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Abstract

Development of electrodynamics during last one and half a century is discussed
and it is shown that every half a century its contents changes drastically. In fact,
during each of the three past stages three distinct doctrines were reigning in the field,
which can safely be visioned as three different theories. Each of these three theories
is critically analyzed and it is shown that the third stage is over and electrodynamics
has reached the threshold of the fourth stage of its development.

1 Introduction

Discovery of the Maxwell’s equations circa one and half a century ago was the birth of
electrodynamics. Before that, electric and magnetic phenomena were not put together into
one general phenomenon of electromagnetism. After that, this branch of theoretical physics
passed three stages, within which which it took various forms, due to changes of generally-
accepted views upon space, time and corresponding mathematical frameworks. Evolution
of the study had the form of modifications of the currently accepted theory so that a new
one was created, perhaps, the same way as the very first theory which was Maxwell’s elec-
trodynamics, also was created as a modification of electrostatics and magnetostatics by
introducing time-varying fields.

Further modifications occurred approximately every half a century. Each of them signi-
fied that the current stage of evolution of the study is over and a new one is ahead. During
the next stage Maxwell’s electrodynamics in its original form, was being replaced with a new
theory. The new theory has new mathematical structure which employs another mathemat-
ical language. So, after three half-a century stages, classical electrodynamics took the form
of a consequence of theories which are presented in the literature in chronological order.

In this review we outline theories which constitute the subject of classical electrodynamics
and expose modifications which each of them underwent at the end of its stage. A special
attention will be paid to mathematical structures of the theories, differences between them
and the reasons why a new theory should replace the previous one. All these consideration
led to the current state of classical electrodynamics, in which all signs are seen that the
current stage is over and a new one is ahead.
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2 Maxwell’s electrodynamics

The passage from static to time-varying fields requires, first of all, that time appears in the
scope as the fourth independent variable. Since, till the moment, all independent variables
were spatial coordinates, a question arose, whether the fourth independent variable should
represent the fourth dimension. If so, a certain geometry of the 4-dimensional continuum
should be specified. Another opportunity was to leave everything as it was in the Newto-
nian theory. This theory reads that the space is absolute and immobile and time is just
an additional independent variable, hence, also absolute. So, it happened that Maxwell’s
electrodynamics was built within context of the Newtonian theory.

Usually, mathematical structure of a physical theory defines two kind of objects which
are the domain and functions on it. In case of Maxwell’s electrodynamics, the domain is
presented by space and time, thus as a 4-dimensional continuum. This domain splits into
Euclidean 3-space E3 and time. The earlier possesses the well-known geometric and algebraic
structures and the latter has no geometric meaning. Geometric and algebraic structures of
E3 contain operations of scalar and vector multiplications that underlie operations of vector
analysis which employ the operator ∇ and which exist only in three dimensions.

This domain serves as a support of functions which represent the field and its sources.
The fields are represented by the vectors of electric E⃗ and magnetic H⃗ strengths and the
sources are scalar charge density and vector current density J⃗ . These strengths and densities
satisfy Maxwell equations [1]

∇ · E⃗ = 4πρ, ∇ · H⃗ = 0 (1)

∇× H⃗ = 4πJ⃗ + 1
c
∂E⃗
∂t

∇× E⃗ = −1

c

∂H⃗

∂t
,

where c is speed of light.

