2.5.1. Total ignorance ⊃ 𝐴 ∪ 𝐵  mass →

𝐴 ∪ 𝐵 ∪ 𝐶 ∪ 𝐷 (total ignorance); 
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1.2.5.2. Total ignorance → 𝐴 ∪ 𝐵 ; mass 𝜙 

(open world); 

1.2.6. 𝐴 is right, 𝐵 is wrong; mass → 𝐴; 

1.2.7. Both 𝐴 and 𝐵 are wrong; mass → 𝐶, 𝐷; 

1.3. Don’t know if 𝐴 ∩ 𝐵 = or ≠ 𝜙 (don’t know the 

exact model); mass → 𝐴 ∩ 𝐵 (keep the mass 

on intersection till we find out more info) 

[default case]; 

2. One source reliable, other not, but not known which 

one: use disjunctive rule; no normalization 

needed. 

3. 𝑆1 reliable, 𝑆2 not reliable 20%: discount 𝑆2 for 20% 

and use conjunctive rule. 

 
Table 5. 
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2. Unification of Fusion Rules (UFR) 

We now give a formula for the unification of a class of 

fusion rules based on the conjunctive and/or disjunctive rule 

at the first step, and afterwards the redistribution of the 

conflicting and/or non-conflicting mass to the non-empty 

sets at the second step. 

Fusion of masses 𝑚1(. )  and 𝑚2(. )  is done directly 

proportional with some parameters and inversely 

proportional with other parameters (parameters that the 

hypotheses depend upon). We denote the resulting mass by 

𝑚𝑈𝐹𝑅(. ). 

a) If variable 𝑦 is directly proportional with variable 

𝑝, then 𝑦 = 𝑘1 · 𝑝, where 𝑘1 ≠ 0 is a constant. 

b) If variable 𝑦 is inversely proportional with variable 

𝑞, then 𝑦 = 𝑘2 · (1/𝑞), where 𝑘2 ≠ 0 is a constant; 

we can also say herein that 𝑦  is directly 

proportional with variable 1/𝑞. 

In a general way, we say that if 𝑦  is directly 

proportional with variables 𝑝1, 𝑝2, … , 𝑝𝑚  and inversely 

proportionally with variables 𝑞1, 𝑞2, … , 𝑞𝑛, then: 

𝑦 = 𝑘 ∙
(𝑝1∙ 𝑝2∙ …∙𝑝𝑚)

(𝑞1∙𝑞2∙ …∙ 𝑞𝑛)
= 𝑘 ∙ 𝑃/𝑄,   (22) 

where 

 
and 𝑘 ≠ 0 is a constant. 

With such notations, we have a general formula for a 

UFR rule: 
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𝑚UFR(𝜑) = 0, and ∀ 𝐴 ∈ 𝑆𝛩\𝜑 one has: 

 (23) 

 
where:    

 ∗ can be an intersection or a union of sets; 

 𝑑(𝑋 ∗ 𝑌) is the degree of intersection or union; 

 𝑇(𝑋, 𝑌) is a T-norm/conorm in fuzzy set/logic (or 

N-norm/conorm in a more general case, in 

neutrosophic set/logic) class of fusion combination 

rules respectively (extension of conjunctive or 

disjunctive rules respectively to fuzzy or 

neutrosophic operators) or any other fusion rule; the 

T-norm and N-norm correspond to the intersection 

of sets, while the T-conorm and N-conorm to the 

disjunction of sets; 

 𝑇𝑟 is the ensemble of sets (in majority cases they are 

empty sets) whose masses must be transferred (in 

majority cases to non-empty sets, but there are 

exceptions for the open world);" 

 𝑃(𝐴)  is the product of all parameters directly 

proportional with 𝐴, while  

 𝑄(𝐴)  the product of all parameters inversely 

proportional with 𝐴,  

 𝑆^Θ is the fusion space (i.e. the frame of discernment 

closed under union, intersection, and complement of 

the sets). 

At the end, we normalize the result. 
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3. Unification of Filter Algorithms (UFA) 

The idea is to extend the NIS [Normalized Innovation 

Squared] procedure and take into consideration not only the 

Kalman Filter (KF), Extended Kalman Filter (EKF), 

Unscented Kalman Filter (UKF), and Particle Filter (PF), 

but all filtering methods and algorithms - and use, depending 

on the military application and its computing complexity, 

the one that fits the best. 

At each step, UFA should check what filter works 

better and use that filter. 

Include linear and non-linear filters: 

 Kalman Filter (KF); 

 Extended Kalman Filter (EKF); 

 Unscented Kalman Filter (UKF); 

 Particle Filter (PF); 

 Daum Filter; 

 Alpha-Beta Filter; 

 Alpha-Beta-Gamma Filter; 

 Weiner Filter; etc. 

This section is still under experimentation and 

research. More study and concluding examples are needed. 
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4. Unification / Combination of Image 

Fusion Methods (UIFM) 

Firstly, we recall the definitions of T-norm and T-

conorm from fuzzy logic and set, and then we present their 

generalizations to N-norm and N-conorm from 

neutrosophic logic and set. 

4.1. T-norm and T-conorm 
Defining the T-norm conjunctive consensus: 

The t-norm conjunctive consensus is based on the 

particular t-norm function. In general, it is a function defined 

in fuzzy set/logic theory in order to represent the 

intersection between two particular fuzzy sets. If one extends 

T-norm to the data fusion theory, it will be a substitute for 

the conjunctive rule. 

