
Pathchecker: an RFID Application for Tracing
Products in Suply-Chains?

Khaled Ouafi?? and Serge Vaudenay

EPFL
CH-1015 Lausanne, Switzerland

http://lasecwww.epfl.ch

Abstract. In this paper, we present an application of RFIDs for supply-
chain management. In our application, we consider two types of readers.
On one part, we have readers that will mark tags at given points. After
that, these tags can be checked by another type of readers to tell whether
a tag has followed the correct path in the chain. We formalize this notion
and define adequate adversaries. Morever, we derive requirements in or-
der to meet security against counterfeiting, cloning and impersonation
attacks.

1 Introduction

Radio Frequency Identication (RFID) tags are being massively deployed in sev-
eral application and business in order to ensure integrity and security. The de-
ployment of this technology is mainly motivated by the gain in terms of time
and cost due to the automation of previously labor-intensive control processes
such as access control, authentication, shipment tracking, inventory and logistics,
payment. . . In addition, RFID tags are extensively used to track and identify
goods, supplies and equipment. Some of these deployments, like in the biometric
identity cards and passports, are used to identify people or keep track of ani-
mals. In other applications, these tags are used as a countermeasure to cloning
and counterfeiting (especially in the luxury and pharmaceutical industries) as
it allows to authenticate the object they are associated with. Large companies
are increasingly using RFIDs to extract intelligence from operations that can
contribute to their competitiveness and efficiency. Finally, RFIDs are increas-
ingly being considered for convenience and added-value applications for users
like in access control where the automation of the process reduces waiting and
processing time.

While much attention by researchers has focused on the efficiency, authen-
tication, and privacy aspects (all fundamental concerns), the context in which

? The content of this paper is subject to a pending patent by ORIDAO. This work was
partially funded by the European Commission through the ICT programme under
Contract ICT-2007-216646 ECRYPT II.

?? Supported by a grant of the Swiss National Science Foundation, 200021-119847/1.



such an application is deployed plays a vital role in its availability so that tags re-
main valid components for the duration of their projected life-time and forward-
security. Strangely, this problem of using the RFID technology is not a popular
research topic as only a limited number of papers, like [3], treat the subject. In
this work, we focus on a proposed real-life application of RFID tags in supply-
chain management.

We propose an application, that we call pathchecker, for using RFID tags in
supply-chain managements. In our proposal, a supply-chain consists of a series
of steps and a tag will be marked at each one of them by “marking readers”.
Another type of readers, “checking readers”, can interact with the tags be able
to tell whether, according to some data the tag transmits, went through the right
path as it was supposeed to take. The goal of an adversary in such a scheme
is to either produce a cloned tag that passes the verification of the checking
readers or make a genuine tag which followed a parallel path be accepted in the
supply-chain.

Our paper is structured as follows. In Section 2, we describe informally the
pathchecker scheme and show examples of the marking and checking protocols
between readers and tags. Then, we propose a formalization of this notion and
the according security model in Section 3. Sections 4 and 5 deal with the secu-
rity requirements on the underlying protocols and primitives it uses in order to
achieve our desired notion of security. Finally, we propose a secure and private
protocol for the authentication protocol in Section 6.

2 Description of the Pathchecker Scheme

Tag Update at step r Reader
Identity: ID Identity: IDr

State: S Secret: F K
IDr

Vt = extract(S)
Vt−−−−−−−−−−−−−−−→

S ← H(S, e)
e←−−−−−−−−−−−−−−− e = F K

IDr
(IDr, Vt)

Fig. 1. Protocol used to mark the tags at each step of the supply-chain.

We consider a RFID system in which every tag store a state S. This state
is initialized with a value which depends on the identity of the tag ID, the
application parameters, and a key K. Conversely, the system also consists of
readers that possess either a secret function IDr, unique for each one of them or
a secret denoted K.

Depending on the information they hold, there are two kinds of readers.
Some readers are used to authenticate the tag and possess K. Others are used
to update the tag key and possess a secret FK

IDr
derived from IDr and K which

represents a step identifier in the supply-chain. We also require that the RFID

2



tags interact with the reader in a particular order known as the correct path.
Since authenticating readers need to be able to recompute the internal state of
the tags, the secret K has to contain all steps secret. Furthermore, we assume
that authenticating readers also know the correct path with the identities of
readers.