3 Post-Maxwellian electrodynamics

The main reason to include time as the fourth dimension is motion. Motion of a charge
density ρ with velocity v⃗ transforms it such a way that a current density J⃗ = ρv⃗ appears.
Since in Maxwell’s electrodynamics ρ produces only E⃗ and J⃗ does only H⃗, this transforma-
tion touches the strengths. These considerations, among others, lead to the idea of a grand
unification under which the notions of rest and motion become relational, space and time
join together into space-time, electric and magnetic fields do into a new entity called elec-
tromagnetic field. All this means that Maxwell’s electrodynamics as it was presented above
was to be replaced with a new theory based on the idea of pseudo-Euclidean space-time
of dimension 4, in which charge density ρ is the time component of the vector of current
density. The strength E⃗ and H⃗ are not longer vectors, but components of an object which
was not known before. The commonplace vector algebra which works in 3 dimensions, is
useless under new conditions as well as the operator ∇, therefore, the field equations cannot
longer be expressed in the form (1).
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The new mathematical structure is needed which is manifestly Lorentz-invariant. Since
Lorentz transformations have been conducted only in Cartesian coordinates {t, x, y, z} (here
and below the speed of light is put equal to unity; the index ‘0’ will denote the time com-
ponent), only this kind of coordinate systems was employed on this stage. Thus, mathe-
matical structure of post-Maxwellian electrodynamics is organized as follows. The domain
is Minkowski space-time endowed with Cartesian coordinates {t, x, y, z}. The field and its
source are represented by the vectors of potential and current density specified by their
components Ai and J i where A0 and J0 stand for electrostatic potential and charge density.
Maxwell equations are replaced with manifestly Lorentz-invariant equations

Fij = ∂iAj − ∂jAi, ∂iF
ij = 4πJ i, (2)

where antisymmetric tensor Fij consists of components of the field strengths. All operations
over the functions are defined in the well-known tensor analysis.

All solutions which can be obtained in Cartesian coordinates, are plane waves and their
combinations. The only approach to the field equations (2) suggested by the theory, consists
in the following.

1. It was accepted without any satisfactory foundation that vector potential of electro-
magnetic field can be treated as quartet of massless scalar fields. Then, the source-free
equations (2) can be replaced with the similar scalar equation

�Ai = 0. (3)

2. It was accepted without any foundation that a vector of current density taken in each
space-time point produces its own contribution to the entire field as a point-like source
and that this contribution is strictly parallel to the source. Then, the entire field is
vector sum of contributions from all points of the source. These assumptions were used
as a formal justification of the assumption that Green’s function for the equations (2)
exists.

3. It was accepted that Green’s functions for the equations (2,3) have the form

Gi
j = δijG

where G is Green’s function for the equation (3) and δij is Kronecker’s delta. It must be
pointed out that any Green’s function for a vector equation is referred to vector frames
established in two distinct points, which, in general, are different. The definition of
the Green function presented above requires, first of all, that the space-time is flat,
and second, that only Cartesian coordinates can be used in the theory [1, 2].

4. The scalar Green’s function has been represented in the form of Fourier integrals over
plane wave solutions of the D’Alembert equation (3).
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4 On the Green’s function for the D’Alembert equa-

tion

Since in post-Maxwellian electrodynamics D’Alembert equation is used as that for the vector
potential, it is natural to consider some properties of the Green’s function for it. It is natural
to expect, from physical point of view, that the Green’s function G(x, y) is unique. There
is theorem which states uniqueness of solution of equations like (3) that also signifies that
the Green’s function in question is unique. Contrary to it, standard texts on quantum field
theory expose a special theory of Green’s functions which reads that there exist various
Green’s functions for this equation. Below we discuss some points of this theory.

In pseudo-Euclidean space-time, a Green’s function becomes unique only after the role
of causality is established. Causality determines in which of three zones – inside of one of
two light cones or beyond of both of them the field can be produced from a given point of
the space-time. Ordinary causality requires that the field must only be produced in the light
cone of the future. However, there exists another point of view, according to which a charge
and its field constitute an integral whole, so that a charge does not produce its field, they
exist only together. Whenever “another” field acts on a charge, it first changes the field
around, so that change of the field predates perturbation of charge motion. From this point
of view, the Green’s function must be non-zero only between the cones of the past and the
future.

Explicit form of the Green’s function can be obtained the same way as Coulomb potential
was obtained as a relevant solution of the Laplace equation. By analogy to it, one obtains
from the D’Alembert equation that the desired Green’s function is equal to inverse square
of the interval from the given point. Besides, there exist retarded and advanced Green’s
functions used by Lienard and Wiechert in XIX century when constructing the field of
moving charge. So even if one has made his choice and decided which one of domains,
interior of the light cone of the future or the space-time beyond the cones should serve as
the support of the Green’s function, there are two functions which satisfy the choice whereas
there must be only one. The complete list of Green’s functions is:

G =
1

t2 − r2
(4)