The T-norm has to satisfy the following conditions: 

 Associativity: 

  (24) 

 Commutativity: 

    (25) 

 Monotonicity: 

  (26) 

 Boundary Conditions: 

   (27) 

There are many functions which satisfy these T-norm 

conditions: 

 



Unification of Fusion Theories, Rules, Filters, Image 

Fusion and Target Tracking Methods (UFT)  

 

35 
 

 Zadeh’s (default) min operator: 

   (28) 

 Algebraic product operator: 

    (29) 

 Bounded product operator: 

  (30) 

Defining the T-conorm disjunctive consensus: 

The t-conorm disjunctive consensus is based on the 

particular t-conorm function. In general it is a function 

defined in fuzzy set/logic theory in order to represent the 

union between two particular fuzzy sets. If one extends T-

conorm to the data fusion theory, it will be a substitute for 

the disjunctive rule. 

The T-conorm has to satisfy the following conditions: 

 Associativity: 

 (31) 

 Commutativity: 

   (32) 

 Monotonicity: 

 (33) 

 Boundary Conditions: 

   (34) 

There are many functions which satisfy these T-norm 

conditions: 

 Zadeh’s (default) max operator: 

   (35) 

 Algebraic product operator: 

  (36) 
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 Bounded product operator: 

   (37) 

The way of association between the focal elements of 

the given two sources of information, 𝑚1(. ) and 𝑚2(. ), is 

defined as 𝑋 = 𝜃𝑖 ∩ 𝜃𝑗 and the degree of association is as it 

follows: 

   (38) 

where �̃�12(𝑋) represents the basic belief assignments (bba) 

after the fusion, associated with the given proposition 𝑋 by 

using particular t-norm based conjunctive rule. 

Step 2: Distribution of the mass, 

assigned to the conflict. 

In some degree it follows the distribution of conflicting 

mass in the most sophisticated DSmT based Proportional 

Conflict Redistribution rule number 5, but the procedure 

here relies on fuzzy operators. 

The total conflicting mass is distributed to all non-

empty sets proportionally with respect to the Maximum (Sum) 

between the elements of corresponding mass matrix’s 

columns, associated with the given element 𝑋 of the power 

set. It means the bigger mass is redistributed towards the 

element, involved in the conflict and contributing to the 

conflict with the maximum specified probability mass. 

The general procedure for fuzzy based conflict 

redistribution is as it follows: 

Calculate all partial conflict masses separately; 

If 𝜃𝑖 ∩ 𝜃𝑗 = ∅ , then 𝜃𝑖 and 𝜃𝑗  are involved in the 

conflict; redistribute the corresponding masses 𝑚12(𝜃𝑖 ∩

𝜃𝑗) > 0, involved in the particular partial conflicts to the 
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non-empty sets 𝜃𝑖 and 𝜃𝑗  with respect to 

𝑚𝑎𝑥{𝑚1(𝜃𝑖), 𝑚2(𝜃𝑗)}  and with respect to 

𝑚𝑎𝑥{𝑚1(𝜃𝑗), 𝑚2(𝜃𝑖)}; 

Finally, for the given above two sources, the 𝑇𝑛𝑜𝑟𝑚  

conjunctive consensus yields: 

 (39) 

 (40) 

   (41) 

Step 3: The basic belief assignment, obtained 

as a result of the applied TCN rule becomes: 

 

   (42) 

 

 

   (43) 

Step 4: Normalization of the result. 

The final step of the TCN fusion rule concerns the 

normalization procedure: 

   (44) 
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This �̃�𝑃𝐶𝑅5
𝑇𝐶𝑁 (. ) is good, but it is a deviation from PCR5 

principle of distribution of the conflicting information, 

because it divides by 𝑚𝑎𝑥{𝑚1(𝐴), 𝑚2(𝑋)} and respectively 

by 𝑚𝑎𝑥{𝑚2(𝐴), 𝑚2(𝑋)}. It also substitutes the conjunctive 

rule with the min operator. 

Let’s suppose 𝐴 ∩ 𝐵 = Ø, and we have: 

 
We use the min operator for the conjunctive rule and 

we get: 

 
We need to transfer 𝑚𝑚𝑖𝑛(𝐴 ∩ 𝐵) = 0.3  to 𝐴  and 𝐵 

proportionally to their masses 0.3 and respectively 0.6. 

 
so, 

 
But at this step it uses the max operator and divides by 

𝑚𝑎𝑥{… }. 

One gets: 

 

 
So, actually the conflict 𝑚𝑖𝑛{0.3, 0.6} = 0.3 =

𝑚𝑚𝑖𝑛(𝐴 ∩ 𝐵) is not distributed proportionally to 𝐴 and 𝐵. 

A better formula (doing a better redistribution of the 

conflict, exactly as PCR5) is: 
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 (45) 

And then we normalize: 

   (46) 

We use the notation 𝑇𝑁  (=T-norm) only, since T-

conorm is not used. 

In a more general way, we can define a class of fuzzy 

fusion rules based on PCR5, combining two masses 𝑚1(. ) 

and 𝑚2(. ), and corresponding to the conjunctive rule: 

  (47) 

 
where 𝑇𝑁(⋅,⋅) is a fuzzy T-norm. Then we normalize. 

If 𝑇𝑁(⋅,⋅) is the product, we get just PCR5. 

If 𝑇𝑁(⋅,⋅) is the min, we get the previous �̃�𝑃𝐶𝑅5𝑣2
𝑇𝐶𝑁 (. ). 

We can replace 𝑇𝑁(⋅,⋅) by other fuzzy T-norms and 

obtain different fuzzy fusion rules. 

The TN conjunctive rule is used. So, 

  (48) 

and then we normalize: 

    (49) 
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which is the TN Dempster’s rule. 

If 𝑇𝑁(⋅,⋅) is the product, we get just Dempster’s rule. 

Similarly, we can define the fuzzy disjunctive rule: 

   (50) 

and then we normalize. 

Thus, the TCN Dubois-Prade rule is: 

 (51) 

and then we normalize. 

Similarly, for DSmH, Yager’s rule, Smets’ rule, etc. 

