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Preface

Game Theory is one of the most challenging and controversial fields of applied
Mathematics. Based on a robust theoretical framework, its applications range from
analyzing simple board games and conflict situations to modeling complex systems
and evolutionary dynamics.

This book is a short collection of introductory papers in the field, aimed primarily as
reading material for graduate- and postgraduate-level lectures in Game Theory and/or
Machine Learning. The four papers included here are all original works already
published as open-access or conference publications, spanning a timeframe of several
years apart and a wide range of topics. Hence, each paper is self-contained and can be
studied on its own, without any prerequisite knowledge from the previous ones.
However, their presentation order is consistent with going from the most elementary
issues to the more advanced and experiment-rigorous topics.

The first paper presents an overview of Game Theory in general, its core issues and
building blocks, game analysis and methods for identifying Minimax solutions and
Nash equilibria, as well as a brief introduction to coalitional gaming and collective
efficiency. There is also a short summary of other important elements like signaling,
credibility, threats/promises, etc. The second paper extends some of the topics from
coalitional gaming, focusing more on collective efficiency, optimal voting
mechanisms and weighted voting, as well as a brief proposal for applying this game-
theoretic framework to optimal combination of experts. The third paper builds upon
this proposed framework and employs it in Pattern Recognition (Machine Learning)
within the context of combining pattern classifiers. A “static” model for weighted
majority voting with an analytical model for the voting weights is experimentally
tested against other similar models. Finally, the forth paper presents an extension of
this game-theoretic approach for classifier combination, employing “adaptive” voting
weights via local accuracy estimates; in other words, the ensemble of classifiers is
adapted to local efficiency priors (instead of static globals) but keeping the same
analytical model for the voting weights, i.e., without the need to acquire them via
training. This new approach is experimentally validated against state-of-the-art
combination methods for pattern classifiers and it is proven highly competitive with
much lower complexity overhead.

These papers are all part of the author’s PhD work, conducted at the Department of
Informatics and Telecommunications (DIT), National & Kapodistrian University of
Athens,  Greece  (NKUA/UoA).  The  author  wishes  to  give  special  thanks  to  prof.
Sergios Theodoridis (supervisor) and prof. Michael Mavroforakis, colleagues and
friends, for their valuable collaboration in parts of these works.
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Section 1: Elements of Game Theory

Summary:

In this paper, a gentle introduction to Game Theory is presented in the form of basic
concepts and examples. Minimax and Nash's theorem are introduced as the formal
definitions for optimal strategies and equilibria in zero-sum and nonzero-sum games.
Several elements of cooperative gaming, coalitions, voting ensembles, voting power
and collective e-ciency are described in brief. Analytical (matrix) and extended (tree-
graph) forms of game representation is illustrated as the basic tools for identifying
optimal strategies and “solutions” in games of any kind. Next, a typology of four
standard nonzero-sum games is investigated, analyzing the Nash equilibria and the
optimal strategies in each case. Signaling, stance and third-party intermediates are
described as very important properties when analyzing strategic moves, while
credibility and reputation is described as crucial factors when signaling promises or
threats. Utility is introduced as a generalization of typical cost/gain functions and it is
used to explain the incentives of irrational players under the scope of “rational
irrationality”. Finally, a brief reference is presented for several other more advanced
concepts of gaming, including emergence of cooperation, evolutionary stable
strategies, two-level games, metagames, hypergames and the Harsanyi transformation.

Citation:

"Elements of Game Theory – Part I: Foundations, acts and mechanisms",
H. Georgiou, ArXiv.org: 16-Jun-2015 (arXiv: 1506.05148v1 [cs.GT]).

"Games people play: An overview of strategic decision-making theory in conflict
situations", H. Georgiou, viXra.org: 15-Jun-2015 (viXra: 1506.0114 [GenMath]).
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Elements of Game Theory
Part I: Foundations, acts and mechanisms.

Harris V. Georgiou (MSc, PhD)∗

Department of Informatics and Telecommunications,

National & Kapodistrian University of Athens, Greece.

Abstract

In this paper, a gentle introduction to Game Theory is presented in the form of basic
concepts and examples. Minimax and Nash's theorem are introduced as the formal
de�nitions for optimal strategies and equilibria in zero-sum and nonzero-sum games.
Several elements of cooperative gaming, coalitions, voting ensembles, voting power and
collective e�ciency are described in brief. Analytical (matrix) and extended (tree-
graph) forms of game representation is illustrated as the basic tools for identifying
optimal strategies and �solutions� in games of any kind. Next, a typology of four
standard nonzero-sum games is investigated, analyzing the Nash equilibria and the
optimal strategies in each case. Signaling, stance and third-party intermediates are
described as very important properties when analyzing strategic moves, while credibil-
ity and reputation is described as crucial factors when signaling promises or threats.
Utility is introduced as a generalization of typical cost/gain functions and it is used
to explain the incentives of irrational players under the scope of �rational irrational-
ity�. Finally, a brief reference is presented for several other more advanced concepts of
gaming, including emergence of cooperation, evolutionary stable strategies, two-level
games, metagames, hypergames and the Harsanyi transformation.

Keywords: Game Theory, Minimax theorem, Nash equilibrium, coalitional gaming,
indices of power, voting ensembles, signaling, blu�, credibility, promises, threats, util-
ity function, two-level games, hypergames, evolutionary stable strategies, Harsanyi
transformation, metagames.

GAME THEORY is a vast scienti�c and research area, based almost entirely on
Mathematics and some experimental methods, with applications that vary from
simple board games to Evolutionary Psychology and Sociology-Biology in group
behavior of humans and animals. Con�ict situations are presented everywhere
in the real world, every day, for thousands of years - not only in human societies
but also in animals. The seller and the buyer have to come up with a mutually
acceptable price for the grocery. The employer and the employee have to bargain
in order to reach a mutually satisfying value for the salary. A buyer in an auction

∗Email: harris@xgeorgio.info � URL: http://xgeorgio.info
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1 The building blocks 2

has to continuously estimate the cost/gain value of making (or not) the next
higher bid for some object. The primary adversaries in a wolf pack have to
decide when it is bene�cial to �ght over the leadership and when to stop before
they are severely wounded. A swarm of �sh has to collectively �decide� what is
the optimal number and distance of the piket members or �scouts� that serve
as the early warning for the group, perhaps even self-sacri�cing if required. All
these cases are typical examples, simpler or more complex, of con�ict situations
that depend on bargaining, coordination and evolutionary optimization. Game
Theory provides a uni�ed framework with robust mathematical foundations for
the proper formulation and analysis of such systems.

1 The building blocks

In principle, the mathematical theory of games and gaming was �rst developed
as a model for situations of con�ict. Game Theory is the area of research that
provides mathematical formulations and a proper framework for studying ad-
versarial situations. Although E. Borel looked at similar problems in the 1920s,
John Von Neumann and Oskar Morgenstern provided two breakthrough papers
(1928, 1937) as a kick-start of the �eld. Since the early 1940's, with the end
of World War II and stepping into the era of the Cold War that followed, the
work of Von Neumann and Morgenstern has provided a solid foundation for the
most simple types of games, as well as analytical forms for their solutions, with
many applications to Economics, Operations Research and Logistics. However,
there are several limitations that fail to explain various aspects of real-world
con�icts [25], especially when the human factor is a major factor. The applica-
tion of game-theoretic formulations in designing experiments in Psychology and
Sociology is usually referred to as gaming [46, 6].

1.1 Games, strategies and solutions

The term game is the mathematical formulation of adversarial situations, where
two or more players are involved in competitive or cooperative acts. The zero-
sum games are able to model situations of con�ict between two or more players,
where one's gain is the other's loss and vice versa. Most military problems can
be modeled as some form of two-player zero-sum game. When the structure of
the game and the rationale of the players is known to all, then the game is one
of complete information, while if some of these information is somehow hidden
or unknown to some players, it is one of incomplete information. Furthermore,
if all players are fully informed about their opponents' decisions, the game is
one of perfect information. In contrast, if some of the information about the
other players' moves, the game is one of partial or imperfect information. Such
games of both complete and perfect information are all board games, like Chess,
Go and Checkers, and they are all zero-sum by nature.

Von Neumann and Morgenstern [48] proved that there is at least one optimal
plan of decisions or strategy for each player in all zero-sum games, as well as
a solution to the game that comes naturally as a result of all players following
their optimal strategies. At the game's solution, each player can guarantee that
the maximum gain an opponent can gain is kept under a speci�c minimal limit,
de�ned only by this player's own strategy. This assertion was formulated as a
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1 The building blocks 3

theorem called Minimax and in the simple case of two opposing players with
only two strategies each the Minimax solution of the game can be calculated
analytically as a solution of a 2x2 set of linear equations, which determine the
stable solution or saddle-point.

The consequences of the Minimax theorem have been thoroughly studied
for many years after its proof. As an example, it mathematically proves the
assertion that all board games, including the most complex ones like Chess,
have at least one solution, i.e., an optimal (pure) strategy for both players that
can be analytically calculated, at least in theory [44, 46, 37]. Of course, in
the case of Chess the game space is so huge that it is still unfeasible today
to calculate this theoretically optimal strategy, even with the help of parallel
processing in supercomputers. In contrast, Checkers is a much smaller (3x3)
and simpler game, making it possible to create the complete game space in any
typical desktop computer1 and calculate the exact optimal strategy - in fact, it
is the same strategy that every child soon learns by trial-and-error, playing in
a way that always leads to a win or a draw (never loose).

In general, if the chosen strategy of one player is known to its opponent,
then an optimal counter-strategy is always available. Hence, in simultaneous
games where the opposing moves are conducted at the same time, each player
would normally try not to employ a deterministic way of choosing its strategy
and conceal this choice until the very last moment. However, the Minimax
theorem provides a mathematically solid way of nullifying any stochastic aspect
in determining the opponent's choice and, in essence, make its exact choice
irrelevant: no matter what the opponent does, the Minimax solution ensures
the minimum losses to each player, given a speci�c game setup. In other words,
it provides an analytic way to determine the best defensive strategy, instead
of a preference to o�ensive strategies. In some zero-sum games this leads to
one stable outcome or equilibrium, where each player would have no incentive
not to choose its Minimax strategy; however, if this choice leads to a negative
handicap for this player if it is known with complete certainty by the others,
then this choice should not be manifested as certain. In practice this means that
the Minimax solution would not be any single one of the player's pure strategies
but rather a weighted combination of them in a mixed strategy scheme, where
each weight corresponds to the probability of choosing one of the available pure
strategies via a random mechanism. This notion of using mixtures of pure
strategies for randomly choosing between them leads to a false sense of security
in single-turn games, since the optimality of the expected outcome of the mixed
strategy scheme refers to the asymptotic (long-term) and not the �spot� (one-
shot) payo�. Moreover, a game may involve an in�nite number of strategies
for the players, in a discrete or continuous set; in this case the game is labeled
as continuous or in�nite, while a �nite game is one with a limited number of

1 In Checkers, the board size is 3x3 and each position can be either empty or host the mark
of of one of the two players, �X� or �O�. Hence, if the two players are treated as interchangeable
(i.e., who plays �rst) and no other symmetries are considered, the total number of all possible
distinct board setups is: 9 · 8 · . . . · 2 · 1 = 9! = 362, 880. After applying the game rules and
pruning the game tree for early stops (with incomplete boards), the true number of game
states is about 2/3 of that set. Using simple tree-node representation for each board setup,
e.g. a 3-value 9-positions vector dictionary (= 39 ' 214.265 ≤ 215 < 216 = 2 bytes), such a
program would only require about 484 KB or less than 0.5 MB. This is roughly the size of a
small-sized photo taken by the camera of a low-end smart-phone today, while in the '80s this
was almost the total size of RAM in a typical PC.



Ha
rri

s 
Ge

or
gi

ou
 (c

) 2
01

5,
 C

C-
BY

-3
.0

 

ht
tp

://
xg

eo
rg

io
.in

fo

1 The building blocks 4

(discrete) strategies [14, 46].
When the game is inherently repetitive or iterative, i.e., includes multiple

turns and not just one, even the pure strategy suggested by Minimax should
not be chosen deterministically in every turn if according to the game setup
this information might provide a handicap to the opponent. This is a topic of
enthusiastic discussion about the optimality of the Minimax solution and its
inherent defensive nature, as it is not clear in general when information about
an opponent's next move is available and trustworthy enough to justify any
deviation from this Minimax strategy.

Summary:

• In zero-sum games, one player's gains is another's losses (and vice
versa).

• Information about the game structure and the opponents' moves
may be complete or not, perfect or not.

• All board games are inherently zero-sum, of complete and perfect
information.

• The Minimax theorem assures that all board games have at least
one theoretically optimal way to play them, although its exact
calculation may be unfeasible in practice for some games (e.g.
Chess, Go).

• The Minimax solution of a game is the combination of players'
strategies that lead to an equilibrium or saddle-point.

1.2 Nonzero-sum games and Nash equilibria

Although the Minimax theorem provided a solid base for solving many types
of games, it is only applicable in practice for the zero-sum type of games. In
reality, it is common that in a con�ict not all players receive their opponents'
looses as their own gain and vice versa. In other words, it is very common
a speci�c combination of decisions between the players to result in a certain
amount of �loss� to one and a corresponding �gain�, not of equal magnitude, to
another. In this case, the game is called nonzero-sum and it requires a new
set of rules for estimating optimal strategies and solutions. As each player's
gains and losses are not directly related to the opponents', the optimal solution
is only based on the assertion that it should be the one that ensures that the
player has �no regrets� when choosing between possible decision options. This
essentially means that, since each player is now interested in his/her own gains
and losses, the optimal solution should only focus on maximizing each player's
own expectations [33, 28, 13]. The Minimax property can still be applied in
principle when the single most �secure� option must be identi�ed, but now the
solution of the game gains a new meaning.

During the early 1950's, John Nash has focused primarily on the problem
of �nding a set of equilibrium points in nonzero-sum games, where the players
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1 The building blocks 5

eventually settle after a series of competitive rounds of the game [29, 30]. The
failure of the Minimax approach to predict real-world outcomes in nonzero-sum
games comes from the fact that the players are assumed to act independently
and simultaneously, while in reality they usually are not. Experience shows that
possibly better payo�s with what a player might choose, after observing the
opponent's moves, is a very strong motivator when choosing its actual strategy
[27]. In strict mathematical terms, these equilibrium points would not be the
same in essence with the Minimax solutions, as they would come as a result of
the players' competitive behavior over several �turns� of moves and not as an
algebraic solution of the mathematical formulation in a single-turn game.

In 1957 Nash has successfully proved that indeed such equilibrium points ex-
ist in all nonzero-sum games, in a way that is analogous to the Minimax theorem
assertion. This new type of stable outcome is referred to as Nash equilibrium
after his name and can be considered a generalization of the corresponding Min-
imax equilibrium in zero-sum games. In essence, they are the manifestation of
the no regrets principle for all players, i.e., not regretting their �nal choice after
observing their opponents' behavior [44, 46]. However, although the Nash the-
orem ensures that at least one such Nash equilibrium exists in all nonzero-sum
games, there is no clear indication on how the game's solution can be analyti-
cally calculated at this point. In other words, although a solution is known to
exist, there is no closed form for nonzero-sum games until today. Seminal works
by C. Daskalakis & Ch. Papadimitriou in 2006-2007 and on have proved that,
while Nash equilibria exist, they may be unattainable and/or practically impos-
sible to calculate due to the inherent algorithmic complexity of this problem,
e.g. see: [12, 34].

It should be noted that players participating in a nonzero-sum game may or
may not have the same options available as alternative course of action, or the
same set of options may lead to di�erent gains or payo�s between the players.
When players are fully interchangeable and their ordering in the game makes not
di�erence to the game setup and its solutions, the game is called symmetrical.
Otherwise, if exchanging players' position does not yield a proportional exchange
of their payo�s, then the game is called asymmetrical. Naturally, symmetrical
games lead to Nash equilibrium points that appear in pairs, as an exchange
between players creates its symmetrical counterpart.
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2 Cooperation instead of competitiveness 6

Summary:

• In nonzero-sum games, the payo�s of the players are separated
(although may be correlated).

• If players are allowed to observe their opponents moves over sev-
eral iterations, then the �no regrets� principle is a strong incentive
to revise their own strategies, even though their payo�s are sepa-
rated.

• The Nash equilibrium theorem ensures that, under these condi-
tions, there are indeed stable solutions in nonzero-sum games,
similarly to the Minimax theorem for zero-sum games.

• However, calculating the optimal strategies and the game solution
for these Nash equilibria is a vastly more complex and generally
unfeasible task.

2 Cooperation instead of competitiveness

The seminal work of Nash and others in nonzero-sum games was a breakthrough
in understanding the outcome in real-world adversarial situations. However, the
Nash equilibrium points are not always the globally optimal option for the play-
ers. In fact, the Nash equilibrium is optimal only when players are strictly
competitive, i.e., when there is no chance for a mutually agreed solution that
bene�ts them more. These strictly competitive forms of games are called non-
cooperative games. The alternative option, the one that allows communication
and prior arrangements between the players, is called a cooperative game and
it is generally a much more complicated form of nonzero-sum gaming. Natu-
rally, there is no option of having cooperative zero-sum games, since the game
structure itself prohibits any other settlement between the players other than
the Minimax solution.

2.1 The cooperative option

The problem of cooperative or possibly cooperative gaming is the most common
form of con�ict in real life situations. Since nonzero-sum games have at least one
equilibrium point when studied under the strictly competitive form, Nash has
extensively studied the cooperative option as an extension to it. However, the
possibility of �nding and mutually adopting a solution that is better for both
players than the one suggested by the Nash equilibrium, essentially involves a set
of behavioral rules regarding the players' stance and �mental� state, rather than
strict optimality procedures [27]. Nash named this process a bargain between the
players, trying to mutually agree on one solution between multiple candidates
within a bargaining set or negotiation set. In practice, each player should enter a
bargaining procedure if and only if there is a chance that a cooperative solution
exists and it provides at least the same gain as the best strictly competitive
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2 Cooperation instead of competitiveness 7

solution, i.e., the best Nash equilibrium. In this case, if such a solution is
agreed between the players, it is called bargaining solution of the game [28, 33].

As mentioned earlier, each player acts upon the property of no regrets, i.e.,
follow the decisions that maximize their own expectations. Nevertheless, the
game setup itself provides means of improving the �nal gain in an agreed solu-
tion. In some cases, the bargaining process may involve the option of threats,
that is a player may express the intention to follow a strategy that is particularly
costly for the opponent. Of course, the opponent can do the same, focusing on a
similar threat. This procedure is still a cooperative bargaining process, with the
threshold of expectations raised for both players. The result of such a process
may be a mutually deterring solution, which in this case is called a threatening
solution or threat equilibrium. There is also evidence that, while cooperative
strategies do exist, in some cases �cooperation� may be the result of extortion
between players with unbalanced power and choices [36].

In his work, Nash has formulated a general and fairly logical set of six axioms,
the Nash's bargaining axioms, regarding the behavior of rational players, in
order to establish a non-empty bargaining set, i.e., to have at least one stable
solution (equilibrium) [28, 33, 29]. In non-strict form, these axioms can be
summarized in the following propositions:

• Any of the cooperative options under consideration must be feasible and
yield at least the same payo� as the best strictly non-cooperative option
for all players, i.e., cooperation must be mutually bene�cial.

• Strict (mathematical) constraints: Pareto optimality, independence of ir-
relevant alternatives, invariance under linear transformations, symmetry
[46, 33, 28].

The �rst proposition essentially de�nes the term �rationality� for a player:
he/she always acts with the goal of maximizing own gains and minimizing losses,
regardless if this means strictly competitive or possibly cooperative behavior.
The second proposition names a set of strict mathematical preconditions (not
always satis�ed in practice), in order for such a bargaining set to exist. Having
settled on these axioms, Nash was able to prove the corresponding bargaining
theorem: under these axioms, there exists such a bargaining process, it is unique
and it leads to a bargaining solution, i.e., equilibrium. However, as in the general
case of strictly competitive games, Nash's bargaining theorem does not provide
analytical means of �nding such solutions.

The notion of bargaining sets and threat equilibrium is often extended in
special forms of games that include iterative or recursive steps in gaming, either
in the form of multi-step analysis (meta-games) or focusing on the transitional
aspects of the game (di�erential games). Modern research is focused on methods
that introduce probabilistic models into games of multiple realizations and/or
multiple stages [33].
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2 Cooperation instead of competitiveness 8

Summary:

• In nonzero-sum games, there may be non-competitive (coopera-
tive) options that are mutually bene�cial to all players.

• Under some general rationality principles, Nash's bargaining theo-
rem ensures that these cooperative outcomes may indeed become
the game solution, provided that strict competitiveness yields
lower gains for all.

• The procedure of structuring the �common ground� of cooperation
between the players, normally conducted over several iterations,
is the bargaining process.

2.2 Coalitions, stable sets, the Core

Nash's work on the Nash equilibrium and bargaining theorem provides the nec-
essary means to study n-person non-cooperative and cooperative games under
a unifying point of view. Speci�cally, a nonzero-sum game can be realized as
a strictly competitive or a possibly cooperative form, according to the game's
rules and restrictions. Therefore, the cooperative option can be viewed as a
generalization to the strictly competitive mode of gaming.

When players are allowed to cooperate in order to agree on a mutually
bene�cial solution of game, they essentially choose one strategy over the others
and bargain this option with all the others in order to come to an agreement.
For symmetrical games, this is like each player chooses to join a group of other
players with similar preference over their initial choice. Each of these groups is
called a coalition and it constitutes the basic module in this new type of gaming:
the members of each coalition act as cooperative players joined together and at
the same time each coalition competes over the others in order to impose its own
position and become the winning coalition. This setup is very common when
modeling voting schemes, where the group that captures the relative majority
of the votes becomes the winner.

Coalition Theory is closely related to the classical Game Theory, especially
the cooperating gaming [33, 28]. In essence, each player still tries to maximize
its own expectations, not individually any more but instead as part of a greater
opposing term. Therefore, the individual gains and capabilities of each player
is now considered in close relation to the coalition this player belongs, as well
as how its individual decision to join or leave a coalition a�ects this coalition's
winning position. As in classic nonzero-sum games, the notion of equilibrium
points and solutions is considered under the scope of domination or not in the
game at hand. Furthermore, the theoretical implications of having competing
coalitions of cooperative players is purely combinatorial in nature, thus making
its analysis very complex and cumbersome. There are also special cases of
collective decision schemes where a single player is allowed to abstain completely
from the voting procedure, or prohibit a contrary outcome of the group via a
veto option.

In order to study the properties of a single player participating in a game
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2 Cooperation instead of competitiveness 9

of coalitions, it is necessary to analyze the wining conditions of each coalition.
Usually each player is assigned a �xed value of �importance� or �weight� when
participating in this type of games and each coalition's power is measured as a
sum over the individual weights of all players participating in this coalition. The
coalition that ends up with the highest cumulative value of power is the winning
coalition. Therefore, it is clear that, while each player's power is related to its
individual weight, this relation is not directly mapped on how the participation
in any arbitrary coalition may a�ect this coalition's winning or losing position.
As this process stands true for all possible coalitions that can be formed, this
competitive type of �claiming� over the available pool of players/voters by each
coalition suggests that there are indeed con�gurations that marginally favor the
one or the other coalition, i.e., a set of �solutions�.

The notion of solution in coalition games is somewhat di�erent from the one
suggested for typical nonzero-sum games, as it identi�es minimal settings for
coalitions that dominate all the others. In other words, they do not identify
points of maximal gain for a player or even a coalition, but equilibrium �points�
that determine which of the forming coalitions is the winning one. This type
of �solutions� in coalition games is de�ned in close relation to domination and
stability of such points and they are often referred to as the Core. Von Neumann
and Morgenstern have de�ned a somewhat more relaxed de�nition of such con-
ditions and the corresponding solutions are called stable sets [33, 28]. It should
be noted that, in contrast to Nash's theorems and the Minimax assertion of
solutions, there is generally no guarantee that solutions in the context of the
Core and stable sets need to exist in an arbitrary coalition game.

Summary:

• Players of similar preferences and mutual bene�ts may join in
groups or coalitions; these coalitions may be competing with each
other, similarly to competitive games between single players.

• The study of games between coalitions is inherently more complex
than with single players, as in this case every player contributes
to the collective �power� and enjoys a share of the wins.

• In general, coalitions are formed and structured under the scope
of voting ensembles, where the voting weight of each individual
player contributes to the combined weight of the coalition.

2.3 Indices of power in committees

The notion of the Core and stable sets in coalition gaming is of vital importance
when trying to identify the winning conditions and the relative power of each
individual player in a�ecting the outcome of the game. The observation that
a player's weight in a weighted system may not intuitively correspond to its
voting �power� goes back at least to Shapley and Shubik (1954). For example, a
speci�c weight distribution to the players may make them relatively equivalent
in terms of voting power, while only a slight variation of the weights may render
some of them completely irrelevant on determining the winning coalition [45].
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2 Cooperation instead of competitiveness 10

Shapley and Shubik (1954) and later Banzhaf and Coleman (1965, 1971)
suggested a set of well-de�ned equations for calculating the relative power of
each player, as well as each forming coalitions as a whole [33, 28]. The Shapley-
Shubik index of power is based on the calculation of the actual contribution of
each player entering a coalition, in terms of improving a coalition's gain and
winning position. Similarly, the Banzhaf-Coleman index of power calculates
how an individual player's decision to join or leave a coalition (�swing vote�)
results in a winning or loosing position for this coalition, accordingly. Both
indexes are basically means of translating each player's individual importance
or weight within the coalition game into a quantitative measure of power in
terms of determining the winner. While both indices include combinatorial
realizations, the Banzhaf index is usually easier to calculate, as it is based on
the sum of �shifts� on the winning condition a player can incur [5]. Furthermore,
its importance in coalition games is made clearer when the Banzhaf index is
viewed as the direct result of calculating the derivatives of a weighted majority
game (WMG).