Gret =
δ(t− r)

t+ r

Gadv =
δ(t+ r)

t− r

and one needs to chose only one in accord with the assumed role of causality. If the field is
produced by a charge, the Green’s function is non-zero only in the light cone of the future,
otherwise its support lies beyond the cones. In both cases one has inverse square taken for the
corresponding domain and either retarded or the sum of retarded and advanced functions.
Thus, totally two functions in both cases. However, according to the uniqueness theorem,
only one of them is valid. The retarded function was used in classical electrodynamics,
whereas the inverse square have never been used. Therefore it is natural to look what results
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the latter gives in the simplest case of the field of a rest point-like charge for which the
retarded Green’s function yields the expected Coulomb’s law. This result comes out for
both electromagnetic and scalar fields. Below we show what the inverse square yields in this
case.

As usual, calculation will be completed in spherical coordinates {t, r, θ, φ} with unit
charge which produces scalar field is placed on the world line r = 0. Consider the field in a
point with coordinates t and r with arbitrary θ and φ. The field in question is equal to

t−r∫
−∞

ds

(t− s)2 − r2
=

−r∫
−∞

du

u2 − r2
,

where we have substituted u = s − t. This integral is logarithmically divergent, so, this
calculation gives infinite value for the field in all space-time points. Evidently, the same will
happen for any other source of the field because each its point contributes this way. Thus,
application of the inverse square as the Green’s function yields an apparently unreasonable
result, consequently inverse square of interval is not Green’s function for massless scalar
field. Thereby uniqueness of the Green’s function for this field is proved because Gret(x, y)
is the only one for it. It must be pointed out that Green’s function used in quantum
electrodynamics differs from this one, consequently whenever it is used, the result should be
infinite. In the next section we analyze consequences of usage of this function for quantum
electrodynamics.

Any Green’s function for the D’Alembert equation which does not break causality and
which is not exactly Gret, contains a part proportional to inverse square of the interval and
hence, whenever it is used, the result obtained is infinite. In classical electrodynamics the
field obtained by the method of Green’s function is strictly finite almost everywhere because
the right Green’s function was used. As for quantum electrodynamics, it is known that for
some reason there another Green’s function is used, hence, the used one inevitably turns any
amplitude where it is used, into infinity. This phenomenon is well-known. Physicists use to
explain it by punctuality of the electron. In this section we analyze these explanations.

In quantum field theory, Green’s functions are being represented only in the form of their
Fourier transforms, so that their shapes in the space-time is not seen. In particular, what
cannot be seen in this form, is inevitability of divergences whenever photon propagator is
used. Nevertheless, for some reason, ultraviolet divergences are encountered only in loop
diagrams. If no other ultraviolet diagrams really exist, the encountered ones can be justified
by the theory of renormalizations. However, it seems to be strange that, on one hand,
divergences should appear whenever photon propagator was used and on the other hand,
they did not in case of ee-scattering. So, a question arises, how it happened.
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5 Uniqueness of the Green’s function for the D’Alembert

equation

By definition, the Green’s function for the D’Alembert equation is solution of the equation

�G(P,Q) = δ(P,Q) (5)

where P and Q stand for two space-time points and the right-hand side is the well-known
Dirac’s δ-function on it. Here the equation is represented not in the generally-accepted
coordinate form because this form is well-known only for Cartesian coordinates which are
not used below. The problem of Green’s function arose before in the theory of gravitational
potential. Then it was obtained as the relevant solution of the Laplace equation, which is
nothing but the Coulomb potential Φ = 1/r in spherical coordinates {r, θ, φ}. It can easily
be shown that δ-function in the right-hand side appears due to constant flux of gradient of
Φ through any closed surface about the origin of coordinates.