Let’s take the same example: 

 

For TN Dempster’s rule we simply normalize the 

masses of non-empty sets: 

 

For non-norm 𝑚𝑃𝐶𝑅5𝑣2
𝑇𝐶𝑁  we need to transfer:  
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to 𝑂1  and 𝑂2  proportionally with 0.2  and 0.4  respectively 

(as in PCR5 ): 

 
Similarly, 

 
should be transferred to 𝑂2 and 𝑂3: 

 
Same for 

 
which should be transferred to 𝑂2 and 𝑂1 ∪ 𝑂3: 

 

 

 

 
and: 
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We’d define the 𝑚𝑃𝐶𝑅5𝑣2
𝑇𝐶𝑁  rule (with respect to PCR5) 

in the following condensed way: 

 

 
and then we normalize. 

The first sum is the conjunctive rule using the min 

operator. 

We can extend these min/max operators to many 

other fusion rules: DSmH, Dempster’s rule, disjunctive rule, 

Dubois-Prade’s, Yager’s, etc. 

4.2. Definition of the Neutrosophic Logic/Set 
Let 𝑇, 𝐼, 𝐹 be real standard or non-standard subsets of  

] − 0, 1 + [, 

with   𝑠𝑢𝑝𝑇 = 𝑡_𝑠𝑢𝑝, 𝑖𝑛𝑓𝑇 = 𝑡_𝑖𝑛𝑓, 

𝑠𝑢𝑝 𝐼 = 𝑖_𝑠𝑢𝑝, 𝑖𝑛𝑓𝐼 = 𝑖_𝑖𝑛𝑓, 

𝑠𝑢𝑝 𝐹 = 𝑓_𝑠𝑢𝑝, 𝑖𝑛𝑓 𝐹 = 𝑓_𝑖𝑛𝑓, 

and  𝑛_𝑠𝑢𝑝 = 𝑡_𝑠𝑢𝑝 + 𝑖_𝑠𝑢𝑝 + 𝑓_𝑠𝑢𝑝, 

𝑛_𝑖𝑛𝑓 = 𝑡_𝑖𝑛𝑓 + 𝑖_𝑖𝑛𝑓 + 𝑓_𝑖𝑛𝑓. 

Let 𝑈 be a universe of discourse, and 𝑀 a set included 

in 𝑈. An element 𝑥 from 𝑈 is noted with respect to the set 𝑀 

as 𝑥(𝑇, 𝐼, 𝐹) and belongs to 𝑀 in the following way: it is 𝑡% 

true in the set, 𝑖% indeterminate (unknown if it is or not) in 

the set, and 𝑓% false, where 𝑡  varies in 𝑇 , 𝑖  varies in 𝐼 , 𝑓 

varies in 𝐹. 

Statically 𝑇, 𝐼, 𝐹  are subsets, but dynamically 𝑇, 𝐼, 𝐹 

are functions/operators depending on many known or 

unknown parameters. 
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4.3. Neutrosophic Logic 
In a similar way, we define the Neutrosophic Logic: 

A logic in which each proposition 𝑥  is 𝑇% true, 𝐼% 

indeterminate, and 𝐹%  false, and we write it 𝑥(𝑇, 𝐼, 𝐹), 

where 𝑇, 𝐼, 𝐹 are defined above. 

4.4. N-norms and N-conorms for 

the Neutrosophic Logic and Set 
As a generalization of T-norm and T-conorm from the 

Fuzzy Logic and Set, we now introduce the N-norms and N-

conorms for the Neutrosophic Logic and Set. 

We define a partial relation order on the neutrosophic 

set/logic in the following way: 

 
if (if and only if)  

 
for crisp components. 

And, in general, for subunitary set components: 

 
if: 

 
If we have mixed - crisp and subunitary - components, 

or only crisp components, we can transform any crisp 

component, say “𝑎” with 𝑎 ∈ [0,1] or 𝑎 ∈] − 0, 1 + [, into a 

subunitary set [𝑎, 𝑎]. 

So, the definitions for subunitary set components 

should work in any case. 
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4.5. N-norms 

 

 
where 𝑁n𝑇(. , . ), 𝑁n𝐼(. , . ), 𝑁n𝐹(. , . ) are the truth/ member-

ship, indeterminacy, and respectively falsehood/ non-

membership components.     (52) 

𝑁n have to satisfy, for any 𝑥, 𝑦, 𝑧 in the neutrosophic 

logic/set 𝑀  of the universe of discourse 𝑈 , the following 

axioms: 

a) Boundary Conditions:  

     (53) 

b) Commutativity:  

     (54) 

c) Monotonicity:  

   (55) 

d) Associativity:  

   (56) 

There are cases when not all these axioms are satisfied, 

for example the associativity when dealing with the 

neutrosophic normalization after each neutrosophic 

operation. But, since we work with approximations, we can 

call these N-pseudo-norms, which still give good results in 

practice. 

𝑁n represent the and operator in neutrosophic logic, 

and respectively the intersection operator in neutrosophic 

set theory. 

Let 𝐽 ∈ {𝑇, 𝐼, 𝐹} be a component. 

Most known N-norms, as in fuzzy logic and set the T-

norms, are: 
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 The Algebraic Product N-norm:  

    (57) 

 The Bounded N-Norm:  

  (58) 

 The Default (min) N-norm:  

   (59) 

A general example of N-norm would be this. 

Let 𝑥(𝑇1, 𝐼1, 𝐹1)  and 𝑦(𝑇2, 𝐼2, 𝐹2)  be in the 

neutrosophic set/logic M. Then: 

   (60) 

where the “ ∧ ” operator, acting on two (standard or 

non-standard) subunitary sets, is a N-norm (verifying the 

above N-norms axioms); while the “ ∨ ” operator, also acting 

on two (standard or non-standard) subunitary sets, is a N-

conorm (verifying the below N-conorms axioms). 