Seminal work by L. S. Penrose [35], as well as more recent studies with com-
puter simulations [8], have shown that this discrepancy between voting weights
and actual voting power is clearly evident when there is large variance in the
weighting pro�le and/or when the voting group has less than 12-15 members.
Even in large voting pools, the task of designing optimal voting mechanisms
and protocols with regard to some collective e�ciency criterion is one of the
most challenging topics in Decision Theory.

Summary:

• Weighted majority games (WMG) are the typical theoretical struc-
tures of the process of formulating the collective decision within a
coalition.

• In voting ensembles, each player's voting weight is not directly
proportional to his/her true voting power within the group, i.e.,
the level of steering the collective decision towards its own choices.

2.4 Voting ensembles and majority winners

In most cases, majority functions that are employed in practice very simplistic
when it comes to weighting distribution pro�le or they imply a completely uni-
form weight distribution. However, a speci�c weighting pro�le usually produces
better results, provided that is simple enough to be applied in practice and
attain a consensus in accepting it as �fair� by the voters. Taylor and Zwicker
[45] have de�ned a voting system as trade robust if an arbitrary series of trades
among several winning coalitions can never simultaneously render them losing.
Furthermore, they proved that a voting system is trade robust if and only if it
is weighted. This means that, if appropriate weights are applied, at least one
winning coalition can bene�t from this procedure.

As an example, institutional policies usually apply a non-uniform voting
scheme when it comes to collective board decisions. This is often referred to
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2 Cooperation instead of competitiveness 11

as the �inner cabinet rule�. In a hospital, senior sta� members may attain
increased voting power or the chairman may hold the right of a tie-breaking
vote. It has been proven both in theory and in practice that such schemes are
more e�cient than simple majority rules or any restricted versions of them like
trimmed means. Nitzan and Paroush [32] have studied the problem of optimal
weighted majority rules (WMR) extensively and they have proved that they are
indeed the optimal decision rules for a group of decision makers in dichotomous
choice situations. This proof was later extended by Ben-Yashar and Paroush,
from dichotomous to polychotomous choice situations [3]; hence, the optimality
of the WMR formulation has been proven theoretically for any n-label voting
task.

The weight optimization procedure has been applied experimentally in trained
or other types of combination rules, but analytical solutions for the weights is
not commonly used. However, Shapley and Grofman [42] have established that
an analytical solution for the weighting pro�le exists and it is indeed related
to the individual player skill levels or competencies [23]. Speci�cally, if deci-
sion independence is assumed for the participating players, the optimal weights
in a WMR scheme can be calculated as the log-odds of their respective skill
probabilities, i.e.:

wk = log (Ok) = log

(
pk

1− pk

)
(2.1)

where pk is the competency of player k and wk is its corresponding voting
weight. Interestingly enough, this is exactly the solution found by analytical
Bayesian-based approaches in the context of decision fusion of independent ex-
perts in Machine Learning [24]. The optimality assertion regarding the WMR,
together with an analytical solution for the optimal weighting pro�le, provides
an extremely powerful tool for designing theoretically optimal collective deci-
sion rules. Even when the independence assumption is only partially satis�ed
in practice, studies have proved that WMR-based models employing log-odds
weighting pro�les for combining pattern classi�ers con�rm these theoretical re-
sults [19, 18].

Summary:

• Weighted majority rules (WMR) have been proven theoretically
as the optimal decision-making structures in weighted majority
games.

• The log-odds model has been proven both as the theoretically op-
timal way to weight the individual player's votes, provided that
they decide independently.

• The optimality of the log-odds weighting method has also been
proven experimentally, even when the independence assumption
is only partially satis�ed.
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2 Cooperation instead of competitiveness 12

2.5 Collective e�ciency

Condorcet (1785) [9] was the �rst to address the problem of how to design
and evaluate an e�cient voting system, in terms of fairness among the people
that participating in the voting process, as well as the optimal outcome for
the winner(s). This �rst attempt to create a probabilistic model of a voting
body is known today as the Condorcet Jury Theorem [51]. In essence, this
theorem says that if each of the voting individuals is somewhat more likely
than not to make the �better� choice from a set of alternative options; and if
each individual makes its own choice independently from all the others, then the
probability that the group majority is �correct� is greater than the individual
probabilities of the voters. Moreover, this probability of correct choice by the
group increases as the number of independent voters increases. In practice, this
means that if each voter decides independently and performs marginally higher
than 50%, then a group of such voters is guaranteed to perform better than
each of the participating individuals. This assertion has been used in Social
sciences for decades as a proof that decentralized decision making, like in a
group of juries in a court, performs better than centralized expertise, i.e., a sole
judge. The Condorcet Jury Theorem and its implications have been used as one
guideline for estimating the e�ciency of any voting system and decision making
in general [51]. Under this context, the coalition games are studied by applying
quantitative measures on collective competence and optimal distribution of power
in the ensemble, e.g. tools like the Banzhaf or Shapley indices of power. The
degree of consistency of such a voting scheme on establishing the pair-wise
winner(s), as the Condorcet Jury Theorem indicates, is often referred to as the
Condorcet criterion.

Shapley-Shubik and Banzhaf-Coleman are only two of several formulations
for the indices of power in voting ensembles, each de�ning di�erent payo� dis-
tributions or realizations among the members of winning coalitions. In general,
these formulations are collectively referred to as semivalue functions or semi-
values and they are considered more or less equivalent in principle, although
may be di�erent in exact values. Almost all of them are based on combinatorial
functions (inclusion-exclusion operations in subsets) and, as a result, there is
no easy way to formulate proper inverse functions that can be calculated in
polynomial time. Therefore, the design of exact voting pro�les with weights
based on semivalues, instead of competencies as described above (log-odds), is
generally impractical even for ensembles of small sizes.

For further insight on weighted majority games, weighted majority voting,
collective decision e�ciency and Condorcet e�ciency, as well as applications to
Machine Learning for designing pattern classi�ers, see [17, 19, 18].
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3 Game analysis & solution concepts 13

Tab. 1: Generic 2x2 zero-sum game in analytical form.

Game
example

Player-2
y 1− y

Player-1
x a b

1− x c d

Summary:

• Under the assumption of independent voters and that each de-
cides �correctly� marginally higher than 50% of the time, then
their collective decision as a group is theoretically proven to be
asymptotically better any single member of the ensemble.

• Furthermore, as the size of the ensemble increases, its collective
competency is guaranteed to increase too.

• In the other hand, the problem of formulating an analytical so-
lution for the optimal distribution of voting power within such a
group, i.e., the design of theoretically optimal voting mechanisms,
is still an open research topic.

3 Game analysis & solution concepts

One of the most important factors in understanding and analyzing games cor-
rectly is the way they are represented. Games can be represented and analyzed
in two generic formulations: (a) the analytical or normal form, where each
player is manifested as one dimension and its available choices (strategies) as
o�sets on it, and (b) the extensive or tree-graph form, where each player's �move�
correspond to a node split in a tree representation. Each one of them has its
own advantages and disadvantages, but theoretically they are equivalent.

3.1 Games in analytical (matrix) form

In Table 1, an example of a zero-sum game in analytical form is presented.
Player-1 is usually referred to as the �max� player and Player-2 is referred to as
the �min� player, while rows and columns correspond to each player's available
strategies, respectively. Since this is a zero-sum game and one player's gains
is the other player's losses, the �max� player tries to maximize the game value
(outcome) while the �min� player tries to minimize it. In the context of the
Minimax theorem, Player-2 chooses the maximum-of-minimums, while Player-2
chooses the minimum-of-maximums. The x and y correspond to the weight or
probability of choosing the �rst strategy and, since this is a 2x2 game, the other
strategies are attributed with the complementary probabilities, 1-x and 1-y.

The exact Minimax solution for x and y depends solely on the values of the
individual payo�s for each of the four outcomes. Here, it is assumed that there is
no domination in strategies, i.e., there is no row/column that is strictly �better�
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3 Game analysis & solution concepts 14

Tab. 2: Example 2x2 zero-sum game in analytical form.

Game
example

Player-2
(0) (1)

Player-1
(0) 0 -3
(1) 4 1

Tab. 3: Example of a 2x2 nonzero-sum game in analytical form.

Game
example

Player-2
y 1− y

Player-1
x (a1,a2) (b1,b2)

1− x (c1,c2) (d1,d2)

than another row/column (column-wise/row-wise, respectively, all payo�s). For
example, Player-1 would have a dominating strategy in the �rst row if and only
if a ≥ c and b ≥ d. Based on this generic setup, this is a typical 2x2 system of
linear equations and, if no domination is present, its solution can be determined
analytically as [44, 14, 26]:

[x, 1− x] =

[
d− c

a− b− c+ d
,

a− b

a− b− c+ d

]
(3.1)

[y, 1− y] =

[
d− b

a− b− c+ d
,

a− c

a− b− c+ d

]
(3.2)

u =
ad− bc

a− b− c+ d
(3.3)

The Minimax solution [x, y] determines the saddle-point, i.e., the equilibrium
that is reached when both opponents play optimally in the Minimax sense, when
the game has no pure (non-mixed) solution. In this case, the expected payo�
or value of the game for both players is calculated by u (remember, this is a
zero-sum game). If the game has a pure solution, then it is determined as either
0 or 1 for each probability x and y. Table 2 illustrates a zero-sum game and the
corresponding pure Minimax solution, by selecting the appropriate strategies for
each player. In this case, �max� Player-1 chooses the the maximum {1} between
the two minimum values {-3,1} from its own two possible worst-case outcomes,
while �min� Player-2 chooses the the minimum {1} between the two maximum
values {4,1} from its own two possible worst-case outcomes. Hence, the pure
solution [1,1] is the Minimax outcome.

In nonzero-sum games, the analytical form is still a matrix, but now the pay-
o�s for each player are separate, as illustrated in Table 3. Here, since the payo�s
are separated, both players are treated as �max� and the Minimax solution for
each one is calculated by selecting the maximum-of-minimums as described be-
fore for zero-sum games, focused solely on its own payo�s from each value pair.

Although a (pure) Minimax solution can always be calculated for nonzero-
sum games, the exact Nash equilibrium solution is a non-trivial task that cannot
be solved analytically in the general case. However, pure Nash equilibrium
outcomes can be identi�ed by locating any payo� pairs (z, w) such that z is
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3 Game analysis & solution concepts 15

Tab. 4: Example of a 2x2 nonzero-sum game with one Nash equilibrium at
[A,B ]:(2,4).

Game
example

Player-2
A B

Player-1
A (3,3) (2*,4*)
B (4*,1) (1,2*)

the maximum of its column and w is the maximum of its row. In other words,
every row for Player-1 is scanned and every entry in it is compared to the values
in the same column, marking it if it is the maximum among them; the same
process is conducted for every column for Player-2, scanning each value row-wise
for its maximum; any payo� pair that has both values marked as maximums
is a Nash equilibrium in the game. Table 4 illustrates such an example, where
asterisk (*) marks the identi�ed max-values and the single Nash equilibrium
for [A,B ] at (2,4). Here, although the strategies are the same for both players,
their (separated) payo�s are not, hence the game is referred to as asymmetric.
According to the oddness theorem by Wilson (1971), the Nash equilibria almost
always appear in odd numbers [44, 33], at least for non-degenerate games, where
mixed strategies are calculated upon k linearly independent pure strategies.

Summary:

• Game representation in analytical form introduces a game matrix,
with row and column positions associated to the strategies available
to the players and contents associated to the corresponding payo�s.

• Analytical-form representation introduces very convenient ways to
identify Minimax solutions and Nash equilibria in games.

• However, they are appropriate mostly for 2-player simultaneous
games, since any other con�guration cannot be fully illustrated.

3.2 Games in extensive (tree-graph) form

In the extensive form the game is represented as a tree-graph, where each node
is a state labeled by a player's number and each (directed) edge is a player's
choice or �move�. Strictly speaking, this is a form of state-transition diagram
that illustrates how the game evolves as the players choose their strategies.
Figure 3.1 shows such a 2x2 nonzero-sum game of perfect information, while
Figure 3.2 shows a similar 2x2 game of imperfect information [46, 28, 49, 41,
16, 14]. Nodes with numbers indicate players, edges with letters indicate chosen
strategies (here, symmetric) and separated payo�s (in parentheses) indicate the
game outcome after one full round. The dashed line between the two nodes
for Player-2 indicate that its current true state is not clearly de�ned due to
imperfect information regarding Player-1's move. In practice, these two states
form an information set for Player-2, which has no additional information to
di�erentiate between them. This is also valid in the case of simultaneous moves,
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3 Game analysis & solution concepts 16

Fig. 3.1: Example of a 2x2 nonzero-sum game of perfect information.

where Player-2 cannot observe Player-1's move in advance of its own, and vice
versa. In extensive form, an information set is indicated by a dotted line or by
a loop, connecting all nodes in that set.

The extensive form of game is usually the preferred way to represent the
tree-graph of simple 2-player board games, where each node is clearly a state
and each edge is a player's move. Even in single-player games, where a puzzle
has to be solved through a series of moves (e.g. Rubik's cube)2, the tree-graph
is a very e�ective way to organize the game under an algorithmic perspective, in
order to program a �solver� in a computer. In practice, the problem is structured
as sequences of states and transitions in a tree-graph manner and the �game�
is explored as it is evolving, move after move, expanding the tree-graph from
every terminal node. The tree-graph can be expanded either by full a level
(�breadth-�rst�), or from a branch all the way down to non-expandable terminal
nodes (�depth-�rst�), or some hybrid scheme between these two alternatives.

As described above, small games like Checkers can be structured and ex-
panded fully, with their tree-graph having only internal (already expanded) and
terminal nodes; however, in larger games like Chess or Go this is practically
unfeasible even with super-computers. In such cases, the algorithm should as-
sess the �optimality� of each expandable terminal node with regard to relevance
towards the prede�ned goal (�win� or �solution�), sort all these nodes according
to their ranking and choose the �best� ones for expansion in the next iteration.
This way, the search is sub-optimal but totally feasible with almost any mem-
ory constraints - this is exactly how most computer players are programmed
for playing board games or solving complex puzzle games. In Arti�cial Intelli-
gence, algorithms like A* and AB solve this type of problems as a path-�nding
optimization procedure towards a speci�ed goal [40, 31].

2 The combinatorial analysis of the classic 3x3x6 Rubik's cube should take into account
tile permutations that can only be reached by the available shifts and turns of the slices of
the device. Therefore, a totally �free� permutation scheme would produce: 8! · 38 · 12! · 212 =
519, 024, 039, 293, 878, 272, 000 cube instances, while in practice the possible permutations are
only: 8!·37 ·(12!/2)·211 = 43, 252, 003, 274, 489, 856, 000 cube instances (about 12 times fewer)
[50].
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3 Game analysis & solution concepts 17

Fig. 3.2: Example of a 2x2 nonzero-sum game of imperfect information.

Figure 3.3 illustrates the way a path-�nding algorithm like A* would work
in expanding a tree-graph as described above. The �root� node is the starting
state in a puzzle game (single-player) and each node represents a new state
after a valid move. The numbers indicate the sequence in which the nodes are
expanded, according to some optimality-ranking function (not relevant here).
For example, node �4� in the 3rd level is expanded before node �5� in the 2nd
level, node �21� in the 5th level is expanded before node �22� in the 3rd level,
etc. Here, node �30� in the 5th level is the last and most relevant terminal node
(still expandable) towards the goal, hence the optimal path from the �root� state
is currently the: �5�→�7�→�11�→�30� and the next �best� single-step move is
the one towards �5�. The tree-graph can be expanded in an arbitrary number
of levels according to the current memory constraints for the program, but the
same path-�nding procedure has to be reset and re-applied after the realization
of each step when two or more players are involved, since every response from
the opponent e�ectively nulli�es every other branch of the tree-graph.

It should be mentioned that, although the extensive form of game represen-
tation is often ine�cient for large games like Chess, it can be used as a tool in
the proof of the existence of an optimal solution [15, 46]. Speci�cally, in every
such game of complete and perfect information (all board games), each player
knows its exact position in the graph-tree prior to choosing the next move. In
other words, each player is not only aware of the complete structure of the game
but also knows all the past moves of the game, including the ones of random
choice. Hence, since there is no uncertainty in the moves, each player can remove
the dominated strategies and subsequently identify the optimal choice, which is
always a pure strategy, i.e., the one that corresponds to the saddle-point of the
game. This proof actually ensures the existence of a (pure) optimal strategy
in every typical board game, no matter how large or complex it is. Examples
include Tic-Tac-Toe, Chess, Backgammon, etc.
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4 The four interesting cases 18

Fig. 3.3: Example of the way a path-�nding algorithm like A* would work in
expanding the tree-graph of a single-player �puzzle� game like Rubik's
cube.

Summary:

• Game representation in extended form introduces a tree-graph, with
nodes associated to individual players and (directed) edges associated
to selected strategies (�moves�).

• Extended-form representation introduces very convenient ways to
identify chains of moves and solution paths.

• However, the calculation of Minimax solutions and Nash equilibria is
not straight-forward.

4 The four interesting cases

In the real world, games may be either zero-sum or nonzero-sum by nature.
As described previously, the case of zero-sum games can be considered simpler
and much easier to solve analytically, since it can be formulated as a typical
algebraic set of linear equations that de�ne the Minimax solution, regardless
if it contains pure or mixed strategies [44, 14]. However, nonzero-sum games
are inherently much more complex and require non-trivial solution approaches,
usually via some Linear Programming (constraint) optimization procedure, e.g.
see: [20, 43]. In fact, it has been proven that the general task of �nding the
Nash equilibria is algorithmically intractable3 [12, 10, 11, 34] - something that

3 In their seminal works, Daskalakis, Goldberg and Papadimitriou have shown that the task
of �nding a Nash equilibrium is PPAD-complete; informally, PPAD is the class of all search
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4 The four interesting cases 19

Tab. 5: The general analytical (matrix) form of a 2x2 nonzero-sum symmetric
game.

Game
template

Player-2
C D

Player-1
C (R,R) (S,T )
D (T,S ) (P,P)

puts into a �philosophical� question the very nature and practical usefulness of
having proof of game solutions (i.e., stable outcomes) that we may not be able
to calculate.

Some cases of nonzero-sum games are particularly interesting, especially
when they involve symmetric con�gurations. The players can switch places,
the actual payo� values are usually of much less importance than their relative
ordering as a simple preference list, the Minimax and Nash equilibria can be
easily identi�ed, yet these simple games seem to capture the very essence of
bargaining and strategic play in a vast set of real-world con�ict situations with
no trivial outcomes.

Table 5 shows a generic template for such very simple symmetric nonzero-
sum games, employing only two strategies and four payo� values to completely
de�ne such games in analytical (matrix) form. Here, the game is symmetric
because the players can switch roles without any e�ect in their corresponding
payo� pairs. Furthermore, they share two common strategies C and D, named
typically after the choices of �cooperate� or �defect�, while constants P, R, S
and T are the real-valued payo�s in each case [7].

In practice, a player's preference of strategies (and hence, the equilibria)
depends only on the relative ordering of the corresponding payo�s and not their
exact values, which become of real importance only when the actual payo� value
of the game solution is to be calculated for each player. There is a �nite number
of rank combinations, i.e., permutations, of these four constants, which produce
all the possible unique game matrices of this type. Speci�cally, there are 4! = 24
di�erent ways to order these four numbers, 12 of which can be discarded as
qualitatively equivalent to other game con�gurations. Out of the 12 remaining
games, eight of them possess optimal pure strategies for both players, therefore
they can be considered trivial in terms of calculating their solution. The four
remaining con�gurations are the most interesting ones, as they do not possess
any optimal pure strategy. These are the following:

• Leader : T > S > R > P .

• Battle of the Sexes: S > T > R > P .

• Chicken: T > R > S > P .

• Prisoner's Dilemma: T > R > P > S.

These four qualitatively unique games seem to capture the essence of most
of the majority real-world con�ict situations historically. Although they have

problems which always have a solution and whose proof is based on the parity argument for
directed graphs. Due to the proof of intractability, the existence of Nash equilibrium in all
nonzero-sum games somewhat loses its credibility as a predictor of behavior.
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Tab. 6: The typical setup of the Leader game with two players. Nash equilibria
are marked with paired asterisks and the Minimax solution with bold
numbers.

Leader
game

Player-2
C D

Player-1
C (2,2) (3*,4*)
D (4*,3*) (1,1)

been studied extensively in the past, there are still many open research topics
regarding the feasibility, tractability and stability of the theoretical solutions.

4.1 Leader

The Leader or Coordination game [28, 33, 46, 44, 7, 16] is named after the
typical problem of two drivers attempting to enter a stream of increased tra�c
from opposite sides of an intersection. When the road is clear, each driver has
to decide whether to move in immediately or concede and wait for the other
driver to move �rst. If both drivers move in (i.e., choose D), they risk crashing
onto each other, while if they both wait (i.e., choose C ), they will waste time
and possibly the opportunity to enter the tra�c. The former case is the worst,
hence the payo� of (1,1), while the later case is slightly more preferable with a
payo� of (2,2). The best outcome is for one driver to become the �leader� and
move �rst, while the other becomes the �follower� and move second. There is
still some di�erence in their absolute gains, but now the deadlock is resolved
in the best possible way, no matter who is actually the leader and who is the
follower.

Table 6 illustrates the analytical form of this game setup, where numbers
indicate relative preferences rather than absolute gain values. There are two
pure Nash equilibria, (3,4) and (4,3), which correspond to the proper assignment
of roles to the players, explicitly or implicitly, such that coordination is achieved.
Since the game is symmetric the two players can switch roles, with only marginal
increase/decrease to their payo�s. In terms of Minimax strategies, each player
is free to choose the strategy that guarantees the maximum-of-the-minimums
without any concern about the opponent's payo�s, since this is a nonzero-sum
game. Hence, the Minimax solution is [C,C ] at (2,2) marked in bold.

In the real world, the assignment of roles as leader/follower is more e�ective
when applied explicitly, typically by some external mechanism or a prede�ned
set of rules. Street signs, tra�c policemen and highway code for driving prop-
erly are all such mechanisms for explicit resolution of deadlocks via priority
assignment in tra�c.

4.2 Battle of the Sexes

In the Battle of the Sexes game [28, 33, 46, 7, 16], a married couple has to decide
between entertainment options for the evening. The husband prefers one choice,
while the wife prefers another. The problem is that they would both prefer to
concede to the same choice together even if it is not their own, rather than follow
their own choices alone. For example, of he wants to watch a sports match on
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4 The four interesting cases 21

Tab. 7: The typical setup of the Battle of the Sexes game with two players. Nash
equilibria are marked with paired asterisks and the Minimax solution
with bold numbers.

Battle of
the Sexes

Player-2
C D

Player-1
C (1,1) (3*,4*)
D (4*,3*) (2,2)

TV and she wants to go out for dinner, they both prefer either watching TV or
going out for dinner as long as they are together.

Table 7 illustrates the analytical form of the game, where strategy C is for
conceding to the other's preference and D is for defecting to his/her own choice.
If they both concede the payo� (1,1) is the worst outcome, since they both
end up miserable and bored. If they both defect the payo� (2,2) is marginally
better for both, but they end up being alone. The two other cases of someone
following the other yields the best payo�s for both, since the game is symmetric
and they can switch places. The outcomes (3,4) and (4,3) are actually the two
Nash equilibria, similarly to the Leader game; however, the Minimax solution
(2,2) here corresponds to both players choosing D (not C as in Leader) as their
best Minimax strategy.

4.3 Chicken

One of the most well-known strategic games is Chicken [15, 26, 28, 33, 46, 7],
dating back at least as far as the Homeric era. Two or more adversaries engage
in a very dangerous or even lethal confrontation, each having a set of choices at
his/her disposal and each of these choices producing more or less damage to all
players if their choice is the same. Typically, this translates to the Hollywood's
favorite version of two cars speeding towards each other, the drivers can choose
to turn and avoid collision or keep the course and risk death if the other driver do
not turn either. The game seems simple enough, but there are several theoretical
implications that make it one of the most challenging situations, appearing in
many real-world con�icts throughout History.

Table 8 illustrates the typical Chicken game setup with two players and two
strategic choices. Option C corresponds to turning away (�swerve�) and losing
the game, while option D corresponds to keeping the course and risk death.
The worst possible outcome is at (1,1) when players persist in keeping course
and eventually crashing against each other. The mutually bene�cial outcome
or �draw� is at (3,3) when both players decide to play safe and turn away; this
is actually the Minimax solution of the game, i.e., the most conservative and
�rational� outcome if the game is a one-o� round. On the other hand, there are
two Nash equilibria for the two outcomes when only one player turns away and
one persists.

One particularly interesting feature of the Chicken game is that it is impos-
sible to avoid playing it with some insistent adversary, since refusing to play
is e�ectively equivalent to choosing C (swerve). Furthermore, the player who
succeeds in making his/her commitment to D adequately convincing is always
the one that can win at the expense of the other player, assuming that the other
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Tab. 8: The typical setup of the Chicken game with two players. Nash equilibria
are marked with paired asterisks and the Minimax solution with bold
numbers.

Chicken
game

Player-2
C D

Player-1
C (3,3) (2*,4*)
D (4*,2*) (1,1)

player is rational and would inevitably decide to avoid disaster. In other words,
the player that is somehow bounded to avoid losing at any cost and makes this
commitment very clear to the opponent, is the one that will always win against
any rational player.

This aspect of credible commitment is closely related to the notion of repu-
tation, as well as the strange conclusion that in this game the most e�ectively
�rational� strategy is the manifestation of �irrational� commitment to lethal risk.
This becomes especially relevant in cases where the game is played a number
of times repeatedly and previous behaviors directly a�ect the players' strategic
choices in the future: once the risky player starts winning he/she may maintain
or even improve this advantage, as con�dence and prior �risky� behavior makes
it more and more di�cult for future opponents to decide and deviate from their
cautious Minimax choice of swerving. The Chicken game is perhaps the most
descriptive and simple case where players' previous behavior (i.e., reputation)
is of such importance for predicting the actual outcome.