It is natural to use this approach to the equation (4). For this end, introduce pseudo-
spherical coordinates {ζ, η, θ, φ} for the space-time, where

ζ =
√
t2 − r2, η = arctanh

r

t
; (6)

ζ =
√
r2 − t2, η = arctanh

t

r
(7)

for the interior of the light cone of the future and for the domain beyond the cones corre-
spondingly. Inside the cone ζ is the time coordinate, and beyond this role belongs to the
coordinate η. In both cases the most relevant solution of the D’Alembert equation depends
only on ζ has the form ζ−2 that is inverse square of the interval. Hence, this approach
yields the function G as it is given in the equation (4). Though everything was done exactly
as in the previous case, the function obtained is not the desired Green’s function for the
D’Alembert equation. The point is that coordinate surfaces ζ = const are not closed and
the origin of coordinates is not one of them. Though the flux of gradient through any of
these surfaces is same, they do not reduce to a point, therefore δ-function does not appear in
the right-hand side of the equation (4) and as a result, solution of the D’Alembert equation
is not the Green’s function for it. At the same time, another function of single variable ζ,
which is δ(ζ2), was actually accepted for the role of the Green’s function for this equation.
Indeed, this function can be represented as the sum of Gret and Gadv, which have distinct
supports, hence can be employed independently. Though it is unclear, whether or not this
function satisfies the equation (5), this one was widely used in this capacity in classical
electrodynamics.
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6 Green’s functions and plane waves

Another opportunity to obtain the Green’s function is Fourier transform. Represent the
desired function in Cartesian coordinates as a superposition of plane waves

G(t, r⃗) =

∫
d4xeı(ωt−k⃗·r⃗)g(ω, k⃗). (8)

Then, according to the equation (5) we have

(ω2 − k⃗2)g(ω, k⃗) = 1,

hence, the Green’s function can be represented in the form

G(t, r⃗) =

∫
dωdk⃗

ω2 − k⃗2
eı(ωt−k⃗·r⃗) (9)

and it remains to take this integral. One can expect that the result will be equal to the
inverse square of the interval. Then Fourier transform of the inverse square of the interval
would yield the inverse square of the wave 4-vector so that these two inverse squares would
be Fourier transforms of each other. However, it is not so because the integrals diverge. In
other words, the integral (9) does not exist as a certain function of t and r⃗ and vice versa,
Fourier transform of the inverse square of the interval does not exist as a certain function of
ω and k⃗ because it is the same diverging integral. In both cases the integrand is an oscillating
function with growing amplitude. To see this, let us calculate the integral

g(ω, k⃗) =

∫
dtdr⃗

ω2 − k⃗2
eı(ωt−k⃗·r⃗). (10)

It suffices to show that the integral diverges in some certain part the domain of inte-
gration, say, in the light cone of the future. In this domain the ordinary spherical and
pseudo-spherical coordinates (6) are related as

ct = ζ cosh η, r = ζ sinh η.

Note that these coordinates specify a certain frame of reference. Chose in this particular
frame the wave 4-vector with k⃗ = 0. Then ωt− k⃗ · r⃗ = ωζ cosh η and therefore

g(ω, 0) =

∞∫
0

dζζ3
i∫

0

nftydη sinh2 η

π∫
0

dθ sin θ

2π∫
0

dφ
eıωζ cosh η

ζ2
=

4π

∞∫
0

dζζ

∞∫
0

dη sinh2 ηeıωζ cosh η.

The result is product of two integrals over half-line each, with integrands being oscillating
functions with growing amplitudes. Each of them diverges and no way is seen how to
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regularize them. Lorentz invariance of the result signifies that the integral diverges for each
time-like interval, thus, everywhere in the light cone of the future.

A similar divergence occurs beyond the light cones and finally it turns out that neither
the integral (9) nor the integral (10) exist. So, if the Green’s function for the D’Alembert
equation exists, it has no Fourier transform, or, as theoretical physicists call it, representation
in the momentum space. Similarly, inverse square of the wave 4-vector which they use as
representation of the Feynman’s propagator in the momentum space, does not correspond
to any function on the space-time.

7 Change of fundamental notions and covariance break-

down

As was pointed out above, Cartesian coordinates is the only coordinate system used in
quantum field theory. This restriction actually changes some fundamental notions so that
in this area they have not the same meaning as in all the rest physics. First, it requires that
the space-time can only be flat and hence, it can be endowed with the structure of vector
space. This substitution is particularly important when considering Green’s function which
takes the form of single variable function G(x − y) where x qand y stand for two vectors
in this space. Second, the notion of coordinate transformation reduces to application of the
Lorentz group. Third, the notion of covariance turns into form-invariance under Lorentz
transformations. Fourth, according to the entire picture drawn by these substitutions, there
is no difference between vector potential of electromagnetic field and quartet of massless
scalar fields, therefore equations for the vector potential are replaced with the D’Alembert
equation for each component of the vector potential. That is how one non-covariant equation
penetrates the field theory.