For example, ∧  can be the Algebraic Product T-

norm/N-norm, so 𝑇1 ∧ 𝑇2 = 𝑇1 ∙ 𝑇2 herein we have a 

product of two subunitary sets – using simplified notation); 

and ∨ can be the Algebraic Product T-conorm/N-conorm, 

so 𝑇1 ∨ 𝑇2 = 𝑇1 + 𝑇2 − 𝑇1 ∙ 𝑇2 (herein we have a sum, then a 

product, and afterwards a subtraction of two subunitary sets). 

Or ∧  can be any T-norm/N-norm, and ∨  any T-

conorm/N-conorm from the above and below; for example 

the easiest way would be to consider the min for crisp 

components (or inf for subset components) and respectively 

max for crisp components (or sup for subset components). 

If we have crisp numbers, we can at the end 

neutrosophically normalize. 
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4.6. N-conorms 

 

 
where 𝑁c𝑇(. , . ), 𝑁c𝐼(. , . ), 𝑁c𝐹(. , . ) are the truth/ member-

ship, indeterminacy, and respectively falsehood/ non-

membership components.     (61) 

𝑁c have to satisfy, for any 𝑥, 𝑦, 𝑧 in the neutrosophic 

logic/set 𝑀 of universe of discourse 𝑈, the following axioms: 

a) Boundary Conditions:  

    (62) 

b) Commutativity:  

    (63) 

c) Monotonicity:  

   (64) 

d) Associativity:  

  (65) 

There are cases when not all these axioms are satisfied, 

for example the associativity when dealing with the 

neutrosophic normalization after each neutrosophic 

operation. But, since we work with approximations, we can 

call these N-pseudo-conorms, which still give good results 

in practice. 

𝑁c represent the or operator in neutrosophic logic, and 

respectively the union operator in neutrosophic set theory. 

Let 𝐽 ∈ {𝑇, 𝐼, 𝐹} be a component. 

Most known N-conorms, as in fuzzy logic and set the 

T-conorms, are: 

 The Algebraic Product N-conorm:  

  (66) 
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 The Bounded N-conorm:  

  (67) 

 The Default (max) N-conorm:  

   (68) 

A general example of N-conorm would be this. 

Let 𝑥(𝑇1, 𝐼1, 𝐹1)  and 𝑦(𝑇2, 𝐼2, 𝐹2)  be in the 

neutrosophic set/logic M. Then: 

   (69) 

Where – as above - the “∧” operator, acting on two 

(standard or non-standard) subunitary sets, is a N-norm 

(verifying the above N-norms axioms); while the “ ∨ ” 

operator, also acting on two (standard or nonstandard) 

subunitary sets, is a N-conorm (verifying the above N-

conorms axioms). 

For example, ∧  can be the Algebraic Product T-

norm/N-norm, so 𝑇1 ∧ 𝑇2 = 𝑇1 ∙ 𝑇2  (herein we have a 

product of two subunitary sets); and ∨ can be the Algebraic 

Product T-conorm/N-conorm, so 𝑇1 ∨ 𝑇2 = 𝑇1 + 𝑇2 − 𝑇1 ∙

𝑇2 (herein we have a sum, then a product, and afterwards a 

subtraction of two subunitary sets). 

Or ∧  can be any T-norm/N-norm, and ∨  any T-

conorm/N-conorm from the above; for example the easiest 

way would be to consider the min for crisp components (or 

inf for subset components) and respectively max for crisp 

components (or sup for subset components). 

If we have crisp numbers, we can at the end 

neutrosophically normalize. 

Since the min/max (or inf/sup) operators work the 

best for subunitary set components, let’s present their 
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definitions below. They are extensions from subunitary 

intervals to any subunitary sets. Analogously we can do for 

all neutrosophic operators. 

Let 𝑥(𝑇1, 𝐼1, 𝐹1)  and 𝑦(𝑇2, 𝐼2, 𝐹2)  be in the 

neutrosophic set/logic M. 

Neutrosophic Conjunction/Intersection: 

    (70) 

where  

 

Neutrosophic Disjunction/Union: 

    (71) 

where  

 

Neutrosophic Negation/Complement: 

    (72) 

where  

 
Upon the above Neutrosophic Conjunction/ 

Intersection, we can define the 
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Neutrosophic Containment: 

We say that the neutrosophic set 𝐴 is included in the 

neutrosophic set 𝐵 of the universe of discourse 𝑈, if for any 

𝑥(𝑇𝐴,  𝐼𝐴, 𝐹𝐴) ∈ 𝐴 with 𝑥(𝑇𝐵 , 𝐼𝐵, 𝐹𝐵) ∈ 𝐵 we have: 

   (73) 

4.7. Remarks 
a). The non-standard unit interval ] − 0, 1 + [  is 

merely used for philosophical applications, especially when 

we want to make a distinction between relative truth (truth 

in at least one world) and absolute truth (truth in all possible 

worlds), and similarly for distinction between relative or 

absolute falsehood, and between relative or absolute 

indeterminacy. 

But, for technical applications of neutrosophic logic 

and set, the domain of definition and range of the N-norm 

and N-conorm can be restrained to the normal standard real 

unit interval [0, 1], which is easier to use, therefore: 

 
and 

 

b). Since in 𝑁𝐿 and 𝑁𝑆 the sum of the components (in 

the case when 𝑇, 𝐼, 𝐹  are crisp numbers, not sets) is not 

necessary equal to 1 (so the normalization is not required), 

we can keep the final result un-normalized. 

But, if the normalization is needed for special 

applications, we can normalize at the end by dividing each 

component by the sum all components. 
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If we work with intuitionistic logic/set (when the 

information is incomplete, i.e. the sum of the crisp 

components is less than 1 , i.e. sub-normalized), or with 

paraconsistent logic/set (when the information overlaps and 

it is contradictory, i.e. the sum of crisp components is greater 

than 1 , i.e. over-normalized), we need to define the 

neutrosophic measure of a proposition/set. 

