Depicting of electric fields

Radi I. Khrapko

Moscow Aviation Institute - Volokolamskoe shosse 4, 125993 Moscow, Russia Email: khrapko ri@hotmail.com

Abstract

Examples are presented that geometrical images of generated electromagnetic fields are emitted by the geometrical images of the electromagnetic fields, which are the sources

Keywords: electromagnetism, differential forms

PACS: 03.50.De

1. Problem

As is well known, electric field can be written as the sum of two terms, $\mathbf{E} = \mathbf{E} + \mathbf{E}_{t}$, where \mathbf{E}_{t}_{t} is the longitudinal or irrotational field and \mathbf{E} is the transverse or solenoidal field. A charge density ρ generates the irrotational electric vector field \mathbf{E} ; $\boldsymbol{\rho}$ is the source of the field:

$$\boldsymbol{\rho} = \operatorname{div} \mathbf{E}_{I} = \boldsymbol{\partial}_{i} E_{I}^{i}. \tag{1}$$

Accordingly, the charge density ρ emits the field lines of vectors **E** (see Fig. 1a¹).

At the same time, the solenoidal vector field E has no source

$$\operatorname{div} \mathbf{E} = \boldsymbol{\partial}_i E^i = 0.$$
 (2)

Accordingly, the field lines of vectors \mathbf{E} are closed (see Fig. 1b²).

The derivative of magnetic field, $\dot{\mathbf{B}}$, generates the solenoidal electric field \mathbf{E} ; $\dot{\mathbf{B}}$ is the source of the field:

$$-\mathbf{B} = \operatorname{curl} \mathbf{E} \,. \tag{3}$$

But, as you see, the source, \mathbf{B} , does not emit field lines of the solenoidal field \mathbf{E} as well as ρ emits field lines of the irrotational field \mathbf{E} . Why? What is the cause of this different relationship between field lines and the sources for irrotational and solenoidal fields?

2. Solution

The point is **B** generates the solenoidal electric field \mathbf{E}_{t} as a *covector* field E_{t} , not as a vector field. The solenoidal field **E** in eq. (3) is a covector field. $\dot{\mathbf{B}}$ is the source of a *covector* field, and $\dot{\mathbf{B}}$ itself is a covariant bivector. Really,

$$-\dot{\mathbf{B}} = \operatorname{curl}_{t}\mathbf{E}, \text{ i.e. } -\dot{B}_{ik} = \partial_{i} \mathop{E}_{t} \mathop{E}_{k} - \partial_{k} \mathop{E}_{t} \mathop{i}$$
(3)

¹ Figure 2.5 from [1] is used here, but its sense is modified ² This figure is from [2]

Fig.1 Generating of electric fields.

(a) Field lines of vectors **E** emerge from the charge density ρ , which is a source of vector field **E**.

(b) The derivative, \dot{B} , is a source of the solenoidal field E .

(c) Field bisurfaces of covector field \mathbf{E} emerge from the field tubes of the vector density $-\dot{\mathbf{B}}$.

But covector fields are depicted not by field lines. Covector fields are depicted by bisurfaces. In the case of (3), the field bisurfaces **emerge** from the field tubes, which represent the derivative of magnetic field, $\dot{\mathbf{B}}$, as is shown in Fig. 1c³.

If we interested in the force, which the solenoidal field exerts on a charge q, we must use a *vector* E^{k} , which may be obtained by raising the index with the metric tensor g^{ki} :

$$F^{k} = q E_{i}^{k} = q E_{i} g^{ik}, \qquad (4)$$

but the solenoidal electric field \mathbf{E}_{i} is generated as a *covector* field E_{i} .

3. Geometrical quantities

It is important to recognize that the electromagnetism involves geometrical quantities of two different types [4]. These are: covariant (antisymmetric) tensors, e.g. $\mathbf{E} = E_i$, $\mathbf{B} = B_{ik}$, which are named exterior differential forms or simply forms, and contravariant (antisymmetric) tensor *densities*, e.g. ρ , $\mathbf{E} = E^i$, $\mathbf{B} = B^{ik}$ (see Fig. 2⁴), but here we ignore density nature of vector $\mathbf{E} = E^i$.

The geometric images of F, D, H, and B are

³ This figure is from [3], p. 7.

⁴ This is figure 23 from [4].

Fig. 2. Schouten's F_{β} and $B_{\gamma\beta}$ depict covector E_i and covariant bivector B_{ik} , respectively. Covector is represented by two parallel plane elements equipped with an outer orientation, and covariant bivector is represented by a cylinder with an outer orientation. Schouten's \mathfrak{D}^{α} depicts vector density E^i , which is represented by a cylinder with an inner orientation.

So, according to Fig. 1c, the field tubes of the covariant bivector $-\dot{B}$ emit field biplanes of covector **E**. Their orientations are consistent.

References

- [1] Ohanian H C 1988 Classical Electrodinamics (Newton: Allyn and Bacon).
- [2] Ohanian H C 1985 Physics (W. W. Norton, N. Y).
- [3] Khrapko R I 2011 Visible representation of exterior differential forms and pseudo forms. Electromagnetism in terms of sources and generation of fields. Наглядное представление дифференциальных форм и псевдоформ. Электромагнетизм в терминах источников и порождений полей. (Saarbrucken: Lambert). http://khrapkori.wmsite.ru/ftpgetfile.php?id=105&module=files
- [4] Schouten J A 1951 Tensor Analysis for Physicists (Oxford: Clarendon).