To see what is non-covariant equation, consider the following example. Let a vector field
v⃗ be constant in the space-time specified by its components vt = vx = vz = 0, vy = 1. Then,
evidently, all its components satisfy the D’Alembert equation �vi = 0. Now, pass to round
cylinder coordinates {t, z, ρφ} with

ρ =
√
x2 + y2, φ = arctan

y

x
.

Components of the vector are now vt = vz = 0 vρ = cosφ, vφ = 1
ρ
cosφ, and none of them

satisfies the equation. So, in this case the we see that the D’Alembert equation is valid
in some coordinate systems and invalid in others. If it is so, the equation is physically
meaningless.

Indeed, the D’Alembert equation is physically meaningful only while it is covariant.
Covariance means validity of an equation disregard of choice of a coordinate system. All
covariant equations can be derived without introducing any coordinate system by using
exterior differential calculus and, as a result, they have coordinate-free form. The D’Alembert
equation �Φ = 0 is manifestly covariant because here the D’Alembert operator is applied to
a scalar. Action of the same operator on components of a vector is a non-covariant operation,
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thus, physically meaningless. Nevertheless, the generally accepted form of the equation for
the vector potential of electromagnetic field has the form

�Ai = 0. (11)

This equation is non-covariant, thus, physically meaningless, but it is used mainly in Carte-
sian coordinates, therefore its non-covariance was not discovered.

8 Electrodynamics and tensor analysis

It was clear from the very beginning of the post-Maxwellian stage that a physical theory
can neither be tied to a special class of coordinate systems, nor demand that the space-time
must be flat. As well-known, any coordinate system is locally-Cartesian, therefore, a theory
which is rigidly tied to Cartesian coordinates {t, x, y, z} has strictly local meaning. A need
for modification which admits usage of arbitrary coordinate systems, was evident. At first
glance, such a modification seems to be just a technical problem. It was natural to expect
that it will be resolved during the third stage which started circa in 1960 [3].

Before analyzing efforts to do it which were made during this stage, one more basic of
electrodynamics need to be considered. It is well-known that the charge conservation law
has the form the equations

∇ · J⃗ = 0, ∂iJ
i = 0 (12)

in magnetostatics and electrodynamics correspondingly. In both cases the law follows from
the field equations [4], particularly, from the equation (2) because

4π∂iJ
i = ∂i∂jF

ij ≡ 0 (13)

due to antisymmetry of F ij and commutativity of differential operators ∂i and ∂j. This inter-
connection between the field equations and the charge conservation law is a fundamental
property of electrodynamics.

Besides, the fact that the law follows from the field equations signifies that these equations
are meaningless and have no solutions unless unless the current density J i in the right-hand
side satisfies the equation (13). Since the charge conservation law is not a specific prop-
erty of Cartesian coordinates, it is in force, like any other physical law, in any coordinate
system as well as without introducing any coordinate system at all. Consequently, in a
generally-covariant version of classical electrodynamics, the field equations should possess
this property. Now, let us replace Cartesian coordinates and partial derivatives ∂i with
an arbitrary system and the corresponding covariant derivative Di. It turns out that the
equation(13) remains in force if and only if the space-time is flat, because only under this
condition operators Di and Dj commute. Thus, a straightforward passage from Cartesian
coordinates {t, z, y, z} and partial derivatives to arbitrary coordinates and corresponding co-
variant derivatives provides a generally-covariant version of classical electrodynamics which
is valid under an additional condition that the space-time is flat. Evidently, this theory can-
not be the ultimate one, but can be used in non-inertial frames, for example, in a uniformly
accelerated one.
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9 Achievements and domains of applications

After three stages of its development, classical electrodynamics took the form of a chain of
three theories, each of which possesses its own domain of applications. Even pre-Maxwellian
electrostatics and magnetostatics have their own domains because they are the most relevant
theories in cases of stationary fields. And so is Maxwell’s electrodynamics. Indeed, majority
of tasks of technical electrodynamics are related to an inertial frame in which neither Lorentz
invariance nor the space-time structure is significant. Evidently enough that Maxwell’s
electrodynamics is much more convenient for technical needs, than theories which have been
created later. Consequently, no other theories are needed on this level.