4.4 Prisoner's Dilemma

This forth basic type of non-trivial, nonzero-sum game is by far the most inter-
esting one. The Prisoner's Dilemma game [15, 26, 28, 33, 46, 44, 7, 16] typically
involves two prisoners who are accused of a crime. Each of them has the option
of remaining silent and withholding any information or confessing to the police
and accusing the other by disclosing details about the crime. The �rst choice C
is e�ectively the cooperative option, while the second choice D corresponds to
purely competitive behavior in order to reduce he/her own damages.

Table 9 illustrates the typical Prisoner's Dilemma game setup with two play-
ers and two strategic choices. The payo�s here correspond simply to preferences
and not real gain/cost values, but the essence and the strategic properties of
the game remain intact. In practice, what the game matrix says is that if the
two prisoner's remain silent, i.e., mutually cooperate, they will not be freed but
they will share an equal, relatively mild conviction. If they both talk and accuse
each other, i.e., mutually defect, they will share and equal but more severe con-
viction. If only one of them talks to the police and the other remains silent, the
one that talked is freed and the other serves a full-time conviction for both. It
is of course imperative that the two prisoners are immediately separated upon
capture and no communication between them is allowed; this does not nulli�es
any prior arrangements they may have, but isolation after being captured means
that neither of them can con�rm they loyalty of the other. This is one of the
main reasons why police always isolates suspects prior and during any similar
investigation.
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Tab. 9: The typical setup of the Prisoner's Dilemma game with two players.
Nash equilibria are marked with paired asterisks and the Minimax so-
lution with bold numbers.

Prisoner's
Dilemma

Player-2
C D

Player-1
C (3,3) (1,4*)
D (4*,1) (2*,2*)

The real beauty and singularity of the Prisoner's Dilemma is that it implies
a paradox. A quick analysis of the payo�s in Table 9 yields two extremes at (1,4)
and (4,1), corresponding to the two interchangeable cases one player cooperating
(C ) and one not (D), but in contrast to the three previous games these are not
Nash equilibria. There is only one Nash equilibrium at (2,2), which is in fact
the Minimax solution too. This means that under the solution concepts of both
Minimax strategy and Nash equilibrium, theory suggests that the two prisoner's
will probably choose to betray one another, despite any previous arrangements.
It is clearly evident that the outcome (3,3) is mutually bene�cial and at the
same time unattainable due to lack of communication. However, in therms of
strict personal gain, defecting (D) is the dominant strategy for both and neither
of them has any incentive to deviate from it. In other words, it appears that
defecting is always the optimal choice regardless of what the other prisoner does
- but if both adopt the same rationale, they will end up at (2,2) which is clearly
worse than the (3,3) that they could have gotten if they had chosen mutual
cooperation.

The essence of the paradox of Prisoner's Dilemma lies in the inherent con�ict
between individual and collective rationality. While individual rationality is
well-understood, collective rationality deals with the scope of optimizing the
mutual gain of the players. This is not a default behavior in strictly competitive
situations, as in zero-sum games, or nonzero-sum games that do not imply
cooperation. However, nonzero-sum games permit the idea of mutually optimal
gains as a combination of simultaneously optimal separate payo�s. Under this
broader scope, even (4,1) and (1,4) are worse than (3,3) since they yield a sum
of 5 in gain value rather than 6, respectively.

It should also be noted that the single Nash equilibrium in Prisoner's Dilemma
is stable, while the corresponding pairs of Nash equilibria in the three previous
games are inherently unstable, since the players are not in agreement as to
which of the two equilibria is preferable. Furthermore, in the three previous
games the worst possible outcome comes when both players choose their non-
Minimax strategy; in Prisoner's Dilemma this is not so. In fact, Prisoner's
Dilemma has produced lengthy academic debates and hundreds of studies in a
wide range of disciplines, from Game Theory and Mathematics to Sociology and
Evolutionary Biology. The paradox of this game (as described above) has been
illustrated as a notorious example where theory often fails to predict the true
�gaming� outcomes in the real world: cooperation can emerge spontaneously,
even though theory says it should not [1, 2, 27, 7].
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5 Signals, mechanisms & rationality 24

Summary:

• There are four basic nonzero-sum game types of particular interest
namely: Leader (or Coordination), Battle of the Sexes, Chicken and
Prisoner's Dilemma.

• Three of these games (except Prisoner's Dilemma) have two �mir-
rored� pure Nash equilibria and players receive the worst possible pay-
o� when they choose to deviate from their optimal Minimax strategy.

• Prisoner's Dilemma is a very unique type of game, since neither Min-
imax solution or Nash equilibrium (single one in this case) point to
the best mutually bene�cial outcome; this is informally labeled as the
paradox of this game.

5 Signals, mechanisms & rationality

Game formulation and representation in analytical or extensive form are imper-
ative for proper analysis and identi�cation of equilibria. However, they fail to
capture many elements of gaming as a multi-aspect process, especially in rela-
tion to strategic moves; these are actions performed by the players at di�erent
places and times, even before the realization of the current game, with the goal of
enhancing strategic advantages and increasing the e�ectiveness of chosen strate-
gies. Sometimes the �moves� are no more than message exchanges between the
players, explicit or implicit, or simply tracking the history of previous choices
in iterated games. Formulating these factors into a proper mathematical model
can be very di�cult, but nevertheless they are matters of great importance in
real-world con�ict situations.

5.1 Signals, carriers & blu�s

The exchange of messages between the players is a very useful option when a
player is trying to model or even predict the behavior of its opponent(s). A
message or signal from one player to another may be voluntary or involuntary,
direct or indirect, explicit or implicit [46, 44]. In any case, it carries some sort
of strategic information, which is always valuable to the other player if it can be
asserted as credible with a high degree of con�dence. On the other hand, if this
credibility can be manipulated and falsely asserted as such, the source player
may gain some strategic advantage by means of deceiving its opponent.

Strategic signaling is the process of information exchange between two or
more players in a game, using any means or intermediate third-parties as car-
riers. If the source player does this deliberately, the purpose is to project some
strategic preference or stance (�posturing�) in the game without making any ac-
tual �move�, in order to intimidate or coordinate with the opponent(s). This is
particularly useful in situations where mutually bene�cial equilibria are achiev-
able but lack of preference ranking can lead to disastrous lack of coordination.
The Leader and Battle of the Sexes games are such examples (see Tables 6 and
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5 Signals, mechanisms & rationality 25

7). On the other hand, if the source player signals its opponent unintention-
ally, this strategic information could be a �leak� of such importance that may
determine the actual outcome of the game.

Explicit signaling means that the source player sends out a clear message
with undeniable association and content. An explicit signal may be volun-
tary or involuntary; in the later case, the message is simply a �leak� with very
clear origin and content. Implicit signaling happens when the origin or (most
commonly) the content of the message is somehow inconclusive or �plausibly
deniable� as to the intentions of the source player. A signal exchange may occur
directly between the players or via a third-party that performs the role of a car-
rier. A number of combinations of these attributes are possible in practice, em-
ploying direct/indirect messaging, voluntary/involuntary information exchange,
with explicit/implicit messages. For example, a third-party carrier may share
an implicit signal or �leaked� (involuntary) information about a player's stance
with another player, participating in the game only as a mediator, coordinator
or �referee�, rather than an actively involved player.

A very special type of signaling is when the message exchange involves false
information, i.e., a blu�. This kind of signals is a very common practice in
games of imperfect and/or incomplete information, where the players do not
have a complete view of the game structure itself and/or the opponents' choices,
respectively. In this case, false signaling or blu�ng is usually a strategic option
by itself, exploiting this uncertainty regarding the true status of the game to
enhance advantages or mitigate disadvantages. A very common example of
such games is Poker, where a player with weaker deck of cards can project a
false stance to its opponents, in order to avoid defeat or even secure a victory
against players with better decks of cards [46, 44]. Blu�ng can be realized
directly between players or indirectly via a third-party carrier. In the later case,
especially when the signaling is implicit and assumed involuntary, the credibility
of the assertion is strongly associated with the credibility of the carrier itself.
In other words, even if the source player could not project a successful blu� on
its own, a credible third-party carrier might be the necessary intermediate to
achieve such a move. The role of third-party mediators in signaling is a special
topic in the study of strategic moves and how they a�ect the �nal outcome in
games.
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Summary:

• A signal between players is a voluntary or involuntary, direct or indi-
rect, explicit or implicit exchange of a message; it is usually a declara-
tion of stance (�posture�) in the game, i.e., intent to include or exclude
a strategy from a set of open options.

• Strategic moves, e.g. signaling, project some strategic preference with-
out making any actual �move�, in order to intimidate or coordinate
with the other player(s).

• A blu� is a projection of false information, i.e., exploiting the incom-
plete/imperfect information structure of a game to gain some strate-
gic advantage that could not be achievable if the game was of com-
plete/perfect information.

5.2 Credibility, reputation, promises & threats

The e�ectiveness of projecting a strategic stance via signaling, regardless if it
is true or blu�, depends heavily on the credibility of that signal, as well as
the credibility of the player itself [46, 44]. When it comes to a single signal
or stance, the credibility is closely linked to the level of compatibility of that
signal or stance with the rationality of the player. Although rationality per se
may be only an assumption with regard to one's opponent, in general terms it
is fairly easy to examine the matrix or the tree-graph representation of a game
and establish whether a declared stance is bene�cial or not to the associated
player. In other words, if that player is assumed to behave rationally, Minimax
strategies and Nash equilibria can be used to �lter out choices that are clearly
excluded, at least with a high probability.

The set of previous stances and/or moves, as well as their associated cred-
ibility values, can be used as the history or reputation of that player, which
is in fact the a priori probability for any future stance and/or move of being
consistent with its previous behavior [27]. Since games of complete and perfect
information, e.g. Chess, are not compatible with false signaling and blu�s, the
true theoretical aspect of credibility and reputation is relevant only in games
of incomplete and/or imperfect information. Hence, Poker players are indeed
characterized as being cautious or risk-takers according to their reputation on
using blu�s in lower or higher frequency, respectively.

A player with a speci�c reputation can signal a speci�c stance to the others,
projecting either a promise or a threat. A promise is a signal that usually
declares the intent to cooperate, i.e., choose the less aggressive approach. This
is particularly useful when the players need to coordinate in order to avoid much
worse outcomes, as in the games Leader and Battle of the Sexes (see Tables 6
and 7). On the other hand, a threat is a signal that usually declares the intent
to compete, i.e., choose the more aggressive approach. This is still useful as the
means to enforce some kind of coordination, now in the form of extortion rather
than willful cooperation. The Chicken game is such any example (see Table 8),
where one player must force the other to swerve, in order to naturally end up
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5 Signals, mechanisms & rationality 27

in one of the two Nash equilibria and avoid the worst outcome of crash.
As it was mentioned earlier, Prisoner's Dilemma is a very special type of

game, since neither Minimax solution or Nash equilibrium points to the mutually
bene�cial option of cooperation; however, if signaling between the prisoners is
possible, i.e., if they are allowed to communicate with each other, cooperation
becomes much more plausible: all they have to do is to promise each other to
remain silent and threat to accuse the other as a retaliation if they see the other
doing such thing. One of the most interesting topics in modern Game Theory is
the study and analytical formulation of the conditions, the constraints and the
exact processes of the evolution of cooperation in games like Prisoner's Dilemma,
where typical theory fails to predict optimal strategies, although such strategies
seem to exist, usually in accordance to some Tit-for-Tat variation [1, 2, 27, 7].

In any case, whether it is a promise or a threat, the signal or stance is labeled
as credible or not. Hence, a credible promise is one that comes from a player
with a reputation of being consistently reliable in ful�lling that promise, i.e.,
actually choosing less aggressive strategies when signaling intent to cooperate.
Similarly, a credible threat is one that comes from a player with a reputation of
being consistently reliable in ful�lling that threat, i.e., actually choosing more
aggressive strategies when signaling intent to compete [28, 33].

Summary:

• Promise is a signal that usually declares the intent to cooperate, i.e.,
choose the less aggressive approach; it is useful when players need to
coordinate in order to avoid much worse outcomes.

• Threat is a signal that usually declares the intent to compete, i.e.,
choose the more aggressive approach; it is useful a player wants to
enforce some kind of coordination, in the form of extortion.

• Credibility is closely linked to the level of compatibility of a signal or
stance with the rationality of the player; in practice, it is a measure
(probability) of whether the player will ful�ll a promise or a threat, if
necessary.

• Reputation of a player is the a priori probability for any future stance
and/or move of being consistent with its previous behavior.

• Credible promises and credible threats are associated with the reputa-
tion and credibility of each player, as well as the actual payo�s in the
corresponding game matrix.

5.3 Utility, incentives & �rational irrationality�

As it was mentioned earlier, if that player is assumed to behave rationally, i.e.,
trying to minimize losses and maximize gains in terms of actual payo�s in each
outcome, the credibility of a promise or a threat can be easily established with
a high probability. Nevertheless, the fact that this is just a probability and not
a perfect forecast comes from the fact that, in turn, the level of rationality of
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5 Signals, mechanisms & rationality 28

Tab. 10: The typical setup of the Hostage Situation game with two players.
Player-1 is the assaulter and Player-2 is the rescuer-protector.

Hostage
Situation

Player-2
C D

Player-1
C (2,3) (1,4*)
D (4*,2*) (3*,1)

that player cannot be evaluated perfectly and in exact terms.
Rationality and incentives of a player emerge naturally from the exact for-

mulation of its own utility function, which is nothing more than a generalization
of the loss/gain function that is described by the matrix or the tree-graph of
the game [33, 16, 28]. If the formulation of the game's payo� matrix is perfect,
then it is clear when a strategy is optimal for a player and when it is not. How-
ever, the truth is that these payo� values may not re�ect the exact utility, i.e.,
overall loss/gain value for that player, usually due to some �hidden� outcomes
or side-e�ects. For example, a game matrix may describe the payo�s for each
outcome and each player correctly, but with the assumption that these players
are rational in the same way: winning over their opponent; this may not be
true, e.g. when one player cares more about securing that their opponent does
not win, rather than securing their own win. In other words, when the play-
ers' rationality is not symmetrically the same, then they do not share the same
utility function and the true payo�s in the game matrix may actually be quite
di�erent.

A very classic example of such games, assumed to be symmetric when they
are actually asymmetric by nature, is the Hostage Situation, described in ana-
lytical form by Table 10. If the two opponents are treated as similarly rational,
i.e., symmetric in terms of incentives and behavior, then the game is not much
di�erent than the classic Chicken, where one must convince the other to swerve
�rst, in order to avoid the crash. This translates to either the authorities give
in to the assaulter's demands or the assaulter eventually surrenders to the au-
thorities, both outcomes assumed to be equally rational, correspondingly, to
each player. However, if for some reason the assaulter is more determined than
initially presumed, preferring to �ght to the death rather than surrendering and
ending up in jail, then the game is inherently asymmetric and the payo� matrix
is quite di�erent, as illustrated in Table 10. What the matrix shows is that
now Player-1, i.e., the assaulter, has a dominant strategy of always choosing the
most aggressive stance, no matter what the authorities choose to do. There is
no pure Minimax solution here, since there is no pure saddle-point (see payo�s
�3� and �2� in bold); however, there is now a single Nash equilibrium at (4,2),
i.e., aggressive assaulter and passive authorities - this is in fact the standard ap-
proach internationally in all hostage situations: the authorities start with trying
to establish a communication link and negotiate with the assaulter, rather than
choosing a rescue operation by direct action that could put the hostages in
danger.

As it is evident from the Hostage Situation game of Table 10, the authorities
are normally guided to a more passive and cooperative approach of negotiating
rather than using force, because the incentive is to protect the hostages at all
costs. This e�ectively translates to employing a utility function that includes
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Tab. 11: The typical setup of the Kamikaze game with two players. Player-1 is
the �kamikaze� and Player-2 is the defender.

Kamikaze
Player-2

C D

Player-1
C (2,3) (1,4*)
D (4*,1 ) (3*,2*)

a high priority on the hostages' lives, higher than the immediate capture or
incapacitation of the assaulter. Hence, the rationality of Player-2 dictates a more
passive, cooperative stance. This changes drastically if, during this evolution,
the lives of hostages are put in severe danger, e.g. when the assaulter poses a
very credible threat or actually harms a hostage (assuming there are more). In
this case, the authorities should change stance and employ the more aggressive
option, because this is now the optimal response.

Table 11 illustrates the Kamikaze game, which is actually a slightly modi�ed
Hostage Situation game in terms of payo� matrix. The game is still asymmetric
and the only variation is the swapping of payo� values {2} and {1} for Player-
2 (marked in italics), which illustrates the new fact that at this point it is
more harmful for the hostages to remain idle rather than using direct force to
rescue them, even if this too poses some danger to them - again, this is exactly
the standard approach internationally in all hostage situations: the authorities
follow strict rules-of-engagement which state that, once it is established that the
lives of hostages is in clear and severe danger, direct action is to be employed
immediately. The same setup emerges when the Kamikaze game is studied
according to its name: when one player (assaulter) is more concerned about
damaging the opponent (defender) rather than protecting itself, then there is
indeed a dominant strategy of always choosing the most aggressive stance, no
matter what the defender chooses to do. Likewise, the defender is now forced to
choose between its two worst outcomes and naturally chooses the less damaging
one, i.e., direct counter-action rather than swerve. Here, the passive stance
is established as more damaging than all-out-con�ict, exactly as in Hostage
Situation with a very aggressive assaulter. In terms of game analysis, now
there is indeed a pure Minimax solution at (3,2), which is also the single Nash
equilibrium of the game. This explains why there is practically no other rational
(strategically optimal) way to defend against a murderous hostage-taker or a
desperate kamikaze than employing equally aggressive response.

The concepts described along the strategic analysis and �rationalization�
of the players in games like Hostage Situation and Kamikaze illustrate how a
seemingly irrational course of actions can be easily explained and even classi�ed
as rational behavior, if the proper utility functions are employed. In other words,
if the utility of each and every player is de�ned correctly, then all players in any
game can be labeled as �rational� ones. This proposition is often referred to
as �rational irrationality� (valid/explainable behavior), rather than �irrational
rationality� (incomprehensible behavior) [27].
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Summary:

• Utility is the generalized cost/gain function of a player in a speci�c
game, depending on the outcomes but including any �hidden� regards
and side-e�ects.

• Given a speci�c utility function, a player's incentives emerge naturally
as the rational behavior of the underlying payo�-optimization process.

• A player's behavior may seem �irrational� if its utility function is in-
complete; given a properly de�ned utility function, a player's behavior
can always be labeled as rational per se.

• Hostage Situation and Kamikaze are two examples of (asymmetric)
stand-o� games where the notion of �rational irrationality� is fully
explained via proper de�nition of the corresponding utility functions
for the assaulter.

6 The frontier

This paper included only some of the most basic concepts of Game Theory,
including solution methods and representations of typical games of special in-
terest, like Chicken and Prisoner's Dilemma. However, these are only a scratch
on the surface of what lies beneath, the rigorous mathematical theory and the
complex, some still unsolved, problems in this extremely interesting and useful
scienti�c area.

All the games and setups presented thus far was somewhat �too perfect�,
too simple compared to real-world situations of con�ict. There are few cases
where only two players are involved, their moves are full observable and their
incentives clear and consistent. In most con�icts, groups of players are spiraling
in alternating rounds competing and cooperating, each knowing its own utility
function and very little about the others', while signaling, third-party credibility
assertions and continuous bargaining are common things. Is there really a way
Game Theory can address all these aspects in the same clarity, mathematical
robustness and universality as is does with simple cases of zero-sum and nonzero-
sum games like the ones presented previously?

The short answer is �No�. Game Theory is the mathematical way to approach
some of the most complex problems the human mind has ever encountered. For
example, what are the prerequisites, the dynamics and the survivability of the
evolution of cooperation as a strategy, in human or animal societies? What is
the asymptotic behavior of such �cooperative� groups? Can they survive in an
environment of pure competition? These issues are addressed in other aspects
of the theory, namely the Evolutionary Stable Strategies (ESS), not analyzed in
this study. In short, ESS are patterns of behavior in games of pure competition
and/or possible cooperation, such as the Prisoner's Dilemma, that not only may
emerge spontaneously but also survive as optimal strategies in iterative games.
Tit-for-Tat [1, 2] is such an example of ESS in iterated Prisoner's Dilemma:
cooperation can emerge spontaneously given a set of conditions, primarily (a)
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players �start nicely�, (b) continue with reciprocity, (c) don't know when the
game �nishes. Although it seems simple enough, spontaneous cooperation in
con�ict situations is one of the most intriguing and theoretically complex prob-
lems in Game Theory today.

In a slightly simpler scenario, a player may be involved in a game with
another player, while at the same time its strategic choices are relevant to a
second game, with some other player. For example, a politician may be in a
�bargain� with voters, trying to gain their support by promising speci�c actions
if elected, while at the same time a second �bargain� may be taking place in
parallel with the party's main policies and governmental plan if it comes to
power. If some of that politician's promises are on con�ict with the party's main
lines, then as a player is involved in what is called a two-level game [39, 38].
This form of gaming was �rst proposed by Putnam in the late '70s and it models
two-level or multi-level con�ict situations in general, where the strategic choices
of a player a�ect two or more simultaneous games. The solution concepts and
equilibria are not much di�erent than those of simple games, but now a strategy
is optimal and produces a stable outcome only if it is such simultaneously in all
these games.

Another very interesting aspect of gaming in general is the evolution of
strategies and each player's behavior as each observes the others' moves. In
single-step games, the Minimax solution (pure or mixed) is the one that dic-
tates the optimal strategy for each player. The concept of iterative gaming is
much more general, since it includes cases where the same players may face one
another in the same single-step games many times in the future. In this case,
Nash equilibria predict the most probable outcomes with much better accuracy.
But the knowledge that there will be a �next round�, especially when players
alternate moves and one can observe the other before making its own (e.g. in
Chess), then the game analysis can expand to two or more steps ahead. In prac-
tice, the player does not only take into account the strategic choices available
to the opponent(s) but also the �what if� combinations of moves-countermoves.
Hence, the corresponding game matrix includes these combinations of composite
states on the opponent(s) side and the payo�s are estimated accordingly. This
type of composite multi-step setup is often referred to as a metagame [46]. The
extended-form representation of metagames is more natural than the analytical
(matrix) form, but the identi�cation of equilibria and solutions is somewhat less
straight-forward.

Some games involve elements of chance regarding the game's state or partial
information regarding the observability of each player's moves. In such games
of imperfect information, modeling via a game matrix or a tree-graph can be
problematic, since many of the paths may be mutually exclusive and not just
alternative choices. In the '60s, very early on in the history of Game Theory,
Harsanyi introduced the so-called Harsanyi transformation [21, 22, 28] for trans-
forming a game of incomplete information to an equivalent game of complete
but imperfect information. This may not seem much, but in reality there is a
very distinct and important di�erence between them. If a random event dic-
tates the exact structure and payo�s of the games, perhaps even the strategic
behavior of the players, then the analysis of such a game is inherently a very dif-
�cult task. On the other hand, the Harsanyi transformation models this random
event as a deterministic one, removing the element of chance and introducing
the notion of �hidden� information about it. In practice, this results in creating
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multiple variations of the game, one for each possible con�guration, and treating
them separately. After they are individually analyzed, solutions and equilibria
are combined together within a probabilistic framework, introducing the more
generalized concept of Bayesian Nash equilibria [28].

In real-world con�ict situations it is not uncommon that one or some of the
players have a di�erent knowledge or �view� of the game structure, its payo�s
and the other players' preferences. This means that each player acts upon its
own payo� matrix, possibly very di�erent in structure and values than the one
used by the other players. Of course, all players are involved in the same, single
game and the payo�s on each outcome is e�ectively a single one, despite each
player's unique view of the game. This is extremely important if some of the
players have a more complete view of the game, i.e., when they address the
game as one of (almost) complete information, while some opponents address
it as one of incomplete information. These special types of con�ict are often
referred to as hypergames [47, 4]. Introduced by Bennett and Dando in late
'70s and later revised in the '00s by Vane and others, hypergames is a very
e�cient way to describe games of asymmetric information between players by
employing di�erent variations of the game matrix or tree-graph, according to
each player's view. In practice, hypergames are treated the same way as simple
games, with each player deciding its strategic choices according to its own view
and, subsequently, combining the (partial) outcomes together.

Game Theory is a vast scienti�c and research area, based almost entirely on
Mathematics and some experimental methods, with applications that vary from
simple board games and auctions to Evolutionary Psychology and Sociology-
Biology in group behavior of humans and animals. Although real-world situa-
tions reveal that sometimes its predictive value is limited, the robust theoretical
framework and solution concepts provide an extremely valuable set of tools that
clari�es the inner workings and dynamics of con�ict situations.
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Summary:

• In accordance to Nash's bargaining theorem, cooperation can emerge
spontaneously, even in competitive games, when a speci�c set of pre-
requisites are satis�ed.

• Evolutionary stable strategies (ESS) are patterns of behavior in games
of pure competition and/or possible cooperation that survive as opti-
mal strategies in iterative games.

• In two-level games, a player may be involved in a game with another
player, while at the same time its strategic choices are relevant to a
second game, with some other player.

• Metagames are multi-step game setups where the corresponding game
matrix includes combinations of �what if� composite states, regarding
the future strategic choices of the opponent(s).

• The Harsanyi transformation is used in games of incomplete infor-
mation, e.g. when the game structure and payo�s depend on some
random event, to transform it to an equivalent game of complete but
imperfect information.

• Hypergames is a very e�cient way to describe games of asymmetric
information between players by employing di�erent variations of the
game matrix or tree-graph, according to each player's view.

• In general, Game Theory is a vast scienti�c and research area with
robust theoretical foundation that can be used as a predictive tool, as
well as (mostly) an extremely valuable approach to analyze con�ict
situations.

Acknowledgement: This work is dedicated to John F. Nash, pioneer and
mathematical genius, who was killed earlier this month on May 23th 2015 in a
car accident along with his wife Alicia. His inspirational work and breakthrough
ideas has changed Game Theory and Economics forever.



Ha
rri

s 
Ge

or
gi

ou
 (c

) 2
01

5,
 C

C-
BY

-3
.0

 

ht
tp

://
xg

eo
rg

io
.in

fo

6 The frontier 34

References

[1] R. Axelrod. The Evolution of Cooperation. Basic Books, NY: 1984, 1984.