If 𝑥(𝑇, 𝐼, 𝐹) is a 𝑁𝐿/𝑁𝑆, and 𝑇, 𝐼, 𝐹 are crisp numbers 

in [0,1], then the neutrosophic vector norm of variable/set 𝑥 

is the sum of its components: 

 
Now, if we apply the 𝑁n  and 𝑁c  to two 

propositions/sets which maybe intuitionistic or 

paraconsistent or normalized (i.e. the sum of components 

less than 1, bigger than 1, or equal to 1), 𝑥  and 𝑦 , what 

should be the neutrosophic measure of the results 

𝑁n(x, y) and 𝑁c(x, y)? 

Herein again we have more possibilities: 

 either the product of neutrosophic measures of 

𝑥 and 𝑦: 

 (74) 

 or their average: 

 (75) 

 or other function of the initial neutrosophic 

measures: 

 (76) 

where 𝑓(. , . )  is a function to be determined according to 

each application. 

Similarly for  
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Depending on the adopted neutrosophic vector norm, 

after applying each neutrosophic operator the result is 

neutrosophically normalized. We’d like to mention that 

“neutrosophically normalizing” doesn’t mean that the sum 

of the resulting crisp components should be 1 as in fuzzy 

logic/set or intuitionistic fuzzy logic/set, but the sum of the 

components should be as above: 

 either equal to the product of neutrosophic 

vector norms of the initial propositions/sets,  

 or equal to the neutrosophic average of the 

initial propositions/sets vector norms, etc. 

In conclusion, we neutrosophically normalize the 

resulting crisp components 𝑇′, 𝐼′, 𝐹′  by multiplying each 

neutrosophic component 𝑇′, 𝐼′, 𝐹′  with 𝑆/(𝑇′ + 𝐼′ + 𝐹′), 

where 

 
for a N-norm or 

 
for a N-conorm - as defined above. 

c) If 𝑇, 𝐼, 𝐹  are subsets of [0, 1]  the problem of 

neutrosophic normalization is more difficult. 

 If sup(T)+sup(I)+sup(F) < 1, we have an 

intuitionistic proposition/set. 

 If inf(T)+inf(I)+inf(F) > 1, we have a 

paraconsistent proposition/set. 

 If there exist the crisp numbers t ∈T, i ∈I, and f 

∈F such that t+i+f =1, then we can say that we 

have a plausible normalized proposition/set. 
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But in many such cases, besides the normalized 

particular case showed herein, we also have crisp numbers, 

say 𝑡1 ∈ 𝑇 , 𝑖1 ∈ 𝐼 , and f1 ∈ F  such that 𝑡1 + 𝑖1 + f1 < 𝑖 

(incomplete information) and 𝑡2 ∈ 𝑇, 𝑖2 ∈ 𝐼, and f2 ∈ F such 

that 𝑡2 + 𝑖2 + f2 > 𝑖 (paraconsistent information). 

4.8. Examples of Neutrosophic Operators  
We define a binary neutrosophic conjunction 

(intersection) operator, which is a particular case of a N-

norm (neutrosophic norm, a generalization of the fuzzy T-

norm): 

  (77) 

 
The neutrosophic conjunction (intersection) operator 

𝑥 ∧𝑁 𝑦  component truth, indeterminacy, and falsehood 

values result from the multiplication 

    (78) 

since we consider in a prudent way 𝑇 ≺ 𝐼 ≺ 𝐹, where “ ≺ ” 

is a neutrosophic relationship and means “weaker”, i.e. the 

products 𝑇𝑖𝐼𝑗 will go to 𝐼, 𝑇𝑖𝐹𝑗 will go to 𝐹, and 𝐼𝑖𝐹𝑗 will go to 

𝐹 for all 𝑖, 𝑗 ∈ {1,2}, i ≠ j, while of course the product 𝑇1𝑇2 

will go to 𝑇 , 𝐼1𝐼2  will go to 𝐼 , and 𝐹1𝐹2  will go to 𝐹  (or 

reciprocally we can say that 𝐹 prevails in front of 𝐼 which 

prevails in front of 𝑇, and this neutrosophic relationship is 

transitive): 

 
Table 5. 
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So, the truth value is 𝑇1𝑇2, the indeterminacy value is 

𝐼1𝐼2 + 𝐼1𝑇2 + 𝑇1𝐼2 , and the false value is 𝐹1𝐹2 + 𝐹1𝐼2 +

𝐹1𝑇2 + 𝐹2𝑇1 + 𝐹2𝐼1 .  

The norm of 𝑥 ∧𝑁 𝑦 is (𝑇1 + 𝐼1 + 𝐹1) ⋅ (𝑇2 + 𝐼2 + 𝐹2). 

Thus, if 𝑥  and 𝑦  are normalized, then 𝑥 ∧𝑁 𝑦  is also 

normalized. Of course, the reader can redefine the 

neutrosophic conjunction operator, depending on 

application, in a different way, for example in a more 

optimistic way, i.e. 𝐼 ≺ 𝑇 ≺ 𝐹 or 𝑇 prevails with respect to 𝐼, 

then we get: 

 (79) 

Or, the reader can consider the order 𝑇 ≺  𝐹 ≺ 𝐼, etc. 

Let’s also define the unary neutrosophic negation 

operator: 

 

    (80) 

by interchanging the truth 𝑇  and falsehood 𝐹  vector 

components. 