Tag Identify Reader
State: S Secret: K

Identity: ID

Vt = extract(S)
ID,Vt−−−−−−−−−−−−−−−→ check Vt

Fig. 2. Protocol used to check whether the tag has followed the right path in the
supply-chain.

Concretely, we consider RFID tags that are initialized with a common initial
state IV. RFID tags also come with a unique identity (generally known as the
EPC number) denoted ID. The tags are attached to some products and then go
through a specific path in a supply chain. The path consists of a list of steps.
At each step, a reader updates the internal state of a tag by using some secret
information. At the end of the path, an extra reader can verify that the internal
state is consistent with the list of updates it should have received.

The security goal is to make the scheme such that it is impossible to create
a tag which passes the verification phase without having run through the exact
sequence of steps.

3 Formal Definition

Definition 1 (Pathchecker-scheme). A pathchecker-scheme is a tuple con-
sisting of

– a set I of possible ID’s for the tags
– a state space S for the tags
– a set V of possible values
– an initial state IV ∈ S
– a path length n
– a function H : S × V −→ S to be computed by the tag
– an extraction function extract : S → U used by the tag
– a family of tuples, indexed by a key K ∈ K, F =

(
(FK

1 , . . . , FK
n )

)
K∈K con-

sisting of n functions FK
1 , . . . , FK

n : I × U −→ V. By extension we define
F̄K

0 , . . . , F̄K
n by

F̄K
0 (ID) = IV

F̄K
i (ID) = H

(
F̄K

i−1(ID), FK
i (ID, extract

(
F̄K

i−1(ID)
))

for i = 1, . . . , n

3



and a function V K : I × V −→ {0, 1} by

V K(ID, x) =
{

1 if x = F̄K
n (ID)

0 otherwise

Clearly, if (ID, x) follows the path, it is no surprise that V K(ID, x) = 1.

For simplicity, we assume U = S and extract to be the identity function.

Recall that the aim of the pathchecker scheme is to allow readers to auto-
matically check that a given tag has followed the path it was supposed to. The
security argument of such an application is to guarantee that a tag accepted by
a reader as having followed the path it was supposed to take.

Clearly, the goal of an adversary against this scheme is to produce a tag that
did not follow the path in the supply-chain but is recognized by the “checking
readers” as having followed it. We can imagine different scenarios and combine
them:

– An adversary can introduce a counterfeit product in the middle of the supply-
chain, such a product should be detectable by the end of the supply-chain.

– An adversary may take one tag from the middle of the supply-chain, interact
with it and make it go through a parallel path. She can also put it back at
any step of the supply-chain.

– Tags may be considered weak in the sense that an adversary can open them
and get their internal states.

So we consider general adversaries that are able to request the creation of a new
RFID tag or the corruption of an existing one (to get its internal state). We also
assume that the adversary may have some control over the supply-chain in the
sense that she can introduce a tag at any point in the supply-chain or take it
at any point from the supply-chain. She is also assumed to be able to freely run
protocols with the readers or the tags. Namely, she can query some FK

i and V K

oracles.
We stress that we do not treat the notion of privacy here.

Definition 2 (Adversary). A (q, t)-adversary against the pathchecker scheme
is an algorithm playing the following game:
1: pick r at random and set View = r
2: pick K ∈ K at random
3: for j = 1 to q do
4: (IDj , xj , ij) = A(View)
5: if ij > 0 then
6: yj = FK

ij
(IDj , xj)

7: else
8: yj = V K(IDj , xj)
9: end if

10: View← View‖yj

4



11: end for
12: (ID, x) = A(View)
13: output (ID, x)
The total running time of the adversary A in this game must be at most t. We
say that (ID, x) followed the path if there exists a sequence j1, . . . , jn such that

– 1 ≤ j1 < · · · < jn ≤ q
– for all k we have ijk

= k and IDjk
= ID

– xj1 = IV
– H(xjn , yjn) = x
– for all k < n we have xjk+1 = H(xjk

, yjk
)

We say that the adversary wins if we have V (ID, x) = 1 but (ID, x) did not follow
the path.