[2] R. Axelrod and D. Dion. The further evolution of cooperation. Science,
242 (1988), 1385-1390, 1988.

[3] R. Ben-Yashar and S. Nitzan. Optimal decision rules for �xed-size com-
mittees in polychotomous choice situations. Social Choice and Welfare, 18
(2001) 737-746, 2001.

[4] P. G. Bennett and M. R. Dando. Complex strategic analysis: A study of
the fall of france. Journal of Operational Research Society, 33, pp.41-50,
1979.

[5] S. Berg. Indirect voting systems: Banzhaf numbers, majority functions and
collective competence. Eur. J. Pol. Econ., 13 (1997), pp.557-573, 1997.

[6] C. Camerer, T. Ho, and K. Chong. Behavioral game theory: Thinking,
learning, and teaching. Learning and Teaching (November 13, 2001) -
Caltech Working Paper, 2002.

[7] J. L. Casti. Reality Rules II: Picturing the world in Mathematics - The
Frontier. John Wiley & Sons, 1997.

[8] P.-L. Chang, V. Chua, and M. Machover. L s penrose's limit theorem: Tests
by simulation. Mathematical Social Sciences, 51 (2006) 90-106, 2006.

[9] Marquis de Condorcet. An essay on the application of probability the-
ory to plurality decision making: An election between three candidates.
Sommerland and Mclean (1989) 66-80, 1989.

[10] C. Daskalakis, P. W. Goldberg, and Ch. Papadimitriou. The complexity of
computing a nash equilibrium. Communications of the ACM, 52(2):89-97,
2009, 2009.

[11] C. Daskalakis, P. W. Goldberg, and Ch. Papadimitriou. The complexity of
computing a nash equilibrium. SIAM Journal on Computing, 39(1):195-
259, 2009, 2009.

[12] C. Daskalakis and Ch. Papadimitriou. The complexity of computing a nash
equilibrium. In 38th ACM Symposium on Theory of Computing (STOC
2006), 2006.

[13] A. Dixit and B. Nalebu�. Game theory (2nd/ed.). The Concise Encyclo-
pedia of Economics, 2008.

[14] M. Dresher. Games of Strategy � Theory and Applications. Prentice-Hall
/ RAND Corp, USA: 1961, 1961.

[15] T. S. Ferguson. Game Theory (2nd/Ed). Mathematics Department, UCLA:
2014, 2014.

[16] D. Fudenberg and J. Tirole. Game Theory. MIT Press, 1991.



Ha
rri

s 
Ge

or
gi

ou
 (c

) 2
01

5,
 C

C-
BY

-3
.0

 

ht
tp

://
xg

eo
rg

io
.in

fo

6 The frontier 35

[17] H. Georgiou. Collective decision e�ciency and optimal voting mechanisms:
A comprehensive overview for multi-classi�er models. arXiv.org preprint
(en)(arXiv:1502.02191v1 [cs.GT]), 2015.

[18] H. Georgiou and M. Mavroforakis. A game-theoretic framework for classi-
�er ensembles using weighted majority voting with local accuracy estimates.
arXiv.org preprint (en)(arXiv:1302.0540v1 [cs.LG]), 2013.

[19] H. Georgiou, M. Mavroforakis, and S. Theodoridis. A game-theoretic ap-
proach to weighted majority voting for combining svm classi�ers. In Int.
Conf. on ANN (ICANN), 10-13 Sept. 2006, Athens, Greece, in: S.Kollias,
et al. (Eds.): ICANN 2006, Part I, LNCS 4131, 2006, pp. 284-292, 2006.

[20] S. Gu. Game theory and linear programming. Duke University, CS lecture
presentation (2008), 2008.

[21] J. C. Harsanyi. Bargaining in ignorance of the opponent's utility function.
Journal of Con�ict Resolution (1962), 1962.

[22] J. C. Harsanyi. Games with incomplete information played by bayesian
players, i-iii. Management Science, 14, pp.159-182,320-332,468-502 (1967),
1967.

[23] D. Karotkin. The network of weighted majority rules and weighted majority
games. Games and Econ.Beh., 22 (1998), pp.299-315, 1998.

[24] L. Kuncheva. Combing Pattern Classi�ers - Methods and Algorithms. Wi-
ley, 2004.

[25] R. D. Luce and H. Rai�a. Games and Decisions. Wiley, New York, 1957.

[26] M. Maschler, E. Solan, and S. Zamir. Game Theory. Cambridge University
Press: 2013, 2013.

[27] L. Mero. Moral Calculations - Game Theory, Logic and Human Frailty.
Springer-Verlag, New York, 1998.

[28] C. Montet and D. Serra. Game Theory and Economics. Palgrave Macmil-
lan, New York, 2003.

[29] J.F. Nash. Non-cooperative games. Annals of Math., 54 (1950) pp.286-295,
1950.

[30] J.F. Nash. Non-cooperative games (phd dissertation). PhD dissertation,
Princeton University, 1950.

[31] N. J. Nilsson. Arti�cial Intelligence: A New Synthesis. Elsevier / Morgan
Kaufmann, 1998.

[32] S. Nitzan and J. Paroush. Optimal decision rules in uncertain dichotomous
choice situations. International Economic Review, 23 (1982) 289-297, 1982.

[33] G. Owen. Game Theory (3rd/Ed). Academic Press, 1995.

[34] Ch. Papadimitriou. Complexity of �nding a nash equilibrium. Berkeley
University (EE-CS), lecture notes (2011), 2011.



Ha
rri

s 
Ge

or
gi

ou
 (c

) 2
01

5,
 C

C-
BY

-3
.0

 

ht
tp

://
xg

eo
rg

io
.in

fo

6 The frontier 36

[35] L. S. Penrose. On the objective study of crowd behavior. HK Lewis & Co,
London, 1952.

[36] W. H. Press and F. J. Dyson. Iterated prisoner's dilemma contains strate-
gies that dominate any evolutionary opponent. PNAS, 109 (26)(2012)
10409-10413, 2012.

[37] J. Prywes. The mathematics of magic: The gathering - a study in proba-
bility, statistics, strategy, and game theory. (draft paper), 1999.

[38] R. D. Putnam. Diplomacy and domestic politics: The logic of two-level
games. International Organization, 42 (3) 1988, 1988.

[39] R. D. Putnam and C. R. Henning. The Bonn summit of 1978: How does
international economic policy coordination actually work? Brookings In-
stitution, USA: 1986, 1986.

[40] S. Russell and P. Norvig. Arti�cial Intelligence: A Modern Approach
(3rd/Ed). Prentice Hall, 2009.

[41] A. Schalk. The Theory of Games and Game Models (CS3191 - lecture
notes). Department of Computer Science, University of Manchester, 2003.

[42] L. Shapley and B. Grofman. Optimizing group judgemental accuracy in
the presence of interdependencies. Public Choice, 43 (1984) 329-343, 1984.

[43] G. Sierksma. Linear and Integer Programming: Theory and Practice
(2nd/Ed). CRC Press: 2001, 2001.

[44] S. Stahl. A gentle Introduction to Game Theory. Mathematical World,
vol.13, American Mathematical Society, 1999.

[45] A. Taylor and W. Zwicker. Weighted voting, multicameral representation
and power. Games and Econ. Beh., 5 (1993), pp.170-181, 1993.

[46] L. C. Thomas. Games, Theory and Applications. Ellis Horwood Ltd, UK,
1984.

[47] R. Vane. Advances in hypergame theory. Workshop on Game Theoretic
and Decision Theoretic Agents � Conference on Autonomous Agents and
Multi-Agent Systems, 2006, 2006.

[48] J. von Neumann and O. Morgenstern. Theory of Games and Economic
Behavior. Princeton Univ. Press, Princeton, 1947.

[49] Wikipedia.org. Extended-form game (article).

[50] Wikipedia.org. Rubik's cube (article).

[51] P. Young. Condorcet's theory of voting. Amer. Pol. Sci. Review, 82
(4)(1988) 1231-1244, 1988.



Ha
rri

s 
Ge

or
gi

ou
 (c

) 2
01

5,
 C

C-
BY

-3
.0

 

ht
tp

://
xg

eo
rg

io
.in

fo

6 The frontier 37

Harris Georgiou received his B.Sc. degree in Informatics from University of
Ioannina, Greece, in 1997, and his M.Sc. degree in Digital Signal Processing & Com-
puter Systems and Ph.D. degree in Machine Learning & Medical Imaging, from Na-
tional & Kapodistrian University of Athens, Greece, in 2000 and 2009, respectively.
Since 1998, he has been working with the Signal & Image Processing Lab (SIPL) in
the Department of Informatics & Telecommunications (DIT) at National & Kapodis-
trian University of Athens (NKUA/UoA), Greece, in various academic and research
projects. In 2013-2015 he worked as a post-doctorate associate researcher with SIPL in
sparse models for distributed analysis of functional MRI (fMRI) signals. He has been
actively involved in several national and EU-funded research & development projects,
focusing on new and emerging technologies in Biomedicine and applications. He has
also worked in the private sector as a consultant in Software Engineering and Qual-
ity Assurance (SQA, EDP/IT), as well as a faculty professor in private institutions
in various ICT-related subjects, for more than 17 years. His main research interests
include Machine Learning, Pattern Recognition, Signal Processing, Medical Imaging,
Soft Computing, Arti�cial Intelligence and Game Theory. He has published more than
65 papers and articles (43 peer-reviewed) in various academic journals & conferences,
open-access publications and scienti�c magazines, as well as two books in Biomedical
Engineering & Computer-Aided Diagnosis and several contributions in seminal aca-
demic textbooks in Machine Learning & Pattern Recognition. He is a member of the
IEEE and the ACM organizations and he has given several technical presentations in
various countries.





Section 2: Collective decision efficiency and optimal voting
mechanisms

Summary:

A new game-theoretic approach for combining multiple classifiers is proposed. A
short introduction in basic Game Theory and coalitions illustrate the way any
collective decision scheme can be viewed as a competitive game of coalitions that are
formed naturally when players state their preferences. The winning conditions and the
voting power of each player are studied under the scope of Banzhaf and Shapley
numbers,  as  well  and  the  collective  competence  of  the  group  in  terms  of  correct
collective decision. Coalitions and power indices are presented in relation to the
Condorcet criterion of optimality in voting systems, and weighted Borda count
models  are  asserted  as  a  way  to  implement  them  in  practice.  A  special  case  of
coalition  games,  the  weighted  majority  games  (WMG)  are  presented  as  a  restricted
realization in dichotomy choice situations. As a result, the weighted majority rules
(WMR),  an  extended  version  of  the  simple  majority  rules,  are  asserted  as  the
theoretically optimal and complete solution to this type of coalition gaming.
Subsequently, a generalized version of WMRs is suggested as the means to design a
voting  system that  is  optimal  in  the  sense  of  both  the  correct  classification  criterion
and the Condorcet efficiency criterion. In the scope of Pattern Recognition, a
generalized risk-based approach is proposed as the framework upon which any
classifier combination scheme can be applied. A new fully adaptive version of WMRs
is proposed as a statistically invariant way of adjusting the design process of the
optimal WMR to the arbitrary non-symmetrical properties of the underlying feature
space. SVM theory is associated with properties and conclusions that emerge from the
game-theoretic approach of the classification in general, while the theoretical and
practical implications of employing SVM experts in WMR combination schemes are
briefly discussed. Finally, a summary of the most important issues for further research
is presented. This report is a compact introduction to the theoretical material upon
which a new expert fusion model can be designed.

Citation:

"Collective decision efficiency and optimal voting mechanisms: A comprehensive
overview for multi-classifier models", H. Georgiou, ArXiv.org: 7-Feb-2015 (arXiv:
1502.02191v1 [cs.GT]).
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Abstract 

A new game-theoretic approach for combining multiple classifiers is proposed. A short introduction 

in basic Game Theory and coalitions illustrate the way any collective decision scheme can be viewed 

as a competitive game of coalitions that are formed naturally when players state their preferences. The 

winning conditions and the voting power of each player are studied under the scope of Banzhaf and 

Shapley numbers, as well and the collective competence of the group in terms of correct collective 

decision. Coalitions and power indices are presented in relation to the Condorcet criterion of 

optimality in voting systems, and weighted Borda count models are asserted as a way to implement 

them in practice. A special case of coalition games, the weighted majority games (WMG) are presented 

as a restricted realization in dichotomy choice situations. As a result, the weighted majority rules 

(WMR), an extended version of the simple majority rules, are asserted as the theoretically optimal and 

complete solution to this type of coalition gaming. Subsequently, a generalized version of WMRs is 

suggested as the means to design a voting system that is optimal in the sense of both the correct 

classification criterion and the Condorcet efficiency criterion. In the scope of Pattern Recognition, a 

generalized risk-based approach is proposed as the framework upon which any classifier combination 

scheme can be applied. A new fully adaptive version of WMRs is proposed as a statistically invariant 

way of adjusting the design process of the optimal WMR to the arbitrary non-symmetrical properties 

of the underlying feature space. SVM theory is associated with properties and conclusions that emerge 

from the game-theoretic approach of the classification in general, while the theoretical and practical 

implications of employing SVM experts in WMR combination schemes are briefly discussed. Finally, a 

summary of the most important issues for further research is presented. This report is a compact 

introduction to the theoretical material upon which a new expert fusion model can be designed. 

 

Keywords: game theory, coalition games, multi-classifiers, weighted majority, voting mechanisms 
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Part I – Theoretical Background 

 

1.1  Preface 

The ultimate goal of any pattern recognition system is to achieve the best possible classification 

performance for the specific problem at hand. This objective has led to the development of 

sophisticated algorithms and classification models in a way that best captures and enhances the 

underlying structure of the input space. As the complexity and intercorrelation between the classes 

increases, more robust and efficient classifiers have to be employed in order to provide adequate 

adaptability and generalization. However, the sensitivity and specificity of each classifier model can 

prove efficient in one case and inefficient in another, thus there is no clear indication of one single 

classifier design that can be considered as a universal pattern recognition solver. 

Recent studies have focused in the possibility of taking advantage of this complementary performance 

of various classifier designs, in order to produce combination schemes for optimal fusion of multiple 

classifiers. Specifically, each classifier is considered as a trained expert that participates along with 

others in a “committee”, which produces a collective decision according to some well-specified rule. 

The most common combination rules include the min rule, the max rule, the median rule, the majority 

voting rule, the averaging rule, etc. 

It has been proven that all these combination rules are special realizations of two basic combinations 

schemes, namely the product rule and the sum rule [01]. The product rule essentially combines the 

classifiers’ estimations on a-posteriori probabilities in a way that is consistent with the classic 

probability theory on independent events. When the classifiers are considered independent, i.e., when 

the decision of each classifier is not affected in any way by the corresponding decision made by all the 

other classifiers, then the join probability of the combined result can be calculated as a product of all 

the individual probabilities. Although the product rule is based on solid theoretical background, 

specifically the Bayes theory, it has provided only moderate results in practice in pattern recognition 

problems. One reason is that, in practice, well-trained classifiers tend to produce similar predictions, 

therefore the hypothesis on independent decisions is not established, although the classifiers produce 

their estimations separately. The other reason for poor performance is the fact that, when the 

combined output of all the experts is based on a product of their individual estimations, one single 

severe error or poor training on one expert could drive the whole group into similarly poor 

performance. 

In contrast, the sum rule utilizes the individual experts’ estimation in some additive form. All the 

popular combination rules, including the majority voting, the median and the weighted averaging rules, 

can be derived from the generic sum rule. It has been proven both theoretically and experimentally 

that these sum-based rules outperform the product rule in terms of minimum classification error 

(MCE) and error sensitivity. The reason for this enhanced performance in comparison to the product 

rule is the fact that the sum form of these rules effectively nullifies any single outliner estimations that 

may be produced by a poor classifier. This means that any single severe error has only minimal effect 

on the final combined estimation. Therefore, any combination scheme that utilizes a sum-based rule 

when calculating the experts’ collective decision is relatively resilient to individual expert errors and 

this property of resiliency is increased as the number of combined experts increases. 

The exact theoretical analysis of any of these combination schemes has proven noticeably cumbersome 

and complex over the years. Recent studies have established some general properties on total error 

magnitude and sensitivity, but only under strict preconditions on number of classes and their 
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distributions [02]. For K classes, current rules cannot guarantee an increase of overall performance for 

the combined decision when each expert exhibits accuracy only at p=1/K. On the contrary, averaging 

rules usually establish increase in performance when each expert exhibits accuracy at least p>0.5. 

Much work has been conducted experimentally for identifying whether the most important factor for 

the final performance of such a combination scheme depends more on the exact form of the 

combination rule or the diversity of the experts themselves. Ensemble design methods, such as 

ADAboost, Random Forests and Arcing [12], focus exactly on enhancing the experts’ diversity, either 

by means of amplifying the classification training process in areas close to the decision boundary, or 

by employing dataset splitting algorithms for improving the independency criterion. However, 

conceptualizing and quantifying diversity between classifier outputs is very challenging and it is 

usually based on experimental results, rather than a solid theoretical basis. As a result, most 

combination schemes employ optimization heuristics when designing the exact form and parameters 

of such a combination rule, e.g. calculating the optimal weights in a weighted averaging model [04]. 

Recently, more generic approaches have been proposed for designing the combination stage of such 

multi-classifier methods. Specifically, instead of employing a fixed rule for combining the individual 

outputs from the experts, a new fully functional expert node is introduced in the form of a meta-

classifier: using the outputs of all the previous K classifiers as input, it produces an arbitrary mapping 

between the K-dim individual decision space into the final output space. This meta-classifier can 

essentially be any linear or non-linear model that is usually trained in the same way any of the other K 

classifiers is trained on the base data. Experimental results for models using neural networks and 

meta-classification nodes have been proven very efficient in many practical problems, justifying the 

practical gain in introducing classifier combination schemes in cases where the complexity of a pattern 

recognition problem requires the use of multiple, highly specialized experts [03]. 

Despite the fact that many practical solutions have been proposed and tested for combining multiple 

classifiers, the core issues of the combination problem still remains: 

(a) Is there a generic and simple way to describe current combination rules? 

(b) Is there an optimal realization of this rule for combining multiple classifiers? 

(c) If such an optimal rule exists, does it cover the non-linear combination schemes too? 

Before these questions can be answered, a brief introduction on special aspects on collective decision 

theory has to be made first. 

 

1.2  Rank and response combination from classifier confidence transformation 

Any classifier combination scheme is restricted by the type and form of the individual participating 

classification models, as their outputs must be compatible and suited for using them in the selected 

combination rule. Classifiers can be generally categorized into three types, according to their output 

[04]: 

 Type-I : the classifier produces a simple statement on class selection 

 Type-II : the classifier produces a ranked list of decreasing preferability of each classes 

 Type-III : the classifier produces assignments of estimated probabilities for each class 

Most combination schemes use Type-I or Type-III classifiers and most of them do not allow mixed 

types. Nevertheless, it is possible to convert between these types in some cases, e.g. assigning simple 

class selections (Type-I) for the maximum estimated probability (Type-III) or for the first preference in 
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a ranked list (Type-II). In practice, Type-II classifiers are more generic than Type-I and Type-III 

classifiers are more generic than Type-II, however it is possible to calculate posterior information 

about the estimated probabilities for each class in Type-II classifiers by examining the produced 

confusion matrix. In fact, many combination schemes that exploit the confusion matrix data have the 

advantage of using already trained classifiers with known performance, instead of applying complete 

re-training of all the K experts when optimizing the combination node [05]. 

The confusion matrix can be considered as an experimental estimation of each classifier’s performance 

on the specific task at hand and it can be used as a measure of confidence related to the predictions 

produced by this particular classifier. Specifically, the elements of the confusion matrix can be used 

directly in a transformation model, where individual correct or incorrect counts can be rescaled and 

mapped in a way that is consistent with a predetermined probabilistic model. Usually, such a 

formulation includes a scaling or normalization function and an activation function that is consistent 

with a specific type of confidence measure. The log-likelihood (linear), the likelihood (exponential) 

and sigmoid formulations have been proposed among others as candidate functions for confidence 

transformation [04]. Essentially, this process ensures that the outputs of the individual classifiers are 

consistent and compatible with each other and with the combination rule. 

When using classifiers of Type-II, i.e., classification outputs that include a ranked list of preferences to 

the available classes, simple counts in the form of a confusion matrix are not possible. Instead, the 

ranked lists have to be converted into a simple metric that defines the overall “preferability” of each 

class, according to multiple classification outputs. In other words, instead of counting the number of 

times each class is selected as the best candidate in a simple class prediction (Type-I), a measure of 

“desirability” is calculated by assigning desirability points or “ranks” in every sorted list of 

preferences and then summing them for each class separately. This scheme is known as the Borda 

count method of combining ranked lists of predictions, i.e., the outputs of Type-II classifiers. Usually, 

the Borda count is calculated using ranks equivalent to the position of each class index in a sorted list, 

which means that in a N-class problem the first rank position receives N-1 points, the second receives 

N-2 points and the last position receives 0. It is possible to allow a weighted scheme when assigning 

these ranking points, so that the distribution is not uniform but arbitrary. In this case, the scheme is 

called weighted Borda count or wBorda. 

The Borda and the more generic wBorda count methods are based on the presumption that the class 

selection at the rank position (i+1) is the second most probable candidate when classifying at class 

selection of rank (i). However, due to the absence of explicit probability estimations, it is not possible 

to directly extract “closure” measurements between these two choices. The weights in such a 

combination scheme can be designed in a way that produces this closure measurement in an 

optimized way.  

One obvious question is whether ranked list combination produces better results that simple majority 

selections. Indeed, in many cases the simple class selection rule and the corresponding majority 

selection for the final output produces different results than the one produced by Borda count [05]. 

However, in the case of weighted Borda count, if weights are assigned in a specific way that is 

consistent with a required criterion, i.e., the majority rule, then the same combination result can be 

achieved. In the case of the majority rule, the weights that need to be assigned are w=1 for the first 

rank position and w=0 for the rest of the ranks. In general, a weighting scheme can be applied in the 

rank positions in a way that satisfies all the requirements needed by the typical combination rules, like 

the sum rule and its specialized versions (min, max, median average, majority, trimmed means, 

spread combiner). The product rule can also be applied in the same way [05]. 
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It has been proposed that the weights of the rank items can be variable and proportional to the 

measured properties of each classifier performance. When probability estimations are available (Type-

III), like when using a neural network classifier, they can be used instead. In the more restricted case 

of simple class selections (Type-I), it has been suggested that the confusion matrix itself can be used as 

the basis for calculating ranked classifications, translating the a posteriori probabilities for each class 

into ranked list of preferences [05]. In this case, the first assumption is that the behavior of each 

classifier is known it is characterized by its confusion matrix, and second that this prior behavior is 

representative of its future behavior. The second assumption is also applied for Type-II or Type-III 

classifiers, i.e., even when the confusion matrix is of no importance and its validity is increased 

proportionally with the size of the datasets on which the classifiers are tested. 

But why restrict the classifier combination scheme into a Type-II, i.e., ranked classifications? It is true 

that the lack of explicit probability estimation from the classifier itself produces an inherent lack of 

information about the classification itself. However, many widely used classification models, 

including Support Vector Machines (SVM), are inherently designed to produce simple class selections 

as output. Furthermore, the use of simple class selections or ranked lists is required when a specific 

weighting profile has to be applied uniformly throughout an entire “committee” of experts, like in 

voting schemes. In other words, experts are weighted according to their competence in an adaptive 

way, but the calculation of these weights is not a subject each classifier’s own performance. Instead, 

these weights are the realization of a collective decision rule, like in a wBorda scheme. This issue and 

its implications will be discussed later on under the scope on weighted majority rules (WMR). 

 

1.3  Cascaded versus joint parameter optimization in combination schemes 

There are three general groups of combination rules that can be applied when creating a mixture of 

experts: (i) the fixed rules, (ii) the trained rules, and (iii) weighted combinations of confidence 

transformation. The fixed rules group contains all the typical rules discussed thus far, including the 

product rule, the sum rule and its specialized version, etc. Trained rules refer to the case of meta-

classifier nodes, where an arbitrary expert is trained experimentally upon the best way to combine the 

outputs of K experts against a given training dataset. Finally, the third group refers to models that are 

based on weighted order statistics, where a weight is assigned for each rank of confidence measure, 

rather than each classifier as in the case of weighted combination of classifier outputs. An example of 

this third group of combination rules is the Borda and, more specifically, the wBorda count models.  

As mentioned earlier, the parameters of the combination rule itself, i.e., the weights in a weighted 

average or in a wBorda count, are a subject of optimization against a specific criterion, normally the 

minimum classification error (MCE). Similarly, for trained rules, the meta-classifier is trained 

according to the same optimality criterion. Since this combined classification process can be realized 

as either two separate stages in a cascaded model or a unified modular architecture, the optimization 

process can address each stage separately or jointly together. The latter case is often used for trained 

rules, as the meta-classifier rule can be trained jointly together with the K classifiers of the first stage. 

For linear trained rules, the optimal weights correspond to the relative confidence attributed to each 

classifier, as in the fixed rules. However, an optimization process determines the best weighting 

profile based on a specific training dataset, instead of using a pre-defined weighting profile as the 

fixed rules suggest. For rules based on typical linear discriminant functions, the optimization process 

can be realized as parameter estimation via regression or by applying any other formulation of typical 
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linear classifier model. In the case of rules based on weighted order statistics, like the wBorda count, the 

most commonly used method is also regression or some other linear optimization approach. 

It is worth noticing that, as mentioned in the previous section, there is an inherent relationship 

between applying a weighting profile to the classifiers themselves and applying a weighting profile to 

the rank items that they produce as output. Classifiers with high accuracy rates, i.e., a high confidence 

value and a proportionally high weighting factor, will produce rank classifications where the first 

(top) item, i.e., the one with the largest rank weight, is usually correct. This evident correlation will be 

explained more clearly later on, within the context of “winning coalitions” and their realization in 

weighted majority games (WMG). 