Similarly, we now define a binary neutrosophic 

disjunction (or union) operator, where we consider the 

neutrosophic relationship 𝐹 ≺ 𝐼 ≺ 𝑇: 

 

 (81) 

We consider as neutrosophic norm of the 

neutrosophic variable 𝑥 , where 𝑁𝐿(𝑥) = 𝑇1 + 𝐼1 + 𝐹1 , the 

sum of its components: 𝑇1 + 𝐼1 + 𝐹1, which in many cases is 

1, but can also be positive < 1 or > 1. 

Or, the reader can consider the order 𝐹 ≺ 𝑇 ≺ 𝐼, in a 

pessimistic way, i.e. focusing on indeterminacy 𝐼  which 
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prevails in front of the truth 𝑇, or other neutrosophic order 

of the neutrosophic components 𝑇, 𝐼, 𝐹  depending on the 

application. 

Therefore, 

 (82) 

4.9. Neutrosophic Composition 𝑘-Law 
Now, we define a more general neutrosophic 

composition law, named 𝑘-law, in order to be able to define 

neutrosophic 𝑘 -conjunction/intersection and neutrosophic 

𝑘 -disjunction/union for 𝑘  variables, where 𝑘 ≥ 2  is an 

integer. 

Let’s consider 𝑘 ≥ 2  neutrosophic variables, 𝑥𝑖(𝑇𝑖 +

𝐼𝑖 + 𝐹𝑖, for all 𝑖 ∈ {1,2, . . . , 𝑘}. Let’s denote 

 

 

. 

We now define a neutrosophic composition law 𝑜𝑁  in 

the following way:  

 

   (83) 

 

 (84) 

where 𝐶r(1,2, . . . , k) means the set of combinations of the 

elements {1, 2, . . . , 𝑘} taken by 𝑟.  
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[Similarly for 𝐶k−r(1,2, . . . , k).]  

In other words, 𝑧0𝑁
𝑤  is the sum of all possible 

products of the components of vectors 𝑧 and 𝑤, such that 

each product has at least a 𝑧𝑖 factor and at least a 𝑤j factor, 

and each product has exactly 𝑘 factors where each factor is 

a different vector component of 𝑧 or of 𝑤. Similarly if we 

multiply three vectors: 

 (85) 

Let’s see an example for 𝑘 = 3. 

 

 

 

 

 

 

 

 
For the case when indeterminacy 𝐼 is not decomposed 

in subcomponents {as for example 𝐼 = 𝑃 ∪ 𝑈  where 𝑃 

=paradox (true and false simultaneously) and 𝑈 

=uncertainty (true or false, not sure which one)}, the 

previous formulas can be easily written using only three 

components as: 

    (86) 

where 𝒫(1,2,3) means the set of permutations of (1,2,3) i.e. 
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   (87) 

This neurotrophic law is associative and commutative. 

4.10. Neutrosophic Logic and Set 𝑘-Operators 
Let’s consider the neutrosophic logic crispy values of 

variables 𝑥, 𝑦, 𝑧 (so, for 𝑘 = 3): 

  (88) 

  (89) 

  (90) 

In neutrosophic logic it is not necessary to have the 

sum of components equals to 1, as in intuitionist fuzzy logic, 

i.e. 𝑇𝑘 + 𝐼𝑘 + 𝐹𝑘 is not necessary 1, for 1 ≤ k ≤ 3. 

As a particular case, we define the tri-nary conjunction 

neutrosophic operator: 

  

 (91) 

If all 𝑥, 𝑦, 𝑧  are normalized, then 𝑐3𝑁
𝑇𝐼𝐹(𝑥, 𝑦, 𝑧) is also 

normalized. 

If 𝑥, 𝑦, or 𝑦 are non-normalized, then  

   (92) 

where |𝑤| means norm of 𝑤. 

𝑐3𝑁
𝑇𝐼𝐹 is a 3-N-norm (neutrosophic norm, i.e. 

generalization of the fuzzy T-norm). 

Again, as a particular case, we define the unary 

negation neutrosophic operator: 
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  (93) 

Let’s consider the vectors: 

   (94) 

We note 

  (95) 

and similarly 

   (96) 

For shorter and easier notations let’s denote 𝑧0𝑁
𝑤 =

𝑧𝑤  and respectively 𝑧0𝑁
𝑤0𝑁

= 𝑧𝑤𝑣  for the vector 

neutrosophic law defined previously. 

Then the neutrosophic tri-nary conjunction/ 

intersection of neutrosophic variables 𝑥, 𝑦, and 𝑧 is: 

 

 

 

 

 (97) 

Similarly, the neutrosophic tri-nary disjunction/union 

of neutrosophic variables 𝑥, 𝑦, and 𝑧 is: 
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   (98) 

Surely, other neutrosophic orders can be used for tri-

nary conjunctions/intersections and respectively for tri-nary 

disjunctions/unions among the components T, I, F. 

4.11. Neutrosophic Topologies  
A). General Definition of NT. 

Let 𝑀 be a non-empty set. 

Let 𝑥(𝑇𝐴, 𝐼𝐴, 𝐹𝐴) ∈ 𝐴  with 𝑥(𝑇𝐵, 𝐼𝐵, 𝐹𝐵) ∈ 𝐵  be in the 

neutrosophic set/logic 𝑀, where 𝐴 and 𝐵 are subsets of 𝑀. 

Then (see above about N-norms/N-conorms and examples): 

 (99) 

 (100) 

   (101) 

A General Neutrosophic Topology on the non-empty 

set 𝑀 is a family η of Neutrosophic Sets in 𝑀 satisfying the 

following axioms: 

    (102) 

   (103) 

  (104) 

B). An Alternative Version of NT. 

We cal also construct a Neutrosophic Topology on  

NT = ]-0, 1+[ considering the associated family of standard or 

non-standard subsets included in 𝑁𝑇, and the empty set ∅, 

called open sets, which is closed under set union and finite 

intersection. 