We say that the scheme is (q, t, ε)-secure if for any (q, t)-adversary the prob-
ability to win is at most ε.

In Section 5, we address a different threat related to cloning attacks in a
scenario where genuine tags are tamper resistant.

Note that this definition is more general than the pathchecker scheme pro-
posed in Section 2. In the proposed scheme, the tag identity ID is only used at
the first step F1: the personalization step. Other Fi functions do not use ID.

4 Parallel Path Detection

In a strong security model we assume that the adversary has entire control on
the overall process (except by opening a reader). Such an adversary can get the
full internal state of a tag (e.g. by physical attack, or, in the case of the described
case, by simply getting x, sending a fake y and then getting a new x form which
it is easy to recover the missing information by exhaustive search) and create
fake tags with chosen identity and chosen state. Without loss of generality, this
adversary can thus reduce to the scenario in the definition.

Theorem 1. Let us consider a pathchecker scheme. With he above notations,
there is a generic transform for a (q, t)-adversary A with winning probability
ε into (q, t + µ)-adversaries A1, . . . ,Aq+1 with respective winning probabilities
ε1, . . . , εq+1 which make no query to V K and such that

ε ≤ ε1 + · · ·+ εq+1

Since the function H is only used in V K in the game played by the adversaries,
this result shows that we can reduce to adversaries in which H is never used.

Proof. First of all, we assume without loss of generality that adversaries do not
make queries to V K which trivially lead to the answer 1. Namely, if (ID, x)
followed the path during the game, we assume that it is not queried to V K .
Next, we consider the final output (ID, x) as a fictive final query to V K . Clearly,

5



A wins if and only if one among all queries to V K (including the fictive one)
answers 1. Then, we define Ai which simulates A except that the first i queries
to V K are not made and the answer 0 is simulated and the execution stops at the
i+ 1th query. Clearly, A wins the game with the random tape r,K if and only
if at least one of the Ai adversaries wins the game with the same random tape
r,K. We conclude by defining µ to be the overhead complexity in the simulation
of the adversaries. ut

This leads us to the following statement:

In a strong adversarial model, the hash function H is irrelevant
for security.

We now introduce the definition of a pseudo-random function in order to
provide a sufficient condition for security.

Definition 3 (Pseudorandom Function (PRF)). A pseudorandom function
(PRF) is a tuple consisting of

– a domain D, a range R, and a key space K
– a family F =

(
FK

)
K∈K of functions FK : D −→ R

A (q, t)-adversary A is an algorithm playing the following game:
1: pick a uniformly distributed random bit b
2: if b = 0 then
3: pick a uniformly distributed random function F form D to R
4: else
5: pick K ∈ K at random
6: set F to the FK function
7: end if
8: pick r at random and set View = r
9: for j = 1 to q do

10: xj = A(View)
11: yj = F (xj)
12: View← View‖yj

13: end for
14: b̃ = A(View)
15: output b̃⊕ b
The total running time of A in this game must be at most t. We say that the
adversary wins if the output is 0. We say that the PRF is (q, t, ε)-secure if for
any (q, t)-adversary the probability to win is at most 1

2 + ε.

Theorem 2. Consider a pathchecker scheme with the previous notations and
let FK(ID, x, i) = FK

i (ID, x), D = I × U × {1, . . . , n} and R = V. There exists
a constant µ such that if

(
FK

)
K∈K is a (q + n, t+ nµ, ε)-secure PRF, then the

pathchecker-scheme is (q, t, ε′)-secure with

ε′ = (q + 1)
(

2ε+
nq

#V

)