The first stage of development of electrodynamics passed under strong influence of par-
allel development of mathematical physics, which brought numerous discoveries related to
curvilinear coordinate systems and separation of scalar covariant equations. Successful devel-
opment of electrostatics which is based on the Poisson equation, was a part of this process.
However, all the rest equations of Maxwell’s electrodynamics are non-scalar, therefore a
major part of this theory lies beyond the well-developed areas of mathematical physics.
Physicists of the time could guess only how to solve vector equation in Cartesian coordi-
nates. It was expectasble that physicists will try to generalize the method of separation to
non-scalar equations, but this did not happen because at the end of the stage time became
the fourth dimension and construction of a new theory began in which no other coordinate
systems were in use.

The only manifestly positive achievement of post-Maxwellian electrodynamics is formula-
tion of the action principle for electromagnetic field and its source in Cartesian coordinates.
All the rest achievements of this theory are results of application of the method of Green’s
functions mainly to the field of moving charge (“electron”) and calculations of characteris-
tics of radiation from it this way. As was pointed out above, existence of Green’s functions
for the equation (2) has never been proved, therefore all these achievements are, at least,
doubtful. A generally-covariant theory which was built after 1960 seems to have neither
positive achievements nor any domain of application.

10 Non-covariant equations in field theory

In 1974, Robert Wald citeWd proposed a model of black hole in an asymptotically uniform
magnetic field. His goal was only to find out magnetic field in the space-time specified by its
vacuum metric so that magnetic field does not serve as a source of gravitation. The field in
question could well be obtained as the corresponding solution of the Maxwell equations at
least, for the Schwartzschild space-time. However, Wald preferred to use, as he wrote, “the
fact that a Killing vector in a vacuum spacetime serves as a vector potential for a Maxwell
test field”. In this section, we first analyze where this “fact” comes from and show that
it was deduced from the equation (11) and second, show that in vicinity of a black hole, a
Killing vector does not serve as a vector potential for a source-free electromagnetic field. As
a result, we show that representation of magnetic field obtained this way, is wrong.
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First, let us see, where this “fact” comes from. Differentiation and conversion of the
Killing equation turns it into something similar to the Laplace equation. Ineed,

0 = gij D(kj;k + kk;j) = gij DiDj kk + gij DiDk kj

where “; i′′ and Di stand for covariant differentiation over xi. The last term transforms as
follows:

gij Di Dk kj = gij{Dk Di kj + [Di,Dk]kj}.
Now, the first term in figure brackets is zero because it contains divergence of the Killing
vector. As for the second term, it disappears in vacua:

gij[Di,Dk]kj = gijRikj
lkl = Rk

lkl = 0.

Finally, one finds that in vacua, Killing vectors satisfy the equation

gij Di Dk kj = 0. (14)

This equation looks similar to the D’Alembert equation for the vector potential. That is
where the “fact” stated by Wald comes from.

Laplace operator is defined in the coordinate-free form (divergence of gradient) only by
its action on scalar functions. In fact, Laplacian of a scalar function Φ can be written as
△Φ = gij Di ∂jΦ where the first differentiation is just taking partial derivative. Contrary to
this, in the equation (14) the first differentiation is covariant, ot in other words, it contains
non-differentiated component of the Killing vector multiplied by coefficients of connection.
As a result, the left-hand side of this equation contains non-differentiated component of the
vector multiplied twice by components of connection. Therefore, this equation differs from
the commonplace Laplace equation.