While joint optimization of parameters should be able to provide more generic solutions, it is not yet 

clear if the joint approach produces better results than the cascaded scheme. In fact, recent studies 

have shown that the joint optimization does not improve the combination accuracy of the validation 

data as compared to the two-stage strategy [04]. In most cases, a simple weighted averaging rule upon 

trained classifiers produces the best results, even in problems of high complexity. This is attributed to 

the fact that, regardless of the complexity of the initial input space, the classifiers transform it to a 

highly restricted subspace with dimensionality equal to the number of classes available. Therefore, it 

is evident why optimized linear solutions, like the WMR model, may be the answer to this problem, 

especially when robust classifiers like SVM are considered. 

 

1.4  Elements of Game Theory 

In principle, the mathematical theory of games and gaming was first developed as a model for 

situations of conflict. Since the early 1940’s, the work of John Von Neumann and Oskar Morgenstern 

has provided a solid foundation for the most simple types of games, as well as analytical forms for 

their solutions, with many applications to Economics, Operations Research and Logistics. The “zero-

sum” games are able to model situations of conflict between two or more “players”, where one’s gain 

is the other’s loss and vice versa. Furthermore, if all players are full informed about their opponents’ 

decisions the game is called of “perfect information”. Such games are all board games like chess and it 

has been proven that there is at least one optimal plan of decisions or “strategy” for each player, as 

well as a “solution” to the game that comes naturally as a result of all players following their optimal 

strategies. At the game’s solution, each player can guarantee that the maximum gain an opponent can 

gain is kept under a specific minimal limit, defined only by this player’s own strategy. Von Neumann 

and Morgenstern proved this assertion as a theorem called “Minimax” and in the simple case of two 

opposing players the solution of the game can be calculated analytically as a solution of a 2x2 set of 

linear equations. The consequences of the Minimax theorem have been thoroughly studied for many 

years after its proof. As an example, it mathematically proves the assertion that all board games, 

including the most complex ones like chess, have at least one solution, optimal for both players that 

can be analytically calculated, at least in theory. 

Although the Minimax theorem provided a solid base for solving many types of games, it is only 

applicable in practice for the zero-sum type of games. In reality, it is common that in a conflict not all 

players receive their opponents’ looses as their own gain and vice versa. In other words, it is very 

common a specific combination of decisions between the players to result in a certain amount of 

“loss” to one and a corresponding “gain”, not of equal magnitude, to another. In this case, the game is 

called “nonzero-sum” and it requires a new set of rules for estimating optimal strategies and 

solutions. As each player’s gains and losses are not directly related to the opponents’, the optimal 
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solution is only based on the assertion that it should be the one that ensures that the player has “no 

regrets” when choosing between possible decision options. This essentially means that, since each 

player is now interested in his/her own gains and losses, the optimal solution should focus on 

maximizing each player’s own “expectations” [11]. The Minimax property can still be applied in 

principle when the single most “secure” option must be identified, but the solution of the game has 

now a new meaning. 

During the early 1950’s, John Nash has focused primarily on the problem of finding a set of 

“equilibrium points” in nonzero-sum games, where the players eventually settle after a series of 

competitive rounds of the game. In strict mathematical terms, these equilibrium points would not the 

same in essence with the Minimax solutions, as they would come as a result of the players’ 

competitive behavior and not as an algebraic solution of the games’ mathematical formulation. In 1957 

Nash has successfully proved that indeed such equilibrium points exist in all nonzero-sum games*, in 

a way that is analogous to the Minimax theorem assertion. However, although the Nash theorem 

ensures that at least one such “Nash equilibrium” exists in all nonzero-sum games, there is no clear 

indication on how the game’s solution can be analytically calculated at this point. In other words, 

although a solution is known to exist, there is no closed form for nonzero-sum games until today. 

It should be noted that players participating in a nonzero-sum game may or may not have the same 

options available as alternative course of action, or the same set of options may lead to different 

payoffs between the players. When players are fully exchangeable and their ordering in the game 

makes not difference to the game setup and its solutions, the game is called “symmetrical”. Otherwise, 

if exchanging players’ position does not yield a proportional exchange in their payoffs, then the game 

is called “asymmetrical”. Naturally, symmetrical games lead to Nash equilibrium points that appear 

in pairs, as an exchange between players creates its symmetrical counterpart. 

But the Nash equilibrium points are not always the globally optimal option for the players. In fact, the 

Nash equilibrium is optimal only when players are strictly competitive, i.e., when there is no chance 

for a mutually agreed solution that benefits them more. These strictly competitive forms of games are 

called “non-cooperative games”. The alternative option, the one that allows communication and prior 

arrangements between the players, is called a “cooperative game” and it is generally a much more 

complicated form of nonzero-sum gaming. Naturally, there is no option of having cooperative zero-

sum games, since the game structure itself prohibits any other settlement between the players other 

than the Minimax solution. 

The problem of cooperative or possibly cooperative gaming is the most common form of conflict in 

real life situations. Since nonzero-sum games have at least one equilibrium point when studied under 

the strictly competitive form, Nash has extensively studied the cooperative option as an extension to 

it. However, the possibility of finding and mutually adopting a solution that is better for both players 

than the one suggested by the Nash equilibrium, essentially involves a set of behavioral rules 

regarding the players’ stance and “mental” state, rather than strict optimality procedures [11]. Nash 

named this process as “bargain” between the players, trying to mutually agree on one solution 

between multiple candidates within a “bargaining set”. In practice, each player should enter a 

bargaining procedure if there is a chance that a cooperative solution exists and it provides at least the 

                                                
* Seminal works by C. Daskalakis & Ch. Papadimitriou in 2006-2007 and on have proved that, while Nash 
equilibria exist, they may be unattainable and/or practically impossible to calculate due to the inherent 
algorithmic complexity of this problem; see e.g. “The Complexity of Computing a Nash Equilibrium”, 38th ACM 
Symposium on Theory of Computing, STOC 2006. 
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same gain as the best strictly competitive solution, i.e., the best Nash equilibrium. In this case, if such a 

solution is agreed between the players, it is called “bargaining solution” of the game. 

As mentioned earlier, each player acts upon the property of no regrets, i.e., follow the decisions that 

maximize their own expectations. Nevertheless, the game setup itself provides means of improving 

the final gain in an agreed solution. In some cases, the bargaining process may involve the option of 

“threats”, that is a player may express the intention to follow a strategy that is particularly costly for 

the opponent. Of course, the opponent can do the same, focusing on a similar “threat”. This procedure 

is still a cooperative bargaining process, with the threshold of expectations raised for both players. The 

result of such a process may be a mutually “deterring” solution, which in this case is called a 

“threating solution”. Nash has formulated all these bargaining situations into a set of relatively logical 

axioms, under which a solution (equilibrium) exists. As in the general case of non-cooperative games, 

Nash’s “bargaining theorem” does not provide analytical means of finding such solutions. 

The notion of “bargaining sets” and “threat equilibrium” is often extended in special forms of games 

that include iterative or recursive steps in gaming, either in the form of multi-step analysis 

(metagames) or focusing on the transitional aspects of the game (differential games). Modern research 

is focused on methods that introduce probabilistic models into games of multiple realizations and/or 

multiple stages [11]. 

 

1.5  Coalitions, Stable Sets and Indices of Power 

Nash’s work on the “Nash equilibrium” and “bargaining theorem” provides the necessary means to 

study n-person non-cooperative and cooperative games under a unifying point of view. Specifically, a 

nonzero-sum game can be realized as a strictly competitive or a possibly cooperative form, according 

to the game’s rules and restrictions. Therefore, the cooperative option can be viewed as a 

generalization to the strictly competitive mode of gaming. 

When players are allowed to cooperate in order to agree on a mutually beneficial solution of game, 

they essentially choose one strategy over the others and bargain this option with all the others in order 

to come to an agreement. For symmetrical games, this is like each player chooses to join a group of 

other players with similar preference over their initial choice. Each of these groups is called a 

“coalition” and it constitutes the basic module in this new type of gaming: the members of each 

coalition act as cooperative players joined together and at the same time each coalition competes over 

the others in order to impose its own position and become the “winning coalition”. This setup is very 

common when modeling voting schemes, where the group that captures the relative majority of the 

votes becomes the winner. 

Coalition Theory is closely related to the classical Game Theory, especially the cooperating gaming 

[11]. In essence, each player still tries to maximize its own expectations, not individually any more but 

instead as part of a greater opposing term. Therefore, the individual gains and capabilities of each 

player is now considered in close relation to the coalition this player belongs, as well as how its 

individual decision to join or leave a coalition affects this coalition’s winning position. As in classic 

nonzero-sum games, the notion of equilibrium points and solutions is considered under the scope of 

dominating or not in the game at hand. Furthermore, the theoretical implications of having competing 

coalitions of cooperative players is purely combinatorial in nature, thus making its analysis very 

complex and cumbersome. There are also special cases of collective decision schemes where a single 

player is allowed to “abstain” completely from the voting procedure, or prohibit a contrary outcome 

of the group via a “veto” option. 
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In order to study the properties of a single player participating in a game of coalitions, it is necessary 

to analyze the wining conditions of each coalition. Usually each player is assigned a fixed value of 

“importance” or “weight” when participating in this type of games and each coalition’s power is 

measured as a sum over the individual weights of all players participating in this coalition. The 

coalition that ends up with the highest value of power is the winning coalition. Therefore, it is clear 

that, while each player’s power is related to its individual weight, this relation is not directly mapped 

on how the participation in any arbitrary coalition may affect this coalition winning position. As this 

process stands true for all possible coalitions that can be formed, this competitive type of “claiming” 

over the available players by each coalition suggests that there are indeed configurations that 

marginally favor the one or the other coalition, i.e., a set of “solutions”. The notion of solution in 

coalition games is somewhat different from the one suggested for typical nonzero-sum games, as it 

identifies minimal settings for coalitions that dominate all the others. In other words, they do not 

identify points of maximal gain for a player or even a coalition, but equilibrium points that determine 

which of the forming coalitions is the winning one. This type of “solutions” in coalition games is 

defined in close relation to “domination” and “stability” of such points and they are often referred to 

as “the Core”. Von Neumann and Morgenstern have defined a somewhat more relaxed definition of 

such conditions and the corresponding solutions are called “stable sets” [11]. It should be noted that, 

in contrast to Nash’s theorems and the Minimax assertion of solutions, there is generally no guarantee 

that solutions in the context of the Core and stable sets need to exist in an arbitrary coalition game. 

The notion of the Core and stable sets in coalition gaming is of vital importance when trying to 

identify the winning conditions and the relative power of each individual player in affecting the 

outcome of the game. The observation that a player’s weight in a weighted system may not intuitively 

correspond to its voting “power” goes back at least to Shapley and Shubik (1954). For example, a 

specific weight distribution to the players may make them relatively equivalent in terms of voting 

power or, while only a slight variation of the weights may render some of them completely irrelevant 

on determining the winning coalition [06]. Shapley and Shubik (1954) and later Banzhaf and Coleman 

(1965, 1971) suggested a set of well-defined equations for calculating the relative power of each player, 

as well as each forming coalitions as a whole [11]. The “Shapley index of power” is based on the 

calculation of the actual contribution of each player entering a coalition, in terms of improving the 

coalition’s gain and winning position. Similarly, the “Banzhaf index of power” calculates how an 

individual player’s decision to join or leave a coalition results in a winning or loosing position for this 

coalition, accordingly. Both indexes are basically means of translating each player’s individual 

importance or weight within the coalition game into a quantitative measure of power in terms of 

determining the winner. While both indices include combinatorial realizations, the Banzhaf index is 

usually easier to calculate, as it is based on the sum of “shifts” on the winning condition a player can 

incur [07]. Furthermore, its importance in coalition games will be made clearer later on, where the 

Banzhaf index will come as a direct result when calculating the derivatives of a weighted majority 

game. 

 

1.6  Collective competence and the Condorcet criterion 

The transformation of cooperative n-person games into coalition games essentially brings the general 

problem closer to a voting scheme. Each player casts a vote related to its own choice or strategy, thus 

constituting him/her as a member of a coalition of players with similar choices. The coalition that 

gains more votes becomes the winner. 
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Condorcet (1785) was the first to address the problem of how to design and evaluate an efficient 

voting system, in terms of fairness among the people that participating in the voting process, as well 

as the optimal outcome for the winner(s). This first attempt to create a probabilistic model of a voting 

body is known today as the “Condorcet Jury Theorem”. In essence, this theorem says that if each of 

the voting individuals is somewhat more likely than not to make the “better” choice between some 

pair of alternative options, and if each individual makes its own choice independently from all the 

others, then the probability that the group majority is “correct” is greater than the individual 

probabilities of the voters. Moreover, this probability of correct choice by the group increases as the 

number of independent voters increases [07]. In practice, this means that if each voter decides 

independently and performs marginally higher than 50%, then a group of such voters is guaranteed to 

perform better than each of the participating individuals. This assertion has been used in Social 

sciences for decades as a proof that decentralized decision making, like in a group of juries in a court, 

performs better than centralized expertise, i.e., a sole judge. 

The Condorcet Jury Theorem and its implications have been used as one guideline for estimating the 

efficiency of any voting system and decision making in general. The study of effects like diversely 

informed voters or situations of conflicting interests have provided several aspects of possible 

applications in social and economical models. In the context of collective decision-making via voting 

schemes, the theorem provides a mean to test the “fairness” and effectiveness of such a system, as it 

usually constitutes the outcome that yields the best possible degree of consensus among the voting 

participants. Specifically, the interest is focused on how aggregate competence of the whole voting 

group, measured by the probability of making a correct collective decision, depends on the defining 

properties of the decision-making process itself, such as different coalition sizes, team setups and 

possible overlapping memberships. Under this context, the coalition games are studied by applying 

quantitative measures on “collective competence” and optimal distribution of power, e.g. tools like 

the Banzhaf or Shapley indices of power. The degree of consistency of such a voting scheme on 

establishing the pair-wise winner(s), as the Condorcet Jury Theorem indicates, is often referred to as 

the “Condorcet criterion”. This criterion is not the only possible measure of collective competence in a 

voting scheme, but as it will be explained in the next section, it is very generic and it is directly linked 

to optimal wBorda models. 

 

1.7  Optimal scoring rules and Condorcet efficiency 

Let us consider a typical voting situation where an n-person voting group is required to cast their 

votes regarding a set of M classes, not as simple class selections but rather in the more general sense of 

ranking all the available options in a list of strict preference by each of the voters. Clearly there is a 

fixed set of possible ranking permutations and each voter essentially chooses one of them as his/her 

vote. The problem is to decide upon the exact combination procedure for these votes, in order to 

produce a result that exhibits the highest possible degree of consensus between the voters, not only in 

the first place as in simple majority rules, but throughout the final sorted list. One of the more widely 

accepted criteria for choosing the exact permutation that best reflects the cumulative will of the voting 

group is the Condorcet criterion [07]. As it is based exclusively on pair-wise comparisons between the 

voting options, i.e., every possible pair of subsequent classes in a sorted list, a system that exhibits a 

high degree of consistency with the Condorcet criterion should provide an aggregate ranking result 

that represents the best consensus solution. The degree in which such a voting scheme maximizes the 

consistency with the Condorcet criterion is often called “Condorcet efficiency” of the system. 
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It is clear that voting systems as the one described above fit the specifications of a wBorda scheme, as 

an optimized wBorda should also be able to produce an aggregate ranking consistent with the 

cumulative will of the complete voting group. Therefore, the next obvious question is whether there is 

a way to design such a wBorda voting scheme that maximizes the Condorcet criterion. The direct 

answer is that this problem is classified as NP-complete by nature, which means that due to its 

combinatorial nature it is not possible to be solved with algorithms of polynomial complexity. In fact, 

this is the reason why simple realizations of the weighting profile or even a simple majority rule is 

often applied in practice, in order to keep such a system simple and widely accepted by the voting 

group [06].  

Using the notion of Condorcet efficiency of a voting system, the real problem can be focused on the 

exact scoring rules, often called “weighted scoring rules”, than must be applied on each rank of the 

vote, in order to produce a result that maximizes this criterion. Two scoring systems are particularly 

worth noting in this context: the plurality voting, where only the top-position rank is awarded with 

one point (w=1) and all the other positions with nothing (w=0), and the classic Borda count, where the 

top-position rank receives maximum points (w=1), the bottom-position rank the minimum (w=0) and 

all intermediate positions a value proportional to the exact rank [08]. 

Under the scope of weighted scoring rules and the more general theory of weighted order statistics, it 

has been proven theoretically that for three classes and n-person voting group, the scheme that 

maximizes the probability that any pair-wise contest in the final ranked list will be consistent with the 

pairwise majority rule, is in fact the Borda count model. This means that if the system should sort the 

list of winners in a way that is consistent with the pairwise majority rule, then the Borda count scheme 

can accomplish this. Similarly, if the majority criterion is instead replaced with the more generic 

Condorcet criterion, a specific wBorda model with non-uniform weighting profile is the optimal 

solution in this case [08]. This diversity between the two optimized scoring rules comes from the fact 

that the Condorcet criterion suggests a stricter rule of optimality than the simple majority and this is 

why the existence of a Condorcet winner is not always guaranteed [05]. In [08], a geometrical 

realization of the wBorda design process has been suggested and results have shown that for three 

candidate classes the middle-position rank has to be assigned with a weight value of less than zero, 

i.e., different than the classic Borda rule, in order to obtain maximum Condorcet efficiency. Current 

theoretical results are not sufficient to support any generic statement regarding the design properties 

of such optimal schemes. Furthermore, the high degree of complexity prohibits the analytical 

theoretical study of such systems, in order to produce generic constructive methods for wBorda of 

maximum Condorcet efficiency. 

 

1.8  Majority functions and Banzhaf numbers 

Let us now focus in the case of dichotomous choice situations where there are only two candidate 

classes to vote for. This is clearly a simpler problem in terms of pattern recognition, since an input has 

to be classified in either one of the two available choices, “true” or “false”, “positive” or “negative”, 

“benign” or “malignant”. As there are only two available class choices, the Borda count, which is used 

when class rankings are considered, reduces to the simple class selection scheme and the resulting 

majority rule that is used in practice. 

Dichotomy choice situations have been the center of many analytical probabilistic studies within the 

scope of voting systems, primarily because of the simplicity of the probabilistic formulations of such 

models. A dichotomy choice can be easily modeled as a binomial distribution and the combined result 
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in a n-player voting game becomes a product of the corresponding “skill” probabilities of the 

individual players. Then, a combined decision rule can be formulated according to the aggregate 

choice that is supported by the largest combined probability, i.e., the choice that corresponds to the 

maximum degree of consensus among the players. These decision rules are called “majority 

functions” and in the special case where all players and classes are accompanied with the same 

weight, the simple majority rule emerges as a natural result. 

In terms of coalition games, the simple majority functions are modeled in a way which is much more 

trivial than the generic wBorda scheme that was presented in previously. Again, if special voting 

situations like abstains and veto are not allowed, the choice of either one of the two available classes 

automatically assigns every participating player into one of the two possible coalitions. Classes may or 

may not be weighted with the same “value” or “importance”, while the players themselves may be 

accompanied with a weight or “reliability” value too. In any case, if a linear rule is applied to 

accumulate and combine all individual choices in order to make a final collective estimation, a 

weighted majority rule emerges. The threshold of the majority decision may also be altered in a way 

that requires not only relative majority, but a majority value higher than a specific decision threshold. 

In practice, this means that a bias may be used in the weighted majority function in order to ensure 

that the final majority outcome is valid only if it attains a specific confidence level. 

The analysis of the majority functions is often restricted to the non-weighted case, as they are much 

easier to analyze within the scope of classic probabilistic theory. In fact, this special case of majority 

functions can be easily related to the Banzhaf power index [07]. Specifically, if the collective efficiency 

is to be calculated as a function of the individual “skill” probabilities of the players, the partial 

derivatives of the majority functions against these probabilities are calculated. These derivatives 

essentially estimate the number of “shifts” that a player with a specific skill probability can cause in 

the winning position of any winning coalition, i.e., it is exactly what the Banzhaf power index stands 

for. This assertion can be extended for the weighted majority functions as well, in a slightly more 

complex probabilistic form. Based in this very important conclusion, it is possible to translate many of 

the properties of coalition games into properties that are directly linked with each player’s skill. 

The first and extremely important conclusion from studying the Banzhaf numbers as the derivatives 

of a majority function is the fact that the maximum of these derivatives should point to the 

configuration where maximum Banzhaf power occurs for all the voting players. Indeed, it can be 

easily proven that maximum Banzhaf values correspond to individual skill probabilities close to 0.5 

for all voting players. That is, the vote of each voting member reaches its maximum “value” when all 

players have the same average skill for making correct estimations. Interestingly enough, that is 

exactly what the Condorcet Jury Theorem suggests in a more generic way. An electorate system with 

high Banzhaf number corresponds to a high level of collective competence, which in turn is obtained 

for a high level of “democracy” in the sense of an equitable distribution of decisional power among 

the voters [07]. As high Banzhaf numbers indicate a high degree of democracy among the voting 

members, the decentralized option for making collective decisions is, again, asserted as the optimal 

way – this time in a more strict mathematical statement. This is perhaps a sufficient justification for 

using ensembles of independent experts with only moderate efficiency, rather than one single expert 

of the very high efficiency. 

But what about the distribution of power within the voting group itself? Using the same formulation 

of Banzhaf numbers as derivatives of the corresponding majority functions, Berg [07] and Taylor and 

Zwicker [06] have stated some very interesting results regarding the optimal structure and 

distribution of voting power of such a system. Specifically, it has been proven that in any non-
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weighted majority function, the sub-division of the players into teams that subsequently take part in a 

second-stage indirect voting scheme results in a loss of individual decisional power, in terms of how a 

single player can affect the final result with his/her vote [07]. This essentially means that it is better to 

have KxN voters in one voting group than to split them into K teams of N/K members each for voting 

via K representatives. Boland (1989) has proved that although the Condorcet Jury Theorem also stands 

true for indirect voting systems, splitting a voting group into teams essentially lowers the majority 

threshold necessary for a coalition to become a winning one, thus reducing the probability for a 

collectively correct decision [07]. This implies that for the same overall voting group size and 

individual skill probabilities p>0.5, an indirect voting scheme always has less reliability than a 

corresponding direct system, which in turn favors combination methods with the least possible 

integration stages. This effect is more evident for systems that employ a relatively large number of 

voters, rather than small-sized systems where this difference is expected to be minimal [07]. 

In terms of team sizes versus number of teams, Boland (1989) has also proved that in an indirect 

system, a large number of small teams are collectively more effective than a small number of large 

teams. In the extreme case where each team includes only one voter, the indirect system becomes 

direct, i.e., with no representatives, which is the strictly more efficient voting structure as noted 

earlier. Special studies have been carried out for situations of teams with unequal number of members 

or for overlapping memberships. Again, as in the case of single voting players, it has been proven that 

the collectively more efficient choice is splitting the voters into teams of equal size and distinct 

memberships, i.e., in way that favors equal distribution of voting power in every case [07]. 

The overlapping membership case can be viewed as a situation where some of the players are allowed 

to participate in more than one representative team, in other words to affect the final outcome with 

more than one votes. This is essentially equivalent to having an increased reliability or weight 

assigned to these players. As mentioned earlier, the weighted majority functions are a generalized 

version of the ones that have been studied within this scope. As it turns out, the collective decision 

efficiency may benefit from such an overlapping membership, i.e., a weighted voting scheme, only 

when the players with multiple votes exhibit a skill probability higher than a specific threshold. This 

higher than the average skill level P of the rest of the voting players threshold and it depends on this 

average skill level P and the total number of N voters, but not on the number of K teams [07]. This 

conclusion favors the application of weighted versus non-weighted majority functions in theory, but it 

does not specify an optimal way to find out which players to favor, in other words how to calculate 

these weights. This issue will be addressed later on within the context of weighted majority games 

(WMG). Generally speaking, analyses in terms of voting games and distribution of power are not 

common in the literature on the Condorcet Jury Theorem. Austen-Smith and Banks (1996), as well as 

Berg [07], stress the importance of a game-theoretic approach to collective decision making. 

 

1.9  Weighted Majority Games and Weighted Majority Rules 

In most cases, majority functions that are employed in practice very simplistic when it comes to 

weighting distribution profile or they imply a completely uniform weight distribution. However, a 

specific weighting profile usually produces better results, provided that is simple enough to be 

applied in practice and attain a consensus in accepting it as “fair” by the voters. Taylor and Zwicker 

(1991) have defined a voting system as “trade robust” if an arbitrary series of trades among several 

winning coalitions can never simultaneously render them losing [06]. Furthermore, they prove that a 

voting system is trade robust if and only if it is weighted. This means that, if appropriate weights are 

applied, at least one winning coalition can benefit from this procedure. 
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As an example, institutional policies usually apply a non-uniform voting scheme when it comes to 

collective board decisions. This is often referred to as the “inner cabinet rule”. In a hospital, senior 

staff members may attain increased voting power or the chairman may hold the right of a tie-breaking 

vote. It has been proven both in theory and in practice that such schemes are more efficient than 

simple majority rules or any restricted versions of them like trimmed means. 

Nitzan and Paroush (1982) have studied the problem of optimal weighted majority rules (WMR) 

extensively and they have proved that they are indeed the optimal decision rules for a group of 

decision makers in dichotomous choice situations [09]. This proof was later (2001) extended by Ben-

Yashar and Paroush, from dichotomous to polychotomous choice situations [13]; hence, the optimality 

of the WMR formulation has been proven theoretically for any n-label voting task. 

A WMR is in fact a realization of a weighted majority game (WMG), where a group of players with 

arbitrary skill levels form coalitions of similar interests but different estimations. The WMGs are a 

well-known subgroup of coalition games where there are only two possible coalitions, each related to 

one of the two class options available. In this form of gaming, there is no need of class ranking 

schemes as in wBorda, thus the classification problem reduces to the optimal design of a combination 

rule between two extreme options. These optimal combination rules are similarly called WMR and the 

proof that they are linear in nature limits the problem to the estimation of an optimal (non-negative) 

weighting profile for the voters. 