6



Proof. We assume that we have a PRF and we try to upper bound the winning
probability of a (q, t)-adversary A. Let µ1 be the overhead defined by Th. 1.
We construct A1, . . . ,Aq+1 as before which never query V K . We define A′i as
follows.
Input: View
1: simulate q = Ai(View) and look at what is scanned by Ai in View
2: if q is an intermediate query then
3: output← q
4: else
5: parse q = (ID, x)
6: parse the unscanned part of View into y1‖ · · · ‖yj (with 0 ≤ j ≤ n)
7: state = IV
8: for i = 1 to j do
9: state←− H(yi, state)

10: end for
11: if j < n then
12: output← (ID, state, j + 1)
13: else
14: if state = x then
15: output← 1 (final output)
16: else
17: output← 0 (final output)
18: end if
19: end if
20: end if
21: yield output

We let nµ2 be the overhead in the simulation and µ = max(µ1, µ2). Clearly, we
obtain a (q + n, t + nµ)-adversary against the PRF. When b = 1 in the PRF
game, the A′i adversary wins with random tape r,K if and only if Ai wins the
pathchecker game with random tape r,K. When b = 0, there is at least one of
the final n queries by A′i which is new thus returns a random value. This value
is different from all previous ones with high probability and the same for the
forthcoming ones. More precisely, the wining probability is higher than 1− nq

#V .
Thus, the overall wining probability of A′i is

Pr[A′i wins] ≥ 1
2

+
1
2

Pr[Ai wins]− nq

2#V
Thanks to the PRF property we deduce

Pr[Ai wins] ≤ 2ε+
nq

#V
We conclude by using the inequality of Th. 1. ut

This leads us to the following conclusion:

It is enough that readers use a PRF to guaranty security in a
strong adversarial model.

7



5 Security against Genuine Tag Manipulation

In the previous section, we studied the pathchecker scheme to make sure that
something goes sequentially to every step of a path to produce a final valid
number. This means that the correct sequence of value must be obtained from
each step but this does not mean that a tag shall receive it in the right order.
In settings where genuine tags are tamper-resistant and there are no counterfeit
tags, we study the problem of making a genuine tag end up in an acceptable
state without following the path. Indeed, we could still imagine a tag cloning
attack to clone genuine tags in the correct final state. These clones would pass
the verification. To prevent from this without having to install a heavy audit
tool mechanism to detect tag with same ID’s, we must weaken the adversarial
model.

We consider the problem of making a tag end up in a state which is accepted
by the final verification without having received values produced by every step
reader in exactly the right sequence. In this settings, we consider adversaries
who cannot create genuine tags. Clearly, this model is weaker than the previous
one.

The idea behind is that genuine tags with H embedded are legally protected
and that it is easy to see if a tag is a counterfeit. Tags passing through the final
V K verification are not counterfeit but genuine tags are all released with the
same initial state. We assume that the adversary cannot physically tamper the
state of a genuine tag so the only interface with the tag is by sending values.
More precisely, we consider the following definition:

Definition 4 (Weak adversary). A (q, q′, t)-weak adversary is a ploynomial-
time algorithm playing the following game.
1: pick r at random and set View = r
2: pick K ∈ K at random
3: for j = 1 to q do
4: (IDj , xj , ij) = A(View)
5: if ij > 0 then
6: yj = FK

ij
(IDj , xj)

7: else
8: yj = V K(IDj , xj)
9: end if

10: View← View‖yj

11: end for
12: (ID1, . . . , ID`, (i1, y1), . . . , (iq′ , yq′)) = A(View)
13: order ` tags T1, . . . , T` in states x1 = · · · = x` = IV and respective identities

ID1, . . . , ID`

14: for j = 1 to q′ do
15: send yj to Tij

16: end for

8



The adversary wins if there exists one i such that tag IDi end up in a state x
such that V K(IDi, x) = 1 but the list of values that he received is not the sequence
(F̄K

1 (IDi), . . . , F̄K
n (IDi)).