Let 𝐴, 𝐵 be two such subsets. The union is defined as: 
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𝐴 ∪ 𝐵 = 𝐴 + 𝐵 − 𝐴 · 𝐵, and the intersection as: 𝐴 ∩ 𝐵 = 𝐴 ·

𝐵 . The complement of 𝐴 , 𝐶(𝐴) = {1+} − 𝐴 , which is a 

closed set. {When a non-standard number occurs at an 

extremity of an internal, one can write “]” instead of “(“ and 

“[”  instead of “)” .} The interval NT, endowed with this 

topology, forms a neutrosophic topological space. 

In this example, we have used the Algebraic Product 

N-norm/N-conorm. But other Neutrosophic Topologies can 

be defined by using various N-norm/N-conorm operators. 

In the above defined topologies, if all 𝑥 's are 

paraconsistent or respectively intuitionistic, then one has a 

Neutrosophic Paraconsistent Topology, respectively 

Neutrosophic Intuitionistic Topology. 

Much research on neutrosophic topologies has been 

done by Francisco Gallego Lupiañez [22]. 

4.12. Neutrosophic Logic and Set used in Image 

Processing  
Neutrosophic logic and set have the advantage of 

using a third component called “indeterminacy (neutral 

part)”, which means neither true nor false for a logical 

proposition, respectively neither membership nor non-

membership (but unknown, unsure) of an element with 

respect with a set. 

They are generalizations of fuzzy logic and fuzzy set, 

especially of intuitionistic fuzzy logic and set. 

Neutrosophic logic and set have been applied in image 

processing thanks to their “indeterminacy” neutral 

component. 
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4.12.1. Removing Image Noise 

H. D. Cheng and Y. Guo proposed a thresholding 

algorithm based on neutrosophics that will automatically 

select the thresholds. The thresholds are needed in order to 

separate the domains T and F in a neutrosophic value image. 

Yanhui Guo, H. D. Cheng, and Yingtao Zhang 

introduced a Neutrosophic Set filter in order to denoise 

images. Besides pattern recognition and image vision, 

denoising an image is highly investigated today. 

The image is converted into a neutrosophic set and 

then one applies a filtering method (𝛾-median-filtering) in 

order to reduce the degree of indeterminacy degree of an 

image; the degree of indeterminacy is found by computing 

the entropy of the indeterminacy subset. Afterwards the 

image noise is removed. 

A neutrosophic image is composed of pixels, and each 

pixel 𝑃  is characterized by three components, 𝑃𝑁𝑆(𝑇, 𝐼, 𝐹), 

where T=degree/percentage of truth, I=degree/percentage 

of indeterminacy, F=degree/percentage of falsehood. 

Then a pixel 𝑃𝑁𝑆 situated at the Cartesian coordinates 

(𝑖, 𝑗) is denoted by 𝑃NS(𝑖, 𝑗).  

So, we have 𝑃𝑁𝑆(𝑇(𝑖, 𝑗), 𝐼(𝑖, 𝑗), 𝐹(𝑖, 𝑗)), where 𝑇(𝑖, 𝑗) is 

the probability that pixel 𝑃𝑁𝑆 belongs to the white pixel set, 

𝐼(𝑖, 𝑗)  is the probability that pixel 𝑃𝑁𝑆  belongs to the 

indeterminate pixel set, and 𝐹(𝑖, 𝑗)  is the probability that 

pixel 𝑃𝑁𝑆 belongs to the non-white pixel set. These are 

defined as it follows: 

    (105)
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   (106) 

    (107) 

   (108) 

    (109) 

where �̅�(𝑖, 𝑗)  is the local mean value of the pixels of the 

window, while 𝛿(𝑖, 𝑗) is the absolute value of the difference 

between intensity 𝑔(𝑖, 𝑗) and its local mean value �̅�(𝑖, 𝑗). 

Neutrosophic image entropy is used – for a gray 

image - to evaluate the distribution of the gray levels. If the 

intensity distribution is non-uniform, the entropy is small; 

but, if the intensities have equal probabilities, the entropy is 

high. 

Neutrosophic image entropy is defined as the sum of 

the entropies of the three subsets T, I and F: 

    (110) 

    (111) 

    (112) 

   (113) 

where 𝐸𝑛𝑇 , 𝐸𝑛𝐼  and 𝐸𝑛𝐹  are the entropies of the sets T, I 

and F respectively, while 𝑝𝑇(𝑖) , 𝑝𝐼(𝑖) , and 𝑝𝐹(𝑖)  are the 

probabilities of elements in T, I and F, respectively 

corresponding to 𝑖. 
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In general, the median filter is known for removing the 

image noise in the gray level domain (𝐼𝑚). The changes in T 

and F influence and vary the entropy in I, which measures 

the indeterminacy degree of element 𝑃𝑁𝑆 (𝑖, 𝑗). 

The result after median filtering, Î𝑚, is defined as: 

    (114) 

with 𝑆𝑖𝑗  as the neighborhood of the pixel (𝑖, 𝑗): 

Y. Guo et al. proposed the γ -median-filtering 

operation. A 𝛄-median-filtering operation for 𝑃𝑁𝑆 , �̂�𝑁𝑆 (γ), 

is defined as: 

   (115) 

    (116) 

    (117) 

    (118) 

    (119) 

    (120) 

   (121) 

   (122) 
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where δ
�̂�

(𝑖, 𝑗) is the absolute value of the difference between 

intensity �̂�(𝑖, 𝑗)  and its local mean value �̂�(𝑖, 𝑗) at (𝑖, 𝑗) after 

γ -median-filtering operation. 

The new neutrosophic approach to image denoising is 

described as below: 

Step 1: Transform the image into 𝑁𝑆 domain; 

Step 2: Use γ-median-filtering operation on the true 

subset 𝑇 to obtain T̂γ; 

Step 3: Compute the entropy of the indeterminate 

subset Îγ, 𝐸𝑛Îγ
(𝑖); 

Step 4: If the following situation, go to Step 5: 

 

Else, = �̂�γ , go to Step 2. 