The weight optimization procedure has been applied experimentally in trained or other types of 

combination rules, but analytical solutions for the weights is not commonly used. However, Shapley 

and Grofman (1984) have established that an analytical solution for the weighting profile exists and it 

is indeed related to the individual player competencies or skill levels [09]. Specifically, if decision 

independency is assumed for the participating players, the optimal weights in a WMR scheme can be 

calculated as the log-odds of their respective skill probabilities, i.e., Wi=log(Oi)=log(Pi/(1-Pi)). 

Interestingly enough, this is exactly the solution found by analytical Bayesian-based approaches in the 

context of decision fusion of independent experts [12]. The optimality assertion regarding the WMR, 

together with an analytical solution for the optimal weighting profile, provides an extremely powerful 

tool for designing theoretically optimal collective decision rules. Usually, the winning coalition in a 

WMR is the one that accumulates the relative weighted majority, which is more than half the sum of 

weights. If a bias is also applied as a confidence threshold, then the simple weighted majority rule 

becomes the “cogent” weighted majority rule. In this case, a region of “stalemate” or “no-decision” is 

created and the existence of a winning coalition in a WMR is not guaranteed. 

There is an equivalence relation on the WMRs, whereby two WMRs are equivalent if they produce the 

same decision function, i.e., the same outcome for each decision profile produced by the participating 

players. Therefore, from all the possible realizations of a WMR of a given dimension, it is possible to 

identify a closed set of unique WMRs that are able to produce all the possible combination outcomes 

with a normalized version of the weights [09]. As an example of such closed set of solutions, the 

unique WMRs for n=4 voting players are: S1={1,0,0,0}, S2={2,1,1,1} and S3={1,1,1,0}. The S1 and S3 

solutions clearly implement the restricted majority rules with odd number of voters, while S2 

implements a simple majority rule with a tie-breaking option for one of the players. It can be proven 

that all other realizations of 4-player WMRs can be mapped into one of these three unique WMRs. 

The calculation of such a set of WMRs is cumbersome and it is generally an NP-complete problem. 

However, there have been analytical studies for WMRs of dimension up to seven players. For 

example, in the set of all 84 WMGs between five players, only 7 of them are not transformations of 

others. Von Neuman and Morgenstern (1944) identified the 21 unique WMGs for six players, while 
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Isbel (1959) and Fishburn and Gehrlien (1977) identified the 135 unique WMGs for seven players. 

Karotkin (1994) coded a special algorithm to identify the WMRs or the WMGs for any group size and 

proposed a graph-based method for illustrating the decision-based “closeness” of such WMRs in a 

three-dimensional space, called the “network of WMR” [09]. Using directed edges, the network of 

WMR can identify the node that is optimal for a given set of players’ skill probabilities profile, i.e., the 

WMG solution that is in fact the one that the log-odds calculates for the corresponding weights. The 

practical use of such a graph-based representation of WMRs is that it can suggest optimal 

substitutions of the theoretically optimal WMR with best sub-optimal simplified realization [10]. This 

is extremely important in real life problems where simple collective decision rules with 

straightforward application are needed. 

 

1.10  Weighted Majority Rules and Condorcet efficiency 

The efficiency of a WMR is defined as the likelihood that it will resolve in the correct choice, given the 

skill probabilities of the participating voters. These likelihood functions are quite difficult to calculate 

in practice due to the fact that the number of possible decision profiles is a combinatorial enumeration 

problem. As a result, it is also difficult to compare relative efficiencies between different WMRs. 

However, since a WMR is proved to be the optimal structure in the sense of collective decision 

competence, the corresponding weighting profile that is optimal for a given set of skill probabilities of 

the participating voters should be the actual realization of the theoretically most efficient voting 

scheme. 

As mentioned earlier, in the case of multiple class options where class rankings are necessary, it is 

possible to find a wBorda scheme that maximizes the Condorcet efficiency of such a voting system, 

although this problem is generally NP-complete. When this setup is reduced into the dichotomous 

choice situation where there are only two classes available, this model becomes the theoretically 

optimal formulation of the WMRs. However, in this case there is an analytical solution for the optimal 

weighting profile that is not NP-complete, although the complete enumeration of all the unique 

WMRs that can be implemented in practice is of that complexity. As a result, the next question is at 

what degree a WMR can be viewed as an optimal solution to a WMG in the Condorcet sense. 

To answer this question, the notion of “bias” or “confidence threshold” in a WMR has to be reviewed 

under a new perspective. In wBorda schemes, each class ranking position is scored with a specific 

weight and the corresponding scoring rule is considered optimal in the Condorcet sense if it 

maximizes the Condorcet criterion. Similarly, in the case of two class problem, the simple choice 

between the one or the other choice essentially implies a similar preference ranking regarding the 

classes. Therefore, both the first (proposed) class choice and the second (rejected) class choice can be 

assigned with a scoring value, i.e., a weight, that can be incorporated into the standard WMR 

formulation. These scoring values are not a subject of the players’ skill probabilities, since the 

efficiency of each player affects only the corresponding weight it receives within the WMR function, 

not the scoring result of selecting or rejecting a class. In a sense, the scoring of class selection or 

rejection adds a weighting scheme in the second dimension of the WMRs, that of the classes. 

Using this new more generalized formulation of WMRs, it can be easily proven through linear 

transformations that this class scoring essentially produces a “positive” or “negative” bias to the 

accumulated result of the standard WMR. Therefore, a decision threshold can be shifted towards the 

one or the other class accordingly, based not only on which exactly of the players selected it but also 

the mere (weighted) count of the times it was proposed or rejected by all the players. If all players’ 
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votes are weighted exactly the same, then this new scheme is a two-class realization of a wBorda count 

model. But the wBorda model has been already proven as adequate for providing an optimal voting 

realization in the Condorcet sense. In fact, adding a bias to both classes according to their selection 

count is mathematically equivalent to setting the WMR decision threshold at a value other than half 

the sum of the weights, i.e., “biased” towards one of the classes. Not surprisingly, this new 

generalized version of the WMR can also be considered adequate for implementing voting schemes 

that maximize the Condorcet criterion, i.e., the exhaustive pair-wise ranking contest between the 

coalitions. 

The assertion that WMRs are optimal realization of combinations schemes in dichotomy choice 

situations has some extremely significant implications in the way the WMRs can be used as a unified 

template model for creating optimal collective decision systems. These linear formulations of WMGs 

are optimal in the MCE sense but additionally they can be designed to be optimal in the Condorcet 

sense. Dichotomy choice situations are simple enough so that a Condorcet winner, that is the overall 

top-ranked class, is also the majority winner, which is simple the class that received the most votes. If 

weights are applied to the players, then the simple majority rule becomes a weighted one. If scores are 

also applied in the “support” or “reject” options (ranks) of the classifications, then a two-class wBorda 

count model can be realized in a way that maximizes the Condorcet criterion. In practice, this second 

case is equivalent to imposing a collective decision threshold other than half the sum of the weights. 

While the players’ optimal weighting profile in the WMR solves the problem of how to combine their 

individual decisions in an MCE-optimal way, the class scoring provides the means the design the 

voting system in a way that is also optimal in the Condorcet sense. The conditions under which these 

two properties can be satisfied simultaneously remains an open issue. 
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Part II – Applications to Pattern Recognition† 

 

2.1  Basic framework 

In part-I of this report it was suggested that classifiers providing “hard” decisions, or other types of 

classifiers with translated output to a set of distinct choices, can be used as the basis of a general 

combination procedure for providing a collective decision system. Furthermore, it was described how 

this model can be effectively fused into a game-theoretic approach of the combination problem that 

finally leads to coalition games and collective decision theory. This section describes how these 

models can be realized and implemented as practical systems within the scope of Pattern Recognition. 

In order to combine classifier outputs in an optimized way, first it is necessary to convert their 

posterior accuracy probabilities into quantitative measures of evidence regarding their past 

performance. For classifiers of “hard” decisions, the confusion matrix is a very descriptive and 

perhaps the most practical way to do this. Specifically, the confusion matrix itself can be translated 

into class rankings and conditional probabilities estimations, as it was suggested earlier. Furthermore, 

the use of the confusion matrix is completely compatible with any extension that introduces the notion 

of “risk” into the classification process. 

Decision-critical applications, like in medical diagnostics, require strict distinction between the various 

cases of correct and incorrect predictions. This means that a specific weight is assigned for every such 

classification case, in the form of a positive “gain” for correct predictions or a negative “loss” for 

misclassifications. When combined with the corresponding posteriori probabilities of the classifier, it 

is possible to calculate the expected statistical “risk”, i.e., the average gain or loss that this particular 

classifier can produce. If the classifier is trained from the start by applying optimization criteria based 

on risk factors, rather than simply the classification accuracy, then the process is a “risk-based” rather 

than “error-based” training of the classifier. Not all classifier architectures are fit to be implemented as 

risk-based models, primarily due to the fact that the introduction of risk factors within the feedback 

process of the training may result in severe instability and failure. However, the notion of risk 

embodies a much more generalized viewpoint of the classification problem and it is very important in 

real-world applications. 

Using risk-based models for the classifiers, the game-theoretic approach of collective decision systems 

becomes much more comprehensible. The efficiency of each participating “player” is now measured 

not simply in a sense of absolute accuracy but in the scope of average “gain” in each run of the game. 

Therefore, every combination scheme also embodies the same notion of maximizing the collective 

“gain” or, equivalently, minimizing the collective “loss”, by employing an optimal combination rule. 

This risk-based approach is also valid for a coalition’s winning stance against the others, as well as the 

expected payoff from the whole game, since a winning coalition’s gain coincides with the overall gain 

                                                
† Comments in this section are subject of own study and experimental verification, conducted during the author’s PhD work, 

2001-2008 and on. Almost all of the proposed items have been addressed, experimentally tested and subsequently published in 

various conference, journal and open-access papers. For detailed description of the theoretical and practical aspects of applying 
these ideas in the context of novel classifier combination architectures, see e.g. [14-16]: 

 “A Game-Theoretic Approach to Weighted Majority Voting for Combining SVM Classifiers”, Harris Georgiou, Michael 
Mavroforakis, Sergios Theodoridis. Int. Conf. on ANN (ICANN), 10-13 September 2006 @ Athens, Greece. Ref: S.Kollias et al. 
(Eds): ICANN 2006, Part I, LNCS 4131, pp. 284-292, 2006.  

 “A game-theoretic framework for classifier ensembles using weighted majority voting with local accuracy estimates”, H. 

Georgiou, M. Mavroforakis, arXiv.org preprint (en)(arXiv:1302.0540v1 [cs.LG]). 

 “Algorithms for Image Analysis and Combination of Pattern Classifiers with Application to Medical Diagnosis”, H. Georgiou,    

PhD thesis summary (en)(arXiv:0910.3348v1 [cs.CV]). 



Ha
rri

s 
Ge

or
gi

ou
 (c

) 2
01

5,
 C

C-
BY

-3
.0

 

ht
tp

://
xg

eo
rg

io
.in

fo

Harris V. Georgiou (harris@xgeorgio.info)  –  “Collective decision efficiency and optimal voting mechanisms…” 

Pg. 18 of 21 

of the collective decision rule. Therefore, the formulation of this type of gaming under the scope of 

WMGs and the corresponding WMRs comes very naturally. 

Since the WMR have been proven as the optimal combination rules in dichotomy choice situations, it 

is very interesting to examine the conditions under which these optimality assertions stand true for 

trained classifiers in the place of players. It is expected that, as these classifiers are more or less 

dependent with each other due to similar architectures or training datasets, the design of optimal 

WMRs for combining them can not be realized in completely closed form. Instead, the calculation of 

the exact weighting profile requires the exploitation of various statistical and structural properties of 

the feature space, as well as the correlation of input patterns and classes. Most ensemble techniques 

exploit these properties by enhancing classification regions of special interest, like points close to the 

decision boundary. This issue has been noted earlier within the scope of voting systems, specifically in 

relation to the diversity between the experts. In practice, many ensemble methods that employ 

maximization of diversity essentially increase the degree of independency between the participants. 

Since an increased level of independency provides the means for a collectively efficient decision, it is 

not surprising to see that the results from the Pattern Recognition viewpoint coincide with the ones 

inferenced by the game-theoretic approach, where Banzhaf and Shapley indices of power can be 

considered as measures of diversity among the participants. 

 

2.2  Adaptive realizations of WMRs  

As it was mentioned previously, assumptions of complete independency between the classes and their 

corresponding coalitions in WMGs, as well as between the experts are never completely true. Thus, it 

is necessary to enhance the combination process in a sense that takes into account these types of 

correlations. Tresp and Taniguchi (1996) have suggested that a combination scheme which uses a fixed 

or a weighted majority rule should exploit the properties of the statistical distributions of the classes at 

hand. Using a Gaussian approximation, they have shown how the efficiency of such a combination 

rule can be improved if the mean and variance of each class are used when calculating the parameters 

(weights) of the combination rule. However, the standard WMR approach for optimal combination of 

experts does not include such an adaptive scheme. Furthermore, the variance-based weighting 

method of Tresp and Taniguchi impose further assumptions and restrictions to the distributions of the 

classes, which can be non-Gaussian in general. 

Instead of employing a fixed statistical approximation for the complete class distribution, a new fully 

adaptive approach can be designed on a lower level. Specifically, since the distribution of each class, 

i.e., the topological couplings between the individual training samples of the class, affects the exact 

weighting profile of the classifiers that is optimal in some error-based or risk-based criterion, then a 

topological measure of “closure” between any arbitrary pair of samples should be used instead of the 

statistical approximation of their distribution. In other words, instead of checking how well an 

unclassified sample fits the statistical distribution of the one or the other class, it should be checked 

under a criterion that measures how close it is with the identified members of each class, preferably 

with the most representative ones. As in the case of the variance-based method, this measure should 

be used as a quantitative guideline regarding the degree of “responsibility” that each class manifests 

over this particular point in the feature space. In terms of classification, it is a statistical method of 

measuring how much a class is accountable for this new sample, but in a more invariant way than that 

of using Gaussian approximations for the class’ distributions. 
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When this fully adaptive version is adopted within the scope of the WMRs, each classifier’s posterior 

probability or “skill”, already known from the training process, can be adjusted according to how 

“far” or “close” an unclassified sample lies with respect to the already known members of this class. 

From a clearly topological point of view, this is a way to minimize the “structural risk” of the 

classification problem by introducing a bias or “preference” towards the class that seems to be more 

responsible for this region of the feature space. Although this is what each of the participating 

classifiers does on its own, this adaptation process essentially adjusts the process of evaluating the 

optimal WMR to the non-symmetrical structural properties of the feature space. Therefore, it is also 

expected that the weighting profile calculated for the WMR design would be optimal, not in a global 

but rather in a more local sense. 

 

2.3  A link with the theory of SVM  

SVM architectures provide the necessary foundations for a theoretical sound framework of optimal 

classifiers. The use of special form of kernel functions essentially makes them equivalent almost to any 

type of linear and non-linear pattern classification model. But the solid theoretical background of this 

type of classifiers makes them ideal in situations where their performance and consistency is required 

for studying collective decision rules. 

The linear form of the WMRs makes the combination process very simple, not only in terms of 

calculating the final outcome of the group decision, but also in the scope of statistical properties of this 

decision rule in relation to each classifier’s own properties. SVM theory states that the structure of the 

SVM classifier permits the linear transformation of a number of kernel functions into one combined 

linear form. Furthermore, if each of the kernel functions is well-defined under the typical constraints 

for SVM kernels, then their linear combination is also a well-defined SVM kernel function. This 

assertion is of extreme importance when viewed under the perspective of WMGs and WMRs. In 

essence, if all participating classifiers are assumed to be SVM realizations, then the optimal WMR itself 

defines a new compound SVM kernel, i.e., an SVM meta-classifier. 

This conclusion is an adequate justification on why such a combination rule does not need to be more 

complex than a linear transformation of each expert’s assessment: if every expert is of adequate skill 

and acts independently from the others. This means that such an expert can moderately efficient in the 

complete feature space or, alternatively, well-adapted to only a part of the complete feature space. In 

the first case, the WMR is optimal in the global sense in a way that combines the group of experts in 

the most promising manner, while the second case corresponds to the fully adaptive WMR realization 

that was proposed in the previous section. 

It should be noted that, although SVM classifiers are generally design for “hard” decision 

classifications in dichotomy choice problems, it is not difficult to design a set of SVM classifiers that 

are “specialized” in one of N>2 classes if the problem requires it – this is essentially the one-versus-all 

classification mode when applying binary pattern classifiers in multi-class tasks. Furthermore, their 

internal structure that is based on support vectors, i.e., class members that primarily define the 

classification outcome, is well-suited for the design of robust topological measures of “closure” 

between a class and a new unclassified sample, based on distance transformations from the support 

vectors of each candidate class. In this sense, even a two-class problem that is solved by a single SVM 

classifier can be viewed as a coalition game in the form of WMG, solved by an optimal WMR with 

weights and bias proportional to the class’ distribution characteristics, and an SVM kernel function 
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that effectively transforms the original non-linear feature space to a linear space of higher dimension 

that can be solved by this WMR. 

 

2.4  Conclusion and further work  

The material presented briefly in part-I of this report clearly define a solid background for a game-

theoretic approach to the problem of classifier combination in its general form. A set of theoretic 

formalizations lead to some very intuitive and simple solutions to this problem in the general sense, 

especially in dichotomy choice situations. 

An extension of these theories to the area of Pattern Recognition can be easily inferenced. Specifically, 

there are three main issues of special interest: 

1. The introduction of a theoretically solid model for using transformations of posterior 

probabilities of the classifiers, e.g. by the confusion matrices, in combination with 

the general framework of risk minimization, either in a post-training sense or within 

the training process itself (risk-based training). 

2. The formulation of a complete and fully adaptive realization of the WMR model that 

incorporates the non-symmetrical properties of the underlying feature space, when 

calculating the optimal weighting profile for the combination rule. 

3. The study of theoretical and practical implications of introducing SVM classifier 

architectures as voting players in a WMG, primarily in the scope of completeness 

and optimality of such a solution in the general sense. 

A study that addresses all these three issues should first focus on the theoretical aspects and formal 

definitions of any new models and algorithms, and subsequently conduct experimental tests on well-

known classification problems where comparative results are available for other typical classifier 

combination schemes. Based in the theoretical assessment presented in this study, it is expected that 

such a game-theoretic approach of collective decision, along with the application of SVM classifiers, 

will produce results of at least the same degree of success as the best ensemble methods available 

today. 
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optimally combining classifiers in dichotomous choice situations. The analysis of
weighted majority voting under the viewpoint of coalition gaming, leads to the
existence of analytical solutions to optimal weights for the classifiers based on their
prior competencies. The general framework of weighted majority rules (WMR) is
tested  against  common rank-based  and  simple  majority  models,  as  well  as  two soft-
output averaging rules. Experimental results with combined support vector machine
(SVM) classifiers on benchmark classification tasks have proven that WMR,
employing the theoretically optimal solution for combination weights proposed in this
work, outperformed all the other rank-based, simple majority and soft-output
averaging methods. It also provides a very generic and theoretically well-defined
framework for all hard-output (voting) combination schemes between any type of
classifier architecture.
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Abstract. A new approach from the game-theoretic point of view is proposed 
for the problem of optimally combining classifiers in dichotomous choice situa-
tions. The analysis of weighted majority voting under the viewpoint of coalition 
gaming, leads to the existence of analytical solutions to optimal weights for the 
classifiers based on their prior competencies. The general framework of 
weighted majority rules (WMR) is tested against common rank-based and sim-
ple majority models, as well as two soft-output averaging rules. Experimental 
results with combined support vector machine (SVM) classifiers on benchmark 
classification tasks have proven that WMR, employing the theoretically optimal 
solution for combination weights proposed in this work, outperformed all the 
other rank-based, simple majority and soft-output averaging methods. It also 
provides a very generic and theoretically well-defined framework for all hard-
output (voting) combination schemes between any type of classifier architec-
ture. 

1   Introduction 

1.1   Classifier Combination and Game Theory 

In the discipline of collective decision-making, a group of N experts with moderate 
performance levels are combined in an optimal way, in order to produce a collective 
decision that is better than the best estimate of each individual expert in the group. 
According to the famous Condorcet Jury Theorem [1], if the experts’ individual deci-
sions are independent and their corresponding estimations are more likely to be cor-
rect than incorrect (pcorrect>0.5), then an increase in the collective performance, as a 
group, is guaranteed when the individual estimations are combined. Moreover, this 
increase in performance continues to increase asymptotically as the size N of the 
group increases.  

In the case where each expert selects only one out of M available options, the col-
lective group decision can be estimated by the majority voting scheme, i.e., the choice 
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selected is the one gathering the majority of votes. When the simple majority rule is 
employed, each of the N experts acts with the same common interest of reaching the 
optimal collective decision. However, their individual choices place them in possibly 
contradicting estimations, with each expert trying to impose its decision to the others 
and to the group. This is a typical competitive situation, which can be modeled by the 
well-studied theory of non-zero sum competitive gaming in classic Game Theory [2]. 
In reality, each subgroup of consentient experts essentially represents an opposing 
assembly to all the other similar subgroups with different consensus of choice. It is 
clear that this second type of cooperative, instead of purely competitive (per expert), 
gaming reflects the problem of collective decision-making in the most generic way. 
Special sections of Game Theory, namely the Coalitions and Stable Sets in coopera-
tive gaming [2], have studied the effects of introducing “weights” to the choice of 
each expert according to their competencies, in order to optimize the final decision of 
the group. 

1.2   Weighted Majority Games and Weighted Majority Rules 

The case of a dichotomous situation, where there are only two symmetrical choices 
for each expert (i.e., M=2) to vote for, then this restricted form is known as the 
weighted majority game (WMG) [2]. It has been proven by Nitzan and Paroush 
(1982) [3] and Shapley and Grofman (1984) [4], that the optimal decision rules, in 
terms of collective performance, are the weighted majority rules (WMR); this is in 
fact a different name for the well-known weighted majority voting schemes [5], 
which are often used in pattern recognition for combining hard-output classifiers. The 
same assertion has also been verified by Ben-Yashar and Nitzan [6] as the optimal 
aggregation rule for committees under the scope of informative voting in Decision 
Theory. Although there is in fact an exponential number of such WMR for each 
WMG, only a few of them can be proven to be well-defined or qualified combination 
rules and even fewer can be proven to be unique, i.e., not producing exactly the same 
decision profile with others [7]. For example, in the 232 possible1 voting games of five 
experts, there are exactly 85 qualified WMR if only positive integer weights are per-
mitted, of which only seven are unique in terms of their decision profile [7]. 

In this paper, the notion of modeling dichotomous choice situations for a group of 
experts via the theory of WMG and WMR is for the first time applied for combining 
hard-output classifiers. Under the conditional independence assumption, a closed 
form solution for the voting weights in the WMR formula exists and it is directly 
linked to each expert’s competency. This optimal weight profile for the voting experts 
is the log of the odds of their individual competencies [3], [4], [7], [8]. 

In this paper, this particular type of game-theoretic analytical solution for optimal 
expert combinations in dichotomous choice situations is tested for the first time 
against other popular combination schemes. The possibility of having a weighted 
voting scheme that is based only on the prior capabilities of the experts in the group, 
as well as on the theoretical assertion that this analytical solution is optimal, in terms 

                                                           
1 For five experts with two choices each there are 25=32 decision profiles, each of which can be 

generally mapped in any of the two possible outputs of the combination rule. See [7]. 
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of collective competency (at least for all non-trained, i.e., iteratively optimized, 
weights), is extremely attractive as an option of designing very simple yet effective 
combination models for an arbitrary pool of classifiers. 

2   Datasets and Methods 

2.1   SVM Classifier Model 

The SVM classifier was used as the base model for creating a pool of classifiers for 
each combination scheme. Specifically, a geometric nearest point algorithm (NPA) 
[9], based on the notion of reduced convex hulls (RCH) [10], was used for training a 
standard SVM architecture with radial-basis function (RBF) as the kernel of the non-
linear mapping. In previous studies [11] have shown experimental evidence that op-
timal combinations of SVM classifiers can be achieved through linear combination 
rules, i.e., the same category of combination rules examined in this study. In the two 
averaging combination rules that use the soft-output of the individual classifiers, the 
distances from the decision boundary were used instead of the (thresholded) hard-
output of the SVM classifier, as they are indicative of the corresponding classification 
confidence [12], [13]. 

2.2   Datasets and Feature Grouping 

In order to assess the performance of each classifier combination method, a number 
of publicly available test datasets [14], with known single-classifier accuracy rates for 
this specific SVM training model, were used. These datasets are: 1) Diabetis, 2) 
Flare-Solar, 3) German, 4) Heart and 5) Waveform. 

Each base dataset was randomly separated into a base training set and a validation 
set of samples. In order to make individually trained classifiers as “independent” as 
possible, the method of training them in different subspaces was employed. As it has 
been reported previously, e.g., [13], [15], this is an effective approach towards inde-
pendence among classifiers. To this end, the training set was partitioned into K dis-
tinct segments of feature groupings, i.e., containing only some of the features (dimen-
sions) of the initial dataset. Each group of features was created in a way that satisfied 
two constraints: (a) each group to be distinct, i.e., no feature is included in two or 
more groups, and (b) each group to contain a subset of features that can describe the 
classification task equally well as the other feature groups, i.e., employ a “fair” distri-
bution of the available features into K groups. Satisfaction of the second constraint 
required a method for ranking all the features in terms of discrimination power 
against the two classes, as well as their statistical independency to all the other fea-
tures in the initial training set. Thus, the MANOVA method [16] was used to assign a 
multivariate statistical significance value to each one of the features and then produce 
a sorted list based on (the log of) this value.  
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In order to create a “fair” partitioning of this list into equally efficient segments, 
features were selected in pairs from the top and bottom positions, putting the cur-
rently “best” and “worst” features in the same group. Furthermore, the efficiency of 
each group was measured in terms of summing the log of the statistical significance 
value, assigned by MANOVA, of all the features contained in this group. The log was 
employed in order to avoid excessive differences between the values assigned by 
MANOVA, thus creating more even subset sums of these values. Essentially, every 
such pair of features was assigned in groups sequentially, in a way that all groups 
contained features with approximately equal sum of the log of the values assigned by 
MANOVA. In other words, the MANOVA-sorted list of features was “folded” once 
in the middle and then “cut” into K subsequent parts of equal sums of log-values, i.e., 
with every part exhibiting roughly the same sum of the log of the statistical signifi-
cance values, accompanying each feature included in this part. 