Clearly, we can restrict without loss of generality to adversaries using a single
tag, namely ` = i1 = · · · = iq = 1. The attack game consists of adaptively
selecting ID based on training by querying the oracles and finding a sequence
y1, . . . , yq such that the sequence defined by x0 = IV and xi = H(xi−1, yi) verifies
xq = F̄K(ID) but there is at least one i ≤ n such that yi 6= F̄K

i (ID).
If the pathchecker scheme is secure, the final ID and the final state of the

tag must follow the path, meaning that the training phase has got the correct
sequence F̄K

i (ID). The next question is whether the tag can end up in the correct
state if not fed by this correct sequence. Theorem 3 gives an answer to this
question by showing that it is sufficient that H is a 2nd-preimage resistant hash
function. The definition of such a hash function is given below:

Definition 5 (2nd-preimage resistant hash function). A hash function is
a tuple consisting of

– a domain V, a range R, and a key space K
– a family H =

(
HK

)
K∈K of functions HK : V −→ R

A (q, t)-adversary A is an algorithm playing the following game:
1: pick K ∈ K at random
2: set H to the HK function
3: pick x ∈ V at random and set View = x
4: for j = 1 to q do
5: xj = A(View)
6: yj = H(xj)
7: View← View‖yj

8: end for
9: x̃ = A(View)

10: output 1 iff H(x) = H(x̃) and x 6= x̃

The total running time of A in this game must be at most t. We say that the
adversary wins if the output is 1.

We say that the hash function is (q, t, ε)-2nd-preimage resistant if for any
(q, t)-adversary the probability to win is at most ε.

Theorem 3. Consider a pathchecker scheme. There exists a constant µ′ such
that if (H(IV, ·))IV∈S is a (q + n, t+ nµ, ε)-2nd-preimage resistant hash function
and

(
FK

)
K∈K is a (1, t+ nµ2, ε2)-secure PRF , then the pathchecker-scheme is

(q, t, ε′)-weakly secure with

ε′ =
1

1− ε2

(
ε+

q

#S

)
Proof. We can restrict without loss of generality to adversaries using a single
tag and thus we consider the following adversary:

9



1: pick r at random and set View = r
2: pick K ∈ K at random
3: for j = 1 to q do
4: (ID, xj) = A(View)
5: yj = FK

ij
(IDj , xj)

6: View← View‖yj

7: end for
8: (ID, y1, . . . , yq′) = A(View)
9: order 1 tag T in state IV = x and identity ID

10: for j = 1 to q′ do
11: send yj to Tij

12: end for
The adversary wins if there exists one i such that tag IDi end up in a state x
such that V K(IDi, x) = 1 but the list of values that he received is not the se-
quence (F̄K

1 (IDi), . . . , F̄K
n (IDi)). Recall that the scheme is weakly-secure against

a (q, t, ε)-weak adversary that uses q queries, runs in time less than t, wins with
probability of at most ε.

In the case where the function FK is a (1, t+ µ, ε2)-secure PRF, the adver-
sary makes no distinction if it is replaced by a random function F except with
probability ε2. Clearly, this attack corresponds to a 2nd-preimage attack againt
H.

The adversary A′ wins with random tape r,K if and only if A wins with
random tape r,K and does not distinguish FK from F . Since the yj produced
by A is the output of a random function, this value is different from all previous
ones with high probability and the same for the forthcoming ones. More precisely,
the wining probability is higher than 1− q

#S and we deduce the wining probability
of A′

Pr[A′ wins] ≥ (1− ε2) Pr[A wins]− q

#S

Assuming that H is 2nd-preimage resistant, we obtain

Pr[A wins] ≤ 1
1− ε2

(
ε+

q

#S

)
ut

We deduce that if y 7→ H(IV, y) is 2nd preimage resistant then no adversary can
win the above game scenario with significant success probability. This leads us
to the following conclusion:

In a weak attack model, 2nd preimage resistance of y 7→ H(IV, y)
and PRF properties for F are enough to guaranty that no gen-
uine tag with acceptable final state can be created without
receiving the expected sequence of values obtained at each cor-
responding step.

10



6 Security against Tag Impersonation

In the previous sections, we have shown that, with the adequate security as-
sumptions on F and H, an adversary cannot set a tag to a state that will allow
this latter to be accepted by a “checking reader”.

However, there exists a flaw in the protocol we described in Fig. 2. It is
sufficient for an adversary to get the message Vt hat the tag sends to the reader
and then forge a counterfeite tag that will send this value each time it is asked
for checking. This is called a replay attack.