The Killing vector used by Wald generates rotations and in an appropriate coordinate
system has single non-zer component kφ = 1. Evidently, this component and thereby, all
components of this Killing vector satisfy the Laplace equation at least in coordinate systems
with azimuthal angle φ as one of coordinates. But unlike the equation (14), this equation is
for ki’s, not ki’s. The difference is, in particular, in spherical coordinates {t, r, θ, φ} that

kφ = gφφk
φ. (15)

Thus, while kφ satisfies one Laplace-like equation (14), kφ does the standard one.
Now, let us see, what equation a purely azimuthal vector potential satisfies. For this end,

represent it as a 1-form α
α = A(r, θ)dφ (16)

and take its exterior derivative:

dα = Aθdθ ∧ dφ− Ardφ ∧ dr.

The next step is to take asterisk conjugation of the result:

∗dα =
1

r2 sin θ
Aθdt ∧ dr − 1

sin θ
Ardt ∧ dθ (17)
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and it remains to take exterior derivative of this 2-form:

d ∗dα =

[
1

r2
∂

∂θ

(
∂A

∂θ

)
+

1

sin θ

∂2A

∂r2

]
dt ∧ dr ∧ dθ.

So-called natural Laplacian of the 1-form α is thus

∗d ∗dα =

[
1

r2
∂

∂θ

(
1

sin θ

∂A

∂θ

)
+

∂2A

∂r2

]
sin θdφ.

According to source-free Maxwell equations, this 1-form is zero, hence, the function A(r, θ)
satisfies the equation

sin θ

r2
∂

∂θ

(
∂A

∂θ

)
+

∂2A

∂r2
= 0

that apparently differs from the Laplace equation which foe a scalar Φ(r, θ) has the form

1

r2
∂

∂r

(
r2
∂Φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
= 0.

Substituting kφ for A in the equation (16), using the equation (15), we find that this function
satisfies the equation:

2 sin2 θ + sin θ

(
1

sin θ
2 sin θ cos θ

)
= 0.

So, in a flat space-time this Killing vector serves as a source-free vector potential. Now, we
repeat this calculation in the Schwartzschild space-time starting from the equation (17):

∗dα
1

r2 sin θ
Aθdt ∧ dr − 1

sin θ

(
1− 2m

r

)
dt ∧ dθ

and exterior differentiation of the result yields

d ∗dα =
2m

r2 sin θ
Aθdt ∧ dr − 1

sin θ

(
1− 2m

r

)
dt ∧ dθ.

Finally,
∗d ∗dα =

2m

r2
dφ

that is exactly the φ-component of the current density to produce this magnetic field. In
other words, the Killing vector which generates rotation, does not serve as a source-free
vector potential. Therefore, all results on black holes in asymptotically-uniform magnetic
fields are erroneous.
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11 Outlines of the new theory

The new theory already exists and is in use for long time. At the very beginning it looked
like just a rewriting Maxwell equations equations in terms of exterior differential forms
[7]. Discovery of isotrope complex tetrad and its property to separate Maxwell equations
[8]-[10] signified that exterior calculus is actually the only possible mathematical form of
electrodynamics. Change of the mathematics entailed change of the whole theory. So, the
new theory is organized as follows.

Unlike post-Maxwellian electrodynamics, the new theory does not prescribe the space-
time to be obligatory flat and endowed with obligatory Cartesian coordinates. So, the
space-time is assumed to be an arbitrary pseudo-Riemannian (3+1)-space endowed with an
arbitrary coordinate system {xi}. Electromagnetic field is specified by a 1-form α ≡ Aidx

i

called “vector potential” which in fact is a co-vector. The 2-form dα stands for the strength
of the field and the field equation has the form

∗d ∗α = I (18)

where the 3-form I in the right-hand side specifies current density. For example, in a coordi-
nate system {t, xa} with t being Lorentzian time, the component ρdx1∧dx2∧dx3 stands for
the charge density. As was shown in our works [4, 12], equations like (18) have no Green’s
functions. Therefore the method of Green’s functions will not be used in the new theory and
the field will only be obtained by solving the Maxwell equations as they stand.

Like other field equations, this one can be solved in the most general form by the method
of variables separation in some coordinate systems for the flat space-time and in Boyer-
Linquist coordinates for all space-time models of the Kerr’s family. This equation separates
and redices to ordinary differential equations in majority of coordinate systems used in math-
ematical physics (see, for example, [9, 10]) and in uniformly accelerated spherical coordinates
[11]. So, unlike previous versions of classical electrodynamics, the new one is much closer
to classical theories in which the master equations are solved in the most general form as
expansions over the complete set of particular solutions obtained by the method of variables
separation.