Each one of these K distinct feature groups was used for training an individual 
SVM classifier. Thus, each of these K classifiers used a different, dimensionally re-
duced, version of the original (full) training set and therefore learns a totally different 
classification task. 

2.3   Classifier Combination Methods 

Nine linear combination rules were examined in this study. Specifically, five hard-
output combination methods were employed, namely three standard rank-based meth-
ods and two voting-based schemes. These rank-based rules are [8], [13]: 

• minimum (“min”) 
• maximum (“max”) 
• median (“median”) 

The two majority rules, including the WMR model, are [8], [13]: 
• simple majority voting (“majority”) 
• weighted majority voting, i.e.: 

1

( ) ( )
K

wmr i i
i

O x w D x
=

=∑  . (1) 

where Di is the hard-output of each of the K individual classifiers in the pool, wi is its 
assigned weight and Owmr the weighted majority sum. The final hard-output decision 
Dwmr of the WMR is taken against a fixed threshold (T) that defines the decision 
boundary for the combination rule [7], [8]: 

( )( ) ( )wmr wmrD x sign O x T= −  . (2) 

Specifically for the weighted majority voting scheme, three different methods for 
calculating the weight profile were tested for comparative results: 

• “direct” weighting profile for WMR (“wmr/direct”) [5], [8]: 

i iw p=    ,   ( | )i i correctp P xθ ω= =  . (3) 
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• “odds” weighting profile for WMR (“wmr/odds”) [7], [8]: 

1
i

i
i

pw
p

=
−

   ,   ( | )i i correctp P xθ ω= =  . (4) 

• “logodds” weighting profile for WMR (“wmr/logodds”) [7], [8]: 

log
1

i
i

i

pw
p

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

   ,   ( | )i i correctp P xθ ω= =  . 
(5) 

where wi is the combination weight assigned for the i-th classifier, pi is its prior prob-
ability for correct classification, measured in the validation set, and θ, ω are the pre-
dicted class labels. 

Additionally, two soft-output averaging models were included, a non-weighted and 
a weighted [8]: 

• simple average (“average”) 
• weighted average (“lsewavg”) 

The weights in the weighted average rule were calculated as the optimal weighting 
profile of the individual classifier outputs against the correct classification tag, in 
terms of a least-squares error (LSE) minimization criterion [15]. Thus, this method 
can be considered as an example of “trained” weighting rules of soft-output classifi-
ers. In contrast, the WMR approach employs fixed analytical weighting profile and 
hard-output classifications (votes) as input, that is, no further training is required. 

3   Experiments and Results 

The evaluation of the combination models consisted of two phases, namely: (a) the 
design and training of SVM classifiers, trained in distinctly different subspaces, and 
(b) the application of the various combination schemes to the outputs of the individ-
ual classifiers. 

Each of the K classifiers was separately trained and optimized, using a different 
group of features from the full dataset, and subsequently evaluated using the corre-
sponding validation set. This training/validation cycle was applied three times, for 
each of the five datasets, each time using a new random partitioning of the full dataset 
into training and validation sets. The mean values and standard deviations of the 
success rates of all the individual (3K) classifiers for each dataset, as well as the de-
tails about the size and dimensionality of each (full) training and validation sets, are 
presented in Table 1. 

The K value, i.e., the number of feature groups for each dataset, was determined 
experimentally in a way that each of the corresponding K training segments would be 
adequate to produce a well-trained SVM classifier. Thus, the German training set was 
split in K=5 segments, while the Flare-Solar training set in K=4 segments. 
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Table 1. Single versus multiple classifier accuracy percentages per dataset and K values 
(number of dataset partitions) 

Dataset Train 
set 

Vali-
dat. 
set 

Data 
Dim. 

Single classifier 
accuracy 

K 
value 

Individual 
classifier 

mean acc% 
diabetis 468 300 8 76.5 ± 1.7 5 68.3 ± 3.9 

flare-solar 666 400 9 67.6 ± 1.8 4 55.7 ± 3.6 
german 700 300 20 76.4 ± 2.1 5 68.9 ± 1.8 
heart 170 100 13 84.0 ± 3.3 5 74.3 ± 2.3 

waveform 400 4600 21 90.1 ± 0.4 5 81.1 ± 1.2 
 
The classification outputs of the pool of K classifiers from each training/validation 

cycle were fed as input to all nine combination schemes, producing the corresponding 
combined classification outputs. Since the output of each of the K classifiers in the 
pool was calculated based on the same (dimensionally reduced) validation set, the 
corresponding outputs and accuracy of the combination rules also refer to this valida-
tion set. 

Table 2 illustrates the mean accuracy of each combination rule (each cell corre-
sponds to three training/validation cycles), as well as the mean value and standard 
deviation of the success rates of all nine combination rules, for each dataset and K 
value employed. 

Table 2. Mean accuracy percentages of all the nine combination rules, with optimized decision 
threshold, per dataset and K values (number of feature groups and classifiers) 

Diabetis Flare-Solar German Heart Waveform Combination 
Rule K=5 K=4 K=5 K=5 K=5 

average 71.67 66.08 70.67 85.33 88.12 
lsewavg 76.11 65.58 71.56 85.00 86.79 

min 68.56 55.92 70.67 69.00 72.98 
max 69.11 60.42 67.33 76.67 85.95 

median 69.00 58.33 69.78 80.00 81.17 
majority 73.00 63.75 70.67 82.33 86.59 

wmr/direct 74.00 66.58 70.67 82.33 86.59 
wmr/odds 75.33 66.58 71.33 84.00 86.70 

wmr/logodds 75.33 66.42 71.33 84.00 86.64 
Mean 72.46 63.30 70.44 80.96 84.62 
Stdev 2.99 4.06 1.28 5.25 4.77 

 
In the sequel, the overall relative performance of each combination rule was de-

termined in terms of ranking position for each case, i.e., according to its correspond-
ing accuracy for each dataset and K value employed. Specifically, a weighted Borda 
scheme (wBorda) [17] was employed to attribute 10 points to the top-ranked combi-
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nation rule, 9 points to the second, and so on. In case of a “tie” where two combina-
tion rules exhibited exactly the same classification accuracy, both got the same 
wBorda points for the specific ranking position. Using the results from Table 3, re-
garding the accuracies, Table 4 illustrates the corresponding wBorda ranking points 
of all nine combination rules, for each dataset and K value employed in this study. 

Table 3. wBorda value of all combination rules, with optimized decision threshold, per dataset 
and K values. Each cell value represents the ranking weight according to classification 
accuracies, with 10 points for top position, 9 points for the second and so on. In cases of equal 
accuracies, the same ranking weight was assigned to the corresponding combination rules 

Diabetis Flare-Solar German Heart Waveform Combination 
Rule K=5 K=4 K=5 K=5 K=5 

average 6 8 8 10 10 
lsewavg 10 7 10 9 9 

min 3 3 8 4 3 
max 5 5 6 5 5 

median 4 4 7 6 4 
majority 7 6 8 7 6 

wmr/direct 8 10 8 7 6 
wmr/odds 9 10 9 8 8 

wmr/logodds 9 9 9 8 7 
 

Table 4. Overall evaluation of all the combination rules, with optimized decision threshold, 
using the wBorda results for all datasets and K values available. The list is sorted according to 
the wBorda sum and mean ranking position of each combination rule, from the best to the 
worst combination rule 

Combination 
Rule 

wBorda 
Sum 

wBorda 
Mean 

wBorda 
Stdev 

lsewavg 45 9.0 1.22 
wmr/odds 44 8.8 0.84 

average 42 8.4 1.67 
wmr/logodds 42 8.4 0.89 
wmr/direct 39 7.8 1.48 

majority 34 6.8 0.84 
max 26 5.2 0.45 

median 25 5.0 1.41 
min 21 4.2 2.17 

 
Table 4 presents a summary of the results shown in Table 3, as well as the list of 

all the combination rules sorted according to their sum of wBorda points, i.e., their 
overall efficiency throughout the five original datasets. Tables 2 through 4 present the 
performance and wBorda results for all the combination rules with optimized decision 
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threshold (T).  The decision threshold employed by each combination rule was in 
every case optimized against final accuracy, using a typical Newton-Raphson optimi-
zation algorithm [18]. 

4   Discussion 

The results from Tables 3 and 4 clearly demonstrate the superior performance of the 
WMR model. Specifically, the all versions of the WMR model exhibited the best 
performance amongst all the other hard-output combination rules. As expected, it has 
been proven better than the simple majority voting, as well as all the other rank-based 
methods (max, min, median). The “odds” weighting profile has also been proven 
marginally better than the “direct”- and the “logodds”-based profiles for designing the 
optimal WMR formula.  

Interestingly, the “odds”-based version of WMR exhibited better performance than 
the simple averaging rule, e.g., a soft-output combination model, losing only from the 
weighted averaging rule with LSE-trained weights. Thus, the WMR model, especially 
with the “odds” and “logodds” weighting profiles, performs equally well or better 
than simple soft-output averaging combination rules. All four weighted combination 
rules, i.e., the three WMR and the LSE-trained weighted average, have been clearly 
proven better than all the non-weighted hard-output combination rules. 

Table 4 also demonstrates the robustness and stability of the each combination 
rule. For small values of standard deviation (less than unity) in the corresponding 
wBorda mean ranks, the relative ranking position of a combination rule against the 
others remains more or less the same. Thus, the maximum rule exhibits a consistently 
lower ranking position than the simple majority rule, while the “odds”- and the 
“logodds”-based versions of the WMR models perform consistently better than the 
simple majority and the three rank-based rules. Furthermore, the “odds”- and the 
“logodds”-based versions of WMR exhibit the same consistency and robustness as 
the simple majority rule but with higher success rates. 

With respect to the overall performance of the combination rules, results from Ta-
bles 1 and 2 demonstrate that in all cases the best combination rules increased the 
overall success rates of the classifier pool, from +2% (German dataset) to +11% 
(Flare-Solar dataset), in many cases very close to or equal to the corresponding refer-
ence performance level of the single SVM classifier results.  

The ensemble of these classifiers clearly demonstrates that the combination of 
multiple simpler models, each using a 1/K portion of the feature space of the dataset, 
instead of a single classifier for the complete feature space, can be used to reduce the 
overall training effort. Specifically for the SVM model, kernel evaluation employs 
inner product between vectors, i.e., its complexity is directly proportional to the di-
mensionality (number of features) in the input vectors. If this feature space reduction, 
from F to F/K features, results in a proportional increase in the complexity of the new 
(reduced) input space in terms of new class distributions, then it is expected that the 
training of each of the K SVM classifiers may be completed up to K times faster on 
average. A similar approach has also been examined in other studies [11], using an 
ensemble of SVM classifiers trained in small training sets, instead of one large train-
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ing set for a single SVM classifier. Furthermore, there is evidence that such ensem-
bles of kernel machines are more stable than the equivalent kernel machines [11]. 
This reduction in training time, of course, has to be compared to the additional over-
head of calculating a combination rule for every output vector from the classifier 
pool. Consequently, if the optimal design of this combination rule is simple (linear) 
and efficient, and its weighting profile can be determined analytically with no need 
for iterative weight optimization, the WMR approach could prove very prominent for 
this role in classification tasks of high dimensionality and/or dataset sizes. 

5   Conclusions 

The game-theoretic modeling of combining classifiers in dichotomous choice prob-
lems leads to cooperative gaming approaches, specifically coalition gaming in the 
form of WMG. Theoretically optimal solutions for this type of games are the WMR 
schemes, often referred to as weighted majority voting. Under the conditional inde-
pendence assumption for the experts, there exists a closed solution for the optimal 
weighting profiles for the WMR formula. 

In this paper, experimental comparative results have shown that such simple com-
bination models for ensembles of classifiers can be more efficient than all typical 
rank-based and simple majority schemes, as well as simple soft-output averaging 
schemes in some cases. Although the conditional independence assumption was mod-
erately satisfied by using distinct partitions of the feature space, results have shown 
that the theoretical solution is still valid to a considerable extent. Therefore, the WMR 
can be asserted as a simple yet effective option for combining almost any type of 
classifier with others in an optimal and theoretically well-defined framework. 
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Section 4: A game-theoretic framework for classifier ensembles using
weighted majority voting with local accuracy estimates

Summary:

In this paper, a novel approach for the optimal combination of binary classifiers is
proposed. The classifier combination problem is approached from a Game Theory
perspective. The proposed framework of adapted weighted majority rules (WMR) is
tested against common rank-based, Bayesian and simple majority models, as well as
two soft-output averaging rules. Experiments with ensembles of Support Vector
Machines (SVM), Ordinary Binary Tree Classifiers (OBTC) and weighted k-nearest-
neighbor (w/k-NN) models on benchmark datasets indicate that this new adaptive
WMR model, employing local accuracy estimators and the analytically computed
optimal weights outperform all the other simple combination rules.
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A game-theoretic framework for classifier ensembles using weighted
majority voting with local accuracy estimates

Harris V. Georgiou1  &  Michael E. Mavroforakis2

Abstract

In this paper, a novel approach for the optimal combination of binary classifiers is proposed. The
classifier combination problem is approached from a Game Theory perspective. The proposed
framework of adapted weighted majority rules (WMR) is tested against common rank-based,
Bayesian and simple majority models, as well as two soft-output averaging rules. Experiments
with ensembles of Support Vector Machines (SVM), Ordinary Binary Tree Classifiers (OBTC)
and weighted k-nearest-neighbor (w/k-NN) models on benchmark datasets indicate that this new
adaptive WMR model, employing local accuracy estimators and the analytically computed
optimal weights outperform all the other simple combination rules.

Keywords

Classifier combination, weighted majority voting, game theory, linear combiners, ensemble
learning, decision fusion.

1.  Introduction

Classifier combination is one of the most active areas of research in the discipline of Pattern Recognition. The
challenging problem of designing optimal aggregation schemes for multi-classifier systems has been addressed
by a wide range of methodologies and approaches during the last decade [1]. However, few of them introduce a
framework of analytical solutions. Instead, most of them employ either heuristics or iterative optimization
procedures.

In this paper, a novel viewpoint is proposed for the problem of optimally combining classifiers using
game-theoretic arguments. Specifically, the problem of designing optimal ensembles of voting classifiers is
investigated  within  the  context  of  Game  Theory  [2,  3],  as  an  analogy  to n-person games. A special type of
cooperative games, namely the coalition games, is introduced as the natural setting for formalizing the ensemble
design problem, within the scope of Coalition Theory [2, 3] and the Weighted Majority Games (WMG) [2, 3].
This new formulation of the problem leads to the development of a theoretical framework of the weighted voting
schemes [1]. Furthermore, this approach leads to optimal analytical solutions for the two core problems of: (a)
designing the aggregation rule in an optimal way, and (b) assigning optimal voting weights in a voting ensemble
of experts. For the problem in (a), the theory of WMG states that the optimal voting aggregation rules in a fixed-
size ensemble for an arbitrary n-label classification task is the weighted majority rule (WMR) [2, 3, 4, 62]; while
for the problem in (b), the optimal voting weights in such WMR schemes are calculated analytically from the
experts’ competencies, under the conditional independence assumption [4, 5].

This particular type of game-theoretic analytical solution is extremely useful in the process of designing
optimal classifier ensembles. The use of simple linear combination models that employ single weights for each

1 (MSc, PhD) Associate researcher (post-doc) at Dept. of Informatics & Telecommunications, National Kapodistrian
Univ. of Athens (NKUA/UoA), Greece – Email: harris {at} xgeorgio {dot} info

2 (MSc, PhD) Associate professor at Computational Biomedicine Lab., Dept. of Computer Science, University of
Houston (UH), Texas, USA – Email: mmavrof {at} uh {dot} edu
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classifier, which, however, do not require iterative training/optimization, can provide the necessary means to
apply multi-classifier schemes in parallel implementations with on-line updating capabilities. In other words, the
classifiers can be trained independently and off-line, using any architecture and algorithm available, while the
aggregation scheme involves only direct (analytical) calculation of the voting weight of each classifier. Another
novelty of this paper refers to the notion of the expert’s competency, i.e., the prior estimation of the success rate
of each individual classifier, as it is required by the WMR optimal rule. The expert’s competency is extended to
include the posterior probabilities associated with each pattern. In practice, the voting weight of each classifier is
calculated analytically, in the sense of the WMR formulation, for every sample using the local accuracy
estimates (LAE).

This paper is organized as follows. Section 2 describes the core aspects of the classification task and its
realization under the concept of multi-classifier systems. Section 3 summarizes some basic concepts of Game
Theory and phrases the classifier combination task in game-theoretic terms. Section 4 describes the details
regarding the datasets and methods used. Section 5 presents the experiments and results. Section 6 is a discussion
on the results. Section 7 presents the conclusions.

2. Problem statement and current practices

2.1 Combining classifiers

The ultimate goal of any pattern recognition system is to design optimally a classifier while at the same time
attaining the best generalization performance, for the specific problem at hand. However, even the “best”
classifier model can fail on points that other classifiers may succeed in predicting the correct label [6, 1]. Many
studies have focused on the possibility of exploiting this complementary nature of the various classifiers, in order
to enhance the overall performance. Specifically, each classifier is considered as a trained expert that participates
along with others in a “committee”, which produces a collective decision according to some well-specified rule.

In the discipline of collective decision-making, a group of N experts, each one with moderate
performance levels, are combined in order to produce a collective decision that may be better than the estimate
of the best among the experts in the group. According to the famous Condorcet Jury Theorem [7], if the experts’
individual decisions are independent and their corresponding estimates are more likely to be correct than
incorrect (pcorrect>0.5), then an increase in the collective performance, as a group, is guaranteed when the
individual estimations are combined. Moreover, this performance continues to grow asymptotically as the size N
of the group increases and under the independence assumption. This assertion has been the base for very active
experimental and theoretical research in the discipline of pattern recognition.

Over the last decade or so, a wide range of different approaches have been studied to design
aggregations or ensembles of experts. These employ either a selection or  a fusion scheme  [1]  to  combine  the
individual classifiers’ outputs into a final collective decision. The combining rules vary from very simple to
more sophisticated ones. Typical examples include simple averaging and fusion [8, 9], mixture of experts [10,
11], consensus or majority voting [12], dynamic classifier selection [13], supra Bayesian methods [14, 15],
evidence-based [16, 17] or template-based [18] decision models. Most of the methods employ weights upon each
member in the pool, essentially dictating a corresponding level of confidence to its individual decisions. Hence,
the design of such ensembles reduces to the problem of finding these optimal aggregation parameters, with the
goal of improving the final accuracy rates of the ensemble.

To comply with the spirit of Condorcet’s theorem, a major research effort has been inserted in
designing the individual classifiers to be as independent as possible. More recent approaches, such as boosting
[19], bagging [20] and random subspace models [21], employ different techniques to increase the level of
diversity, essentially by training individual classifiers in different subsets or subspaces of the original set of data.

This requirement can be implemented, in practice, by separating or splitting the original training
datasets into a new set of distinct or partially overlapping realizations, with respect to: (a) the data samples, (b)
the dimensionality, or (c) both. Random subspace methods, most commonly used in aggregation models like the
Random Forests [22], are typical examples of using dimensionally-reduced versions of the original data space.
Rotation Forests [23] is an example of using both different subsets and different subspaces simultaneously.

3. A game-theoretic approach to classifier combination

This section presents a brief overview of the basics of Game Theory, the main concepts of cooperative games
and Coalition Theory, as well as the formal definition of weighted majority games (WMG) and weighted
majority rules (WMR). Furthermore, the core problem of designing optimal weighted voting schemes for multi-
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classifier ensembles is introduced within the context of WMG and theoretical analytical solutions are presented
under the WMR formulation.

3.1 Elements of Game Theory

The mathematical theory of games and gaming was first developed as a model for situations of conflict. Since
the early 1940’s, the work of John Von Neumann and Oskar Morgenstern [24] has provided a solid foundation
for the most simple types of games, as well as analytical forms for their solutions, with many applications to
Economics, Operations Research and Logistics [2, 3]. Each opposing player in  a  game  has  a  set  of  possible
actions to choose from, in the form of pure (single choice) or mixed (random combination) strategies. The set of
optimal strategies for all the players is called the solution to this game.

The zero-sum games are capable of modeling situations of conflict between two or more players, where
one’s gain is the other’s loss and vice versa. In reality, it is common that in a conflict not all players receive their
opponents’ looses as their own gain and vice versa. In other words, it is very common a specific combination of
decisions among the players to result in a certain amount of loss to one and a corresponding gain, not of equal
magnitude,  to  another.  In  this  case,  the  game  is  called nonzero-sum and  it  requires  a  new  set  of  rules  for
estimating optimal strategies and solutions.

During the early 1950’s, John Nash has focused primarily on the problem of finding a set of equilibrium
points in nonzero-sum games, where the players eventually settle after a series of competitive rounds of the
game. In 1957 [25], Nash successfully proved that indeed such equilibrium points exist in all nonzero-sum
games, defining what is now known as the Nash theorem or Nash solution to  the bargaining problem [2, 3].
However, although the Nash theorem ensures that at least one such Nash equilibrium exists in all nonzero-sum
games, there is no clear indication on how the game’s solution can be analytically calculated at this point. In
other words, although a solution is known to exist, there is no closed form for nonzero-sum games until today.

The Nash equilibrium points are not always the globally optimal option for the players. In fact, the Nash
equilibrium is optimal only when players are strictly competitive, i.e., when there is no chance for a mutually
agreed solution that benefits them more. These strictly competitive forms of games are called non-cooperative
games. The alternative option, the one that allows communication and prior arrangements between the players, is
called a cooperative game and it is generally a much more complicated form of nonzero-sum gaming.

3.2 Cooperative games and coalition gaming

The problem of cooperative or possibly-cooperative gaming is the most common form of conflict in real life
situations. Since nonzero-sum games have at least one equilibrium point, when studied under the strictly
competitive form, Nash has comprehensively studied the cooperative option as an extension to it. However, the
possibility of finding and mutually adopting a solution that is better for both players than the one suggested by
the Nash equilibrium, essentially involves a set of behavioral rules regarding the players’ stance and mental
state, rather than strict optimality procedures [2, 3]. Nash named this process as bargain between the players,
trying to mutually agree on one solution between multiple choices within a bargaining set. In practice, each
player should enter a bargaining procedure if there is a chance that a cooperative solution exists and it provides
at least the same gain as the best strictly competitive solution, i.e., the best Nash equilibrium. In this case, if such
a solution is agreed between the players, it is called bargaining solution of the game. This new framework
provides the necessary means to study n-person non-cooperative and cooperative games under a unifying point
of view. Specifically, a nonzero-sum game can be realized as a strictly competitive or a possibly cooperative
form, according to the game’s rules and restrictions. Therefore, the cooperative option can be viewed as a
generalization to the strictly competitive mode of gaming.

When players are allowed to cooperate in order to agree on a mutually beneficial solution of game, they
essentially choose one strategy over the others and bargain this option with all the others in order to come to an
agreement. For symmetrical games, i.e., when all players receive the same gains and losses when switching
places, this situation is like each player choosing to join a group of other players with similar preference over
their initial choice. Each of these groups is called a coalition and it constitutes the basic module in this new type
of gaming: the members of each coalition act as cooperative players joined together and at the same time each
coalition competes over the others in order to impose its own position and become the winning coalition. This
setup is very common when modeling voting schemes, where the group that captures the relative majority of the
votes becomes the winner.

Coalition Theory [2, 3] is closely related to the classical Game Theory and in particular the cooperative
gaming. In essence, each player still tries to maximize its own expectations, not individually any more but
instead as part of a greater opposing term. Therefore, the individual gains and capabilities of each player is now
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considered in close relation to the coalition this player belongs to, as well as how its individual decision to join
or leave a coalition affects this coalition’s winning position. The theoretical implications of having competing
coalitions of cooperative players, instead of single players, is purely combinatorial in nature, thus making its
analysis very complex and cumbersome. There are also special cases of collective decision schemes where a
single player is allowed to abstain completely from the voting procedure, or prohibit a contrary outcome of the
group via a veto option. Special sections of Game Theory, namely the coalition gaming and stable sets in
cooperative gaming [2, 3], have studied the effects of introducing “weights” to the choice of each expert
according to their competencies, in order to optimize the final decision of the group.

3.3 Classifier combination as a game-theoretic problem

The transformation of cooperative n-person games into coalition games essentially brings the general problem
into a voting situation. Each player casts a vote related to its own choice or strategy, thus constituting him/her as
a member of a coalition of players with similar choices. The coalition that gains more votes becomes the winner.
In the case where each player selects one out of M available options to cast its vote, the collective group decision
can be estimated simply by applying the majority voting scheme, i.e., the choice selected is the one gathering the
majority of votes. Each subgroup of consentient players essentially represents an opposing assembly to all  the
other similar subgroups with different consensus of choice.

In the general case where a weight is assigned to each voter and there are n available choices to vote
for, this form is known in Game Theory as the weighted majority game (WMG) [2, 3]. It  has been proven by
Nitzan and Paroush (1982) [4] and Shapley and Grofman (1984) [5], that the optimal decision rules for these
WMG, in terms of collective performance, are the weighted majority rules (WMR). The same assertion has also
been verified independently by Ben-Yashar and Nitzan [26] as the optimal aggregation rule for committees
under the scope of informative voting in Decision Theory. This result was later (2001) [62] extended from
dichotomous to polychotomous choice situations; hence the optimality of the WMR formulation has been proven
theoretically for any n-label voting task. Furthermore, under the conditional independence assumption, a closed
form solution for the voting weights in the WMR formula exists and it is directly linked to each expert’s
competency. This optimal weight profile for  the  voting  experts  is  the log of the odds (“log-odds”) of their
individual competencies [4, 5].