To thwart this attack, we introduce a challenge (each time different) that
the reader sends at the begining of the protocol. The tag will then compute
its answers by applying H with input its state S and the received challenge c.
Upong receiving the response, the reader checks whether the tag followed the
right path. A description of the protocol is shown in Fig. 3.

Tag Authenticate Reader
State: S Secret: K

c←−−−−−−−−−−−−−−− pick c at random

r ← extract(H(S, c))
r−−−−−−−−−−−−−−−→ check r

Fig. 3. Challenge-reponse protocol to check whether the tag has followed the right
path in the supply-chain.

Since our security model is weaker than the one proposed in [5]. We can reuse
the results of [5, Theorem 13.] to prove the security of this protocol under the
assumption that (H(IV, ·))IV∈S is a secure PRF. Furthermore, this protocol is
weakly-private in under the same assumption.

Using these results, we conclude:

In a strong attack model, PRF property for y 7→ H(IV, y) is
enough to guaranty that no adversary can impersonate a tag
to the reader.

7 Protection from Denial of Service Attacks

In the original version of the pathchecker described in Section 2, any reader can
try to run the update protocol with a tag of Fig. 1, making it desynchronize from
honest readers. This results in a denial of service attack as the authenticating
readers will not be able to verify the path a tag went through. To avoid this, we
should have a reader authentication integrated in the update protocol.

We could have a part of Vc to be provided by the reader for reader authenti-
cation but this would impose increasing the minimal size of registers. We could
avoid wasting bits by using the Vt window for reader authentication as well.

11



tag Update at step r reader
Identity: IDt (ver.2) Identity: IDr

State: S Secret: F K
IDr

Vt = extract(S)
IDt,Vt−−−−−−−−−−−−−−−→ e = F K

IDr
(IDr, Vt)

S′ = H(S, e)
e,V ′

t←−−−−−−−−−−−−−−− V ′
t ‖V ′

c = H(S, e)
if V ′

t 6= extract(S′) abort
S ← S′

Fig. 4. Update protocol with mutual authentication.

Following the update protocol, the tag sends its current Vt value extracted
from its current state along with its identity. The reader uses it to figure out what
is the current state S of the tag ID. Then, the reader computes e = FK

IDr
(IDr, Vt)

and V ′t ‖V ′c = H(S, e) and sends e and V ′t to the tag. The tag then computes
S′ = H(S, e) and replaces S by this value if V ′t is equal to the ouput of extract(S′).
This protocol is depicted in Fig. 4.

However, this protocol assumes that an updating reader can authenticate a
tag. This has an important drawback: The amount of computation needed for
the protocol increases by the cost of searching IDt in the database to get S or to
reconstruct S using all secret by updating readers. Furthermore, this assumption
may not be satisfied as such an operation requires that updating readers have
access to the database or to all the updating readers’ secrets.

tag Update at step r reader
Identity: IDt (ver.3) Identity: IDr

State: S, Kt = GSu(IDt) Secret: F K
IDr

, Su

a← random, Vt = extract(S)
IDt,Vt,a−−−−−−−−−−−−−−−→ e = F K

IDr
(IDr, Vt)

Kt = GSu(IDt)

if V ′
t 6= extract(H(Kt, a‖e)) abort

e,V ′
t←−−−−−−−−−−−−−−− V ′

t ‖V ′
c = H(Kt, a‖e)

S ← H(S, e)

Fig. 5. Update protocol using an authentication key.

In order to relax this assumption, we introduce a secret key Su, shared be-
tween updating readers, and used by these latter to authenticate themselves to
the tags. In consequence, we assign to each tag a specific secret K that depends
on its identity IDt and only computable from Su using a keyed one-way function
G as Kt = GSu

(IDt).
In this variant, described in Fig. 5, the tag will send its identity IDt along with

Vt computed as before. Additionally, it sends a challenge a chosen at random.
After deriving the key Kt = GSu

(IDt), the reader computes e as before and
V ′t ‖V ′c = H(Kt, a‖e) to authenticate itself to the tag. Upon receiving e and V ′t ,

12



the tag verifies that V ′t matches with its computed value H(Kt, a‖e) and replaces
its state S by H(S, e) in case of success. Note that hashing e together with a
has the effect of authenticating e at the same time. This is important to avoid
desynchronization attacks of type man-in-the-middle.