Step 5: Transform subset �̂�γ  from the neutrosophic 

domain into gray level domain. 

The proposed method performs better for removing 

image noises for those noises whose types are known but 

also for those noises whose types are unknown. 

4.12.2. Unification/Combination of Image Fusion 

Methods 

Ming Zhang, Ling Zhang, H. D. Cheng used a novel 

approach, i.e. neutrosophic logic which is a generalization 

of fuzzy logic and especially of intuitionistic fuzzy logic, to 

image segmentation - following one of the authors (H. D. 

Cheng) together with his co-author Y. Guo previous 

published paper on neutrosophic approach to image 

thresholding. 
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The authors improved the watershed algorithms using 

a neutrosophic approach (i.e. they consider the objects as the 

T set, the background as the F set, and the edges as the I set); 

their method is less sensitive to noise and performs better on 

non-uniform images since it uses the indeterminacy (I) from 

neutrosophic logic and set, while this indeterminacy is not 

featured in fuzzy logic. 

Using neutrosophic logic/set/probability/statistics is 

a new trend in image processing and the authors prove that 

the neutrosophic approach is better than other methods 

(such as: histogrambased, edge-based, region-based, model-

based, watershed/topographic in MatLab or using 

Toboggan-Based). 

Next step for these authors would be to use the 

neutrosophic approach to image registration and similarly 

compare the result with those obtained from other methods. 

Interesting also is to use the neutrosophic approach to 

the control theory. 

4.12.3. Image Segmentation 

The image description, classification, and recognition 

depend on the image segmentation – which is used for image 

analysis/processing, computer vision, and pattern 

recognition. 

Image segmentation means to find objects and 

boundaries such as curves, lines, etc. and partition a digital 

image into many regions. By image analysis, one locate 

objects, one measures features, one makes interpretations of 

scenes. 

Image segmentation is done through several methods 

such as: histogram-based methods, region-based methods, 
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edge-based methods, model-based methods, and watershed 

methods. 

The watershed uses the gradients of an image to split 

the image into topological areas. It best applies for uniform 

background and blurred edge objects, whose blurred 

boundaries are defined in the indeterminacy I. 

After removing the noise, the image becomes more 

uniform. 

The image is converted to a neutrosophic set in the 

following way. 

Let 𝑃NS(𝑖, 𝑗) be a pixel in the position (𝑖, 𝑗). 

 
and 𝐹(𝑖, 𝑗) = 𝑞 − 𝑇(𝑖, 𝑗), where 𝑔𝑖𝑗 is the intensity value of 

pixel 𝑃(𝑖, 𝑗). Then: 

 Calculate the histogram of the image. 

 Find the local maxima of the histogram. 

 Then calculate the mean of local maxima. 

 Find the peaks greater than the mean of local 

maxima. 

 Define the low and high limits of the histogram. 

 Calculate the parameters 𝑎, 𝑏, 𝑐  by using the 

maximum entropy principle: the greater the 

entropy is the more information the system 

includes. 
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 Find two thresholds to separate the domains T and 

F. 

 Define homogeneity in intensity domain by using 

the standard deviation and the discontinuity of the 

intensity function. Discontinuity measures the 

changes in gray levels. 

 Convert the image to binary image based on T, I, 

F. 

𝑇(𝑖, 𝑗) represents the degree of pixel 𝑃(𝑖, 𝑗) to be 

an object pixel; 

𝐼(𝑖, 𝑗) represents the degree of pixel 𝑃(𝑖, 𝑗) to be an 

edge pixel; 

𝐹(𝑖, 𝑗) represents the degree of pixel 𝑃(𝑖, 𝑗) to be a 

background pixel. 

One determines the sets of object pixels, edge 

pixels, and background pixels. 

 Apply the watershed for converting the binary 

image in the following way: 

a) Get the regions 𝑅1, 𝑅2, … , 𝑅𝑛  whose pixels are 

either object pixels, or edge pixels, or background pixels; 

b) Dilate these regions by using the 3x3 structure 

element; 

c) At the place where two regions merge, build a 

dam, until all regions merge together. 

Watershed segmentation is good for uniform or nearly 

uniform images and the edges are connected very well. Yet, 

watershed method is sensitive to noise and makes over-

segmentations. 
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5. Non-Linear Sequences for Target 

Tracking 

Investigate the possibility of generalizing the result of 

using Fibonacci sequence (whose terms are linearly 

recurrent) in linear target tracking to a non-linear recurrent 

sequence for non-linear tracking (let us say for EKF, UKF, 

etc.).  

Then, mathematically studying that non-linear 

recurrent sequence, we could get improvement of non-linear 

tracking. 

Other non-sequences for target tracking should also be 

investigated and checked through concrete examples and 

applications. 

This study has to be developed and deepened in the 

future. 
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The author has pledged in various papers, 

conference or seminar presentations, and scientific 

grant applications (between 2004-2015) for the 

unification of fusion theories, combinations of fusion 

rules, image fusion procedures, filter algorithms, and 

target tracking methods for more accurate applications 

to our real world problems - since neither fusion theory 

nor fusion rule fully satisfy all needed applications.  For 

each particular application, one selects the most 

appropriate fusion space and fusion model, then the 

fusion rules, and the algorithms of implementation. 
 He has worked in the Unification of the Fusion 

Theor  ies (UFT), which looks like a cooking recipe, 

better  one could say like a logical chart for a computer 

program mer, but one does not see another method to 

compr  ise/unify all things. 
The unification scenario presented herein, which 

is now in an incipient form, should periodically be 

updated incorporating new discoveries from the fusion 

and engineering research. 
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