In this paper, the notion of modeling classification tasks for an ensemble of experts via the precise
game-theoretic formulation of WMG and WMR is for the first time applied for combining hard-output (voting)
classifiers. Specifically, the design of the combination rule is treated as a standard WMG situation, with each
classifier participating in a simple coalition game, i.e., choosing the final decision based on the maximum votes
(sum of weights) casted. The voting weights in this WMR scheme are calculated in an analytical way using the
log-odds solution [27, 1]:

(1)

where wi is the combination weight assigned to the i-th classifier (player), pi is the respective estimated
probability for correct classification, measured in the validation set,  is the predicted class label and correct is
the correct class label for x (either 1 or 2), respectively.

Using this game-theoretic analytical solution, the WMR formula is used as the optimal voting
aggregation scheme, i.e.:

1

( ) ( )
K

wmr i i
i

O w Dx x (2)

where Di is the hard-output of each of the K individual classifiers in the ensemble, wi is its assigned weight, Owmr
is the weighted majority sum.

In this study, the classification tasks where chosen to include only dichotomous choice situations, for
several reasons (explained later on). Hence, there are only two voting options available (M=2) and two class
labels to choose from (either 1 or 2), which essentially simplifies the WMR formulation to a sign-assignment
problem:

( ) ( )wmr wmrD sign O Tx x (3)
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where Dwmr is the final decision of the ensemble against a fixed-valued decision threshold T, which is typically
half the range of values for Owmr [27, 1], i.e.:

1 max{ } min{ } , 1...2 i iii
T D D i K (4)

or simply T=1/2 when normalized weights wi are employed (sum of weights is unity).
Interestingly, although the optimality of this solution under certain conditions has been studied

theoretically in the context of many different disciplines, including decision theory and automata theory [28, 29,
30], it is generally considered very limited in terms of optimality, since it does not take into account any
dependencies among the trained classifiers on an ensemble.

In this paper, two versions of this WMR-based weighting scheme with respect to the value of pi are
tested: (a) the “static” WMR, using the prior probabilities of correct classification (i.e. “global” competence),
and (b) the “adaptive” WMR, using the (estimated) posterior probabilities of correct classification (i.e. “local”
competence). In both cases, the success rates are calculated based on a validation set of samples, independently
of any training process and any training set used by the classifiers. In this new “adaptive” version of the WMR,
which essentially introduces the notion of local experts into this framework, the combination weights are
calculated so that they reflect the localized (conditional) competencies of the classifiers at each point, i.e.:

(5)

This procedure is presented in section 4.5.

4. Datasets and Methodology

4.1 Selection of benchmark datasets

In order to assess the performance of the various classifier combination methods, publicly available benchmark
datasets were considered. Specifically, the Raetch [31, 32, 33] and the ELENA [34] dataset resources were
considered and, for the purposes of this study, only 2-class sets with real (non-artificial) data were initially
selected. The main reason for employing only dichotomous classification tasks is that multi-class problems
essentially add one more layer of complexity in some classification models, especially SVM-based. In practice,
the simplification of the classification task itself does not require any second-stage decision, e.g., one-versus-all
or pair-wise comparisons. Furthermore, when M>2 choices are available in WMG setups, the corresponding
WMR decision requires one additional parameter of non-trivial optimization [67], the majority threshold or
quota (q), instead of a simple comparison to the half-sum of the voting weights, as in Eq. (3) and (4). Since the
goal of this study is the comparative evaluation of combination rules, while keeping all the other factors as
simple as possible, using only 2-class benchmark datasets is a natural choice.

A group of 14 datasets were analyzed in terms of class separability and statistical significance of the
corresponding results. In order to make individually trained classifiers as diverse as possible, the method of
training them in different subspaces was selected. Consequently, datasets of high dimensionality were preferred.
The quantitative criteria used for selecting the final datasets from this group included: (a) The inherent
dimensionality of the dataset, in order to be able to use a feature subspace method leading to at least five distinct
feature groups. (b) The Chernoff Bound and the corresponding Bhattacharyya Distance [6], as a commonly used
class separability measure, when Gaussian distributions are assumed for the classes. (c) Guyon’s error counting
approach [35] for estimating the minimum size of the test data set, based on the results of a leave-one-out [36]
error estimation from a simple OBTC model [37]. (d) The ELENA project’s proposal [38] for the minimum
number of samples necessary for the estimation of the probability density function (pdf) of a Gaussian
probability density, using a probability density kernel estimator, with less than 10% error. (e) The intrinsic
dimension was calculated in terms of the fractal dimension estimation method [39, 40] and compared to the real
number of distinct features of the dataset, in order to get a quantitative measure of the overall complexity of the
sample space and the degree of redundant information among the features. Based on these criteria, the final
group of the selected datasets included four candidates from the Raetch packages. These datasets are: 1)
Ringnorm, 2) Splice, 3) Twonorm, and 4) Waveform.
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4.2 Dataset split and subspace method

Each base dataset was randomly separated into a base training set and a test set of samples. Diversity among the
classifiers was introduced in the ensemble by training them in different subspaces. Random subspace methods
[21] have been successfully used in the past as the means to increase diversity among classifiers. However, in
these methods, the grouping of distinct features into subsets is conducted randomly and involves either distinct
or overlapping memberships of features in the various groups. In contrast, in this study a non-random subspace
procedure was implemented by using a feature ranking method and a subsequent grouping into distinct subsets,
in order to achieve more or less equal discrimination power. A much simpler version of this method has been
used successfully in the past [41]. These approaches are generally referred to as “ranked” subspace methods,
since subsets of features are evaluated and ranked according to some specific statistical criterion, in order to
control the discrimination power and the robustness of each subspace in various classification or clustering
applications (see e.g. [62]).

In this paper, the training set was partitioned into K distinct feature groups. Each group of features was
created in a way that satisfied three basic constraints: (a) each group to be distinct, i.e., no feature is common in
any two groups, (b) all the features are used “as-is”, i.e., no projection or other complex transformation is applied
(e.g. PCA), and (c) each feature group to represent approximately the same class-discrimination potential. The
third constraint requires a method for ranking all the features in terms of discrimination power, against the two
classes, as well as their statistical independence with regard to the other features in the initial training set. The
MANOVA method [42] was used to assign a multivariate statistical significance value to each one of the
features and then produce a sorted list, based on (the log of) this value.

A “fair” partitioning of this sorted list of features into equally “accurate” groups, in terms of
classification results, was conducted by selecting features in pairs from the top and bottom positions, assigning
the currently “best” and “worst” features in the same group. Furthermore, the efficiency of each group was
estimated in terms of summing the log of the statistical significance value, assigned by MANOVA, of all the
features contained in this group. The log was employed in order to avoid excessive differences between the
values assigned by MANOVA, thus creating more even subset sums of these values. Practically, every such pair
of features was assigned in groups sequentially, in a way that all groups contained features with approximately
equal sum of the log of the values assigned by MANOVA.

Each one of these K distinct  feature  groups  was  used  for  training  one  of  the K classifiers in the
ensemble. As a result, the issue of the desired diversity between the classifiers of the ensemble is addressed
independently from the combination rules themselves, making their subsequent comparison easier and more
realistic. It should be noted, that the goal of this study is not classifier independence or diversity, but rather to
evaluate the performance of the WMR and other combination rules, using weakly independent classifiers, i.e.,
without guaranteed diversity. In fact, the introduction of a feature subspace method only creates some diversity,
which makes the evaluation of the ensembles more realistic.

4.3 Classifier models

Three, among the most popular, classifier models were selected to form committees of experts, in order to test
the various classifier combination schemes. Specifically, the Support Vector Machine (SVM) [43, 44], the
(weighted) k-nearest-neighbor (w/k-NN) [6] and the Decision Tree (DT) [45] classifiers were employed in this
study.

For the SVM architecture, a geometric nearest point algorithm (NPA) [46], based on the notion of
reduced convex hulls (RCH) [47], was used for training a standard SVM architecture with radial-basis function
(RBF) as the kernel of the non-linear mapping.

The tree-based classification models were selected as a very typical candidate of unstable classifiers,
already used successfully in other combination schemes. In their simplest form, each tree node contains a
threshold value that is compared to one of the input features and the result dictates which of two possible paths
to follow towards the next tree level. This type of decision trees is often referred to as Ordinary Binary
Classification Trees (OBCT) [6]. In this study, the classic Classification and Regression Tree (CART) algorithm
[45] was employed for designing soft-output (regression) and hard-output (classification) DT, used in
conjunction with soft- and hard-output combination rules, respectively. Three splitting criteria were tested
separately: (a) the Gini index of diversity, a typical choice in CART models that is similar to entropy, (b) the
twoing criterion, optimizing the criterion of splitting the contents of each node into two disjoint and mutually
exclusive subsets, and (c) the deviance criterion, which maximizes the variability (variance) reduction within
each of the two splits of the node. These three splitting criteria, which are some of the most commonly used
choices in typical OBCT models, were tested separately for completeness purposes.
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Finally, a modified version of the w/k-NN classifier was employed [48, 49, 50]. The typical k-NN
classifier architecture was enriched with the options of choosing distance functions other than the classic
Euclidean, employing a non-constant weighting function to the test samples around the center of the k-closure
neighborhood. In this study, the weighting functions were fixed (non-trained), symmetric around the center of
the k-neighborhood and scaled appropriately. In each case, the smallest weight value was assigned to the furthest
of the k neighbors and the largest weight value to the center of the k-neighborhood. In other words, the weighting
profile was either constant, in the case of the typical non-weighted k-NN implementation, or a constantly
decreasing function around the center of the k-neighborhood. The distance metrics implemented for this w/k-NN
classifier were the Euclidean, the city block, the Minkowski, the cosine, the correlation, the Mahalanobis, the
Chebychev, and the Hamming kernels [6]. The weighting metrics implemented for this w/k-NN classifier were
the constant (classic, no weighting), the linearly decreasing and the Gaussian profiles. The introduction of the
different distance functions and especially the option of employing weights to the k-neighbors according to their
distance from the center of the local test set, had little effect to the overall performance of the w/k-NN classifier
but produced much more stable soft-output profiles, which were used subsequently for the calculation of local
accuracy estimates (see: section 4.5).

4.4 Combination rules

A total of eight combination rules were examined in this study. Specifically, four typical hard-output
combination methods were employed (namely one classic rank-based method and three voting-based schemes,
including the “static” and “adaptive” versions of WMR), two soft-output averaging methods and two Bayesian-
based combination rules.

The standard maximum rule was employed as a typical rank-based method [1, 51]:

maximum (“STD: maximum”):

(6)

where: x is the current input sample to be classified, Oi(x) is output value by the i-th classifier for class label j
given x, (x) is the predicted class label, { 1, 2} are the two class labels, K is the size of the ensemble, ij is the
corresponding support value by the i-th classifier for class label j given x, and ps is the selected support value.

It should be noted that two other typical rank-based combination rules are equivalent to the maximum
and the simple majority rules, respectively, in case of dichotomous choice classification [1]. Specifically, the
class labels selected by the minimum rule [51] are the same to the ones selected by the corresponding maximum
rule that uses the same support values. Similarly, the class labels selected by the median rule [51] are the same to
the ones selected by the corresponding simple majority rule that uses the same support values.

simple majority voting (“STD: simple majority”) [1, 52]:

1

( ) ( )
K

maj i
i

O Dx x (7)

( ) ( )maj majD sign O Tx x (8)

where Di is the hard-output of each of the K individual classifiers in the ensemble, Omaj is the majority sum. The
final hard-output decision Dmaj of the simple majority rule is calculated against a fixed-valued decision threshold
T, which is typically half the range of values for Omaj [1]:

1 max{ } min{ } , 1...2 i iii
T D D i K (9)

which is the same to the one employed for WMR (in Eq.4) but with wi=1/K for the simple majority rule.
Additionally, two soft-output averaging models were included, a non-weighted and a weighted one [1]:
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simple average (“STD: simple average”):

1

1( ) ( ) ,
K

avg i i i
i

O w O w Kx x (10)

weighted average (“STD: LSE-weighted average”):

1

ˆ( ) ( )
K

lsewavg i i
i

O w Ox x (11)

where Oi(x), Oavg(x) and Olsewavg(x) are the soft-output value of the single classifier (ensemble member), the
simple averaging rule and the weighted average rule, respectively. For the simple average rule, all weights are
equal, i.e., wi=1/K. The vector ŵ  is the optimal one for the weighted average rule, estimated by a linear
regression formula on the individual classifier outputs, against the correct classification tag, in terms of a least-
squares error (LSE) minimization criterion [53, 1]. Thus, this method can be considered as an example of a
“trained” linear weighting rule of soft-output classifiers. In contrast, the WMR approach employs fixed analytical
optimal weighting profile and hard-output classifications (votes) as input, with no need for further training.

Finally, two Bayesian-based combination rules were employed as a very efficient and simple
implementation of non-weighted schemes, which exploit information about local accuracy estimates.
Specifically, the method of Dynamic Classifier Selection based on Local Accuracy (DCS-LA) [13, 54, 55] was
employed as a typical example of a local accuracy-based non-weighted combination rule, using the notion of
overall local accuracy [13]. Two different variants of this model (DCS-LA variants) were implemented:

employing the full Bayes rule for the conditional probabilities (“STD: DCS-LA (with priors)”):

(12)

or, using only the local accuracy estimate itself (“STD: DCS-LA (no priors)”):

(13)

The final decision in these types of DCS-LA models is dictated by the expert with the highest
conditional probability of success, i.e., highest “confidence”. As a result, the model implemented in this study is
essentially a direct implementation of the standard Bayes decision theory that is based on maximizing the
likelihood of “correct” classification for the current input data x. It should be noted that, although the Bayes rule
includes division by the pdf against the input data x, this factor is irrelevant here since the model is applied to a
specific input sample and therefore the corresponding pdf value is always equal to unity.

For all the soft-output combination rules (simple and LSE-weighted averaging, DCS-LA models), the
final decision is calculated against a fixed threshold value similarly to the majority voting rules, which is
typically half the range of values for the specific combination rule, i.e.:

( ) ( )combR combRD sign O Tx x (14)

1 max{ } min{ } , 1...2 i iii
T O O i K (15)

where Oi is the soft-output of each of the K individual classifiers in the ensemble, OcombR is the soft-output of the
combination rule and DcombR is the final class decision (thresholded value).

Table 1 summarizes all the eight combination rules used in this study.
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Table 1:  Overview of the eight combination rules used in this study.

Non-weighted Weighted

Static or Rank-based simple average

maximum

majority

LSE-weighted average

WMR (static) logodds

Adaptive (using posteriors) Bayesian (DCS-LA) no priors

Bayesian (DCS-LA) with priors

WMR (adaptive) logodds

4.5 Local accuracy estimates method

To compute the local accuracy estimates, as required by the DCS-LA method, as well as the modification of the
WMR as pointed out in section 3.3, the “overall” local accuracy method was adopted [13, 55]. To this end, we
chose to estimate the error pdf directly by employing a non-parametric density-based method, by means of
histogram approximation [6]. For one-dimensional probability functions, the histogram method has been proven
more efficient than direct interpolation through isotonic regression functions [56]. In order to avoid non-
uniformities in the distribution of the classifiers’ soft-output values, the use of dynamic bin width allocation [57]
was employed instead of equal bin width. This method ensures that every bin contains roughly the same number
of samples, i.e., the width of the histogram bins is adjusted appropriately, in order to produce uniform resolution
and smoothness of the histogram curve throughout the entire range of values.

In this study, the local accuracy estimation of each classifier was based on the corresponding error pdf,
approximated via the histogram method with dynamic bin width allocation. The complete process includes five
distinct steps: (a) Each classifier in the ensemble is designed based on a training set of samples and subsequently
evaluated on a different set of test samples. (b) The soft-output values of the classifier are then distributed
uniformly into bins of dynamic width. (c) The corresponding localized error probability estimation is calculated
for every bin in terms of error frequency ratio (errors versus total samples in bin). (d) After the calculation of the
error pdf value in each bin, the bin values are interpolated with a piecewise cubic Hermite spline, chosen for its
shape-preserving properties [58, 59], in order to produce the final, continuous, error pdf estimator. (e) The local
accuracy estimate, i.e., the “success” pdf, for each specific classifier is calculated by one minus its corresponding
error pdf (interpolated) value for a given input sample x, i.e.:

(16)

(17)

where Oi(x) is the i-th classifier’s output, Ni
m is the number of output values from the i-th classifier in (dynamic)

histogram bin m, Nei
m is the number of incorrect classifications committed by the i-th classifier in bin m, bi

m and
bi

m+1 are the boundaries of bin m for the i-th classifier, and Hi
m is the piecewise cubic Hermite spline for the error

pdf in bin m for the i-th classifier.
Results from all single-classifier tests have shown that the local accuracy estimation based on the

dynamic-width histogram method produced very robust and accurate results for all classifiers, even for the
OBTC, which is the most unstable of the three base classifiers used in this study. Figure 1 illustrates a real
example of the procedure. The plot in (a) illustrates the fixed-width histogram (counts per fixed-width bin) of the
SVM kernel output values against correct (green/high) and incorrect (red/low) classifications, for the single-
classifier configuration in the “splice” dataset. The plot in (b) illustrates the resulting dynamic-width normalized
histogram (dots) and the corresponding local accuracy estimator (interpolated dynamic-width bins) function,
which calculates the estimated posterior probability of successful (blue/high) and incorrect (red/low)
classification with regard to the current SVM kernel output.
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Figure 1: Example of the local accuracy estimation method. Green (high/lighter) and red (low/darker)
portions of the bars in the fixed-width histogram in plot (a) represent number of correct and incorrect
classifications, respectively, with regard to the classifier’s output value. The marked points in plot (b)
correspond to the new bin centers of the dynamic-width histogram for the “success” pdf, while the
interpolation curve represents the analytical local accuracy estimator function for correct
(blue/high/darker curve) and incorrect (red/low/lighter curve) classification, with regard to the
classifier’s output value. The results are for the single SVM classifier on the “splice” dataset.
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5.  Experiments and Results

The experimentation phase of this study involved three consecutive stages: (a) the characterization of all datasets
based on single classifier tests, (b) the training of ensembles based on different choices of datasets, number and
type of base classifiers, and (c) the comparative evaluation of all the classifier combination rules.

5.1 Datasets and classifiers characterization

In the preliminary analysis stage, every dataset/classifier combination involved five training realizations, each
one employing training and parameter optimization according to each classifier model. For the SVM classifier,
the optimization included the  soft margin parameter of the NPA-RCH training algorithm [46, 47], as well as
the epsilon parameter (convergence accuracy). Furthermore, the Radial Basis Function (RBF) kernel [44] with
optimized sigma ( ) value was used in the final choice of the SVM classifiers’ structure. For the OBTC, each
setup included a classification and a regression tree, both trained on the same data and both using the same
splitting criterion (one of: Gini, twoing or deviance). In all cases, the OBTC models were optimized against the
exact choice of the splitting function and they all employed a minimum limiting threshold of ten samples per
splitting node during training/pruning phases [1, 6]. Finally, for the w/k-NN classifier, the optimization included
the best choice for distance function (Euclidean or other), the k-size parameter and the weighting function
(constant or other).

Tables 2 and 3 illustrate all the dataset/classifier combinations and the corresponding best-accuracy
configurations for the full feature sets (i.e., no feature selection/optimization), which were used as the base for
creating and evaluating the corresponding ensembles in the subsequent stage of the experiments.

Table 2:  Dataset specifications and single-classifier (reference) accuracies (%). Mean and standard deviation
values are based on five training realizations with full feature set.

Dataset Training set

size

Testing set

size

Dataset

Dimension

SVM

accuracy

OBTC

accuracy

w/k-NN

accuracy

ringnorn 400 7000 20 97.66 ± 0.22 80.78 ± 2.41 77.00 ± 1.83

splice 1000 2175 60 85.29 ± 1.08 92.98 ± 0.97 77.88 ± 2.09

twonorm 400 7000 20 97.70 ± 0.15 76.56 ± 1.63 97.85 ± 1.52

waveform 400 4600 21 90.10 ± 0.40 80.91 ± 1.65 89.85 ± 1.50

Table 3:  Single-classifier best configurations against datasets, based on five training realizations.

Dataset best SVM configuration best OBTC configuration best w/k-NN configuration

ringnorn kernel: RBF ( =5)
=0.016

epsilon=5.e-4

splt.func=twoing
splt.limit=10

dist.func=Euclidean
k-size=1

weight.func=none

splice kernel: RBF ( =42)
=0.036

epsilon=5.e-4

splt.func=deviance
splt.limit=10

dist.func=Euclidean
k-size=15

weight.func=Gaussian

twonorm kernel: RBF ( =100)
=0.008

epsilon=5.e-4

splt.func=deviance
splt.limit=10

dist.func=Euclidean
k-size=17

weight.func=linear

waveform kernel: RBF ( =20)
=0.020

epsilon=5.e-4

splt.func=Gini
splt.limit=10

dist.func=Euclidean
k-size=21

weight.func=none
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5.2 Classifier ensembles training

Using the best-configuration results obtained from the previous experimentation stage, two different base
ensemble designs were employed in the second stage. Specifically, the feature subspace method was used to
create dataset splits for K=5 and K=7 feature subsets, with the application of MANOVA as the feature ranking
method for the complete (original) datasets. Each of these K-splits setups was applied to create ensembles with
five  or  seven  classifiers,  each  employing  one  of  the  three  base  types  of  classifiers  (SVM,  OBTC,  w/k-NN).
Subsequently, for each one of these ensemble setups, ten random realizations of training and testing subsets of
the dataset were created, using the training/testing ratio also used for the corresponding single-classifier cases
(see: Table 2). This procedure was employed in the same way for all four base datasets, for ensembles of five or
seven (same type) classifiers.

For the training of the classifiers in any given ensemble setup, the model parameters used were the
same with the ones calculated in the corresponding single-classifier case during the first experimentation phase.
The main reason for not employing a full optimization procedure in this second stage was the fact that the
subsequent comparison of the different combination rules was based in their relative differences in performance
between them and not with the corresponding single classifier model (using the full feature set). Moreover, this
procedure of optimizing every individual classifier in the ensemble would result in the increase of the total
processing time with no actual benefit to the purposes of this particular study, since the goal here is to test the
efficiency and robustness of the various combination rules in ensembles of weak or sub-optimally trained
classifiers.

Table 4 illustrates the mean and standard deviation values of average and maximum (in parentheses)
accuracy rates of ensemble members, for different choices of datasets, K-splits and base classifiers.

Table 4: Average classifier group accuracies (%) for all datasets and splits, against all the ensemble members
in ten training realizations. The numbers enclosed in parentheses indicate the mean of the maximum-
accuracy members in each corresponding ensemble, i.e., the average over only the top members across
the ten training realizations.

Classifiers

Dataset K-splits SVM OBTC w/k-NN

5
77.63 ± 2.13

(81.10 ± 1.05)

77.42 ± 0.69

(79.29 ± 0.68)

73.64 ± 0.55

(74.85 ± 0.52)
ringnorm

7
72.89 ± 1.04

(80.53 ± 1.73)

74.30 ± 1.04

(78.21 ± 1.25)

69.65 ± 0.43

(73.43 ± 0.91)

5
66.80 ± 0.98

(78.94 ± 0.50)

72.57 ± 0.46

(88.39 ± 0.33)

67.33 ± 0.78

(80.84 ± 0.71)
splice

7
63.19 ± 1.30

(77.17 ± 1.37)

68.70 ± 0.48

(82.49 ± 0.49)

66.04 ± 0.34

(80.32 ± 0.41)

5
81.11 ± 0.11

(84.11 ± 0.14)

73.82 ± 1.30

(75.34 ± 0.93)

79.87 ± 0.16

(82.72 ± 0.34)
twonorm

7
76.83 ± 0.65

(82.09 ± 0.65)

71.78 ± 0.44

(75.26 ± 0.76)

75.73 ± 0.20

(80.40 ± 0.51)

5
75.72 ± 1.28

(79.26 ± 0.59)

78.18 ± 0.63

(79.57 ± 0.62)

79.92 ± 0.48

(81.43 ± 0.53)
waveform

7
70.25 ± 1.09

(78.54 ± 1.03)

76.65 ± 0.49

(79.40 ± 0.46)

77.64 ± 0.38

(80.85 ± 0.45)
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With respect to the dataset split process employed in this study, Table 4 demonstrates that the non-
random (MANOVA ranking) feature subspace method produced more or less balanced ensembles, as the
standard deviation on the mean and maximum single-member accuracies remained very low in all cases,
regardless of the type of base classifier employed.

5.3 Testing of combination rules in the ensembles

In each training/testing cycle, the classification outputs from the pool of K classifiers were fed as input to each of
the eight combination schemes (discussed in section 4.4) investigated in this study, producing the corresponding
combined classification outputs of the ensemble.

It should be noted that the half-range decision threshold was used in all combination rules, i.e., no
analytical optimization was conducted for T. This choice is justified by the results from previous studies [e.g.,
41, 1], which support the assertion that the optimized T value rarely lies far from the half-range value.
Furthermore, in the case of combination rules that employ local accuracy estimates (i.e., a pdf approximation),
information about the shape and properties of the decision boundary of each classifier is already encoded
partially in the (estimated) conditional probability of “correct” classification, and is used either directly (in the
case of DCS-LA) or indirectly (in the weights of WMR).

In the sequel, the overall relative performance of each combination rule was determined in terms of
ranking position for each case, i.e., according to its corresponding improvement over the mean group accuracy,
for each dataset and K value employed. Specifically, a weighted Borda or w/Borda count method [60] was
employed to attribute ten points to the top-ranked combination rule (first on the list of eight rules), nine points to
the second (second on the list of eight rules), and so on. In case of a “tie” where two combination rules exhibited
exactly the same performance, both got the same w/Borda points for the specific ranking position. The Borda
and w/Borda count methods are often used in cases when an overall evaluation of classifiers or ensembles is
required over a wide range of different configurations, datasets and average “grouped” performances, i.e., when
direct aggregation of individual “group” success rates is not valid in terms of statistical context. In this study, as
the average accuracies of all the models are more or less compact within-datasets but