Despite the fact that this variant needs more storage capacity on the tag
side for Kt and more computational power, 2 hashes instead of 1, it presents the
advantage of protoecting the system from denial of service atacks while keeping
the complexity of the protocol relatively low.

8 Conclusion

In this paper, we have proposed a concrete application for RFID tags in supply-
chain managements. The application addresses practical problems and risks that
a company may have to confront by introducing this technology. We formalized
our proposal, defined a security model and developped a number of attack sce-
narios.

In the first one, we have shown that using a pseudo-random function on the
reader side prevents any adversary from creating a tag that will be accepted by
readers as having passed through the supposed path. We also considered that
adversaries may try to “inverse” the process and extract the secret information
included in the tag and how such an attack can be avoided if the hash function
used on the RFID chip is resistant to 2nd preimage attacks. At last, we modified
the authentication protocol in order to be secure against cloning attacks. We also
proposed a variant to the update protocol resistant to denial of service attacks.

Althrough early research on hash functions for RFID tags were not really
optimistic [2], recent proposals have shown some promising results like the work
of Bogdanov et al. [1] and Shamir [4]. Following on this area of research by
developing hash functions addressing the needs and specificity RFID tags is
fundamental for the upcoming introduction of RFID tags in large systems.

Acknowlegments

We would like to thank M. Nicolas Reffé from ORIDAO for proposing the
Pathchecker application and initiating this work.

References

1. Andrey Bogdanov, Gregor Leander, Christof Paar, Axel Poschmann, Matthew J. B.
Robshaw, and Yannick Seurin. Hash functions and RFID tags: Mind the gap. In
Elisabeth Oswald and Pankaj Rohatgi, editors, Cryptographic Hardware and Em-
bedded Systems - CHES 2008, 10th International Workshop, Washington, D.C.,
USA, August 10-13, 2008. Proceedings, volume 5154 of Lecture Notes in Computer
Science, pages 283–299. Springer, 2008.

13



2. Martin Feldhofer and Christian Rechberger. A case against currently used hash func-
tions in RFID protocols. In Robert Meersman, Zahir Tari, and Pilar Herrero, editors,
On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops, OTM
Confederated International Workshops and Posters, AWeSOMe, CAMS, COMINF,
IS, KSinBIT, MIOS-CIAO, MONET, OnToContent, ORM, PerSys, OTM Academy
Doctoral Consortium, RDDS, SWWS, and SeBGIS 2006, Montpellier, France, Oc-
tober 29 - November 3, 2006. Proceedings, Part I, volume 4277 of Lecture Notes in
Computer Science, pages 372–381. Springer, 2006.

3. Ari Juels, Ravikanth Pappu, and Bryan Parno. Unidirectional key distribution
across time and space with applications to rfid security. In Paul C. van Oorschot,
editor, Proceedings of the 17th USENIX Security Symposium, July 28-August 1,
2008, San Jose, CA, USA, pages 75–90. USENIX Association, 2008.

4. Adi Shamir. SQUASH - a new MAC with provable security properties for highly
constrained devices such as RFID tags. In Kaisa Nyberg, editor, Fast Software En-
cryption, 15th International Workshop, FSE 2008, Lausanne, Switzerland, February
10-13, 2008, Revised Selected Papers, volume 5086 of Lecture Notes in Computer
Science, pages 144–157. Springer, 2008.

5. Serge Vaudenay. On privacy models for RFID. In Kaoru Kurosawa, editor, Advances
in Cryptology - ASIACRYPT 2007, 13th International Conference on the Theory
and Application of Cryptology and Information Security, Kuching, Malaysia, De-
cember 2-6, 2007, Proceedings, volume 4833 of Lecture Notes in Computer Science,
pages 68–87. Springer, 2007.

14