12 Conclusion

Classical electrodynamics has been created as a generalization of electrostatics and magne-
tostatics to the case of time varying fields about one and half century ago and passed three
50 years long stages of its development. Every half a century a new area of theoretical in-
vestigations appeared, in which theoretical doctrines of the time did not work. Appearance
of a new area always served as a good excuse to build a new theory that is much easier than
to solve a problem in an existing one. Three theories have been built and reigned during the
three stages passed, but gave very little real achievements.

The only practical achievement of Maxwell’s electrodynamics was theoretical prediction
of electromagnetic waves and all the rest achievements of this theory like discovery of Lorentz
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group, are rather of fundamental value. Two other theories gave actually nothing but infla-
tion of the subject. Besides of being completely useless, they have imposed misconceptions
like retarded potentials. Ideological power of useless theories has merely marginalized ap-
plied areas of electrodynamics, which had really great achievements during last century. As a
result, theoretical and applied areas of classical electrodynamics became completely different
areas of activity.

Mathematical background of post-Maxwellian electrodynamics is based on somewhat
dogmatic foundations which include obligatory flat space-time endowed with obligatory
Cartesian coordinates. These foundations replace space-time geometry with linear alge-
bra and attach the whole of theory to plane waves. Besides, they allow one to treat vector
potential of electromagnetic field as quartet of massless scalar fields and believe that each its
component satisfies the D’Alembert equation. Therefore, there was no question of existence
of Green’s function for electromagnetic field equation.

Post-Maxwellian electrodynamics served as an underlying base for quantum electrody-
namics, which actually is rather a recipe of calculations than a physical theory. Green’s
function for the electromagnetic field plays vital role in these calculations. Since these func-
tions exist only thanks to identifications of electromagnetic and scalar fields that is possible
only in the erroneous mathematical background of the post-Maxwellian electrodynamics, all
calculations completed with use of these functions are wrong as well as quantum electrody-
namics itself. Even should the identification was correct, there exists a number of problems
of Green’s functions for the scalar field. First, Feynman’s propagator as it is used in the
momentum space, is not Fourier transform of any function on the space-time. Second, There
exist only one relevant Green’s function for the massless scalar field, which is so-called re-
tarded Green’s function which yields retarded potentials. Hence, calculations of amplitudes
completed in the momentum space have nothing to do with Green’s functions as they stand
in the space-time. Otherwise, an attempt to complete the same calculations in the space-
time leads to new divergences, particularly, of the ee-scattering amplitude, which cannot be
justified by renormalization of electron mass and charge.

However, let us return to classical theory. The next step was made due to development
of relativistic astrophysics accompanied with discoveries in astronomy. This development
required solutions of numerous problems of classical electrodynamics which cannot be solved
in the framework of the post-Maxwellian electrodynamics. First of all, this new development
required that this area must be free of dogmatic foundations mentioned above. As such, the
field equations are to be studied in general-covariant approach, thus, field equations must
be rewritten in terms of covariant derivatives. Therefore, first, all partial derivatives were
replaced by covariant ones, but this was solution of the problem because this does not help to
solve Maxwell equations in more general coordinate systems than Cartesian one. Substitution
of covariant derivatives for partial ones brought nothing. The only result obtained this way
was wrong representation of asymptotically-uniform magnetic field in vicinity of a black hole
when Killing vector is used as the vector potential.

A linear theory cannot be useful unless it presents complete solutions of its own equations.
A method which provides results of this kind, was worked out and published ([6]-[10]),
solutions obtained could well turn theoretical electrodynamics into a useful science long
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ago, and this will happen only as soon as the new theory is accepted. The new theory is
based on application of exterior calculus as the main mathematical tool for electrodynamics.
Unlike all previous versions of electrodynamics, the new one provide complete solutions of
the Maxwell equations in various coordinate systems and the most important space-time
models in relativistic astrophysics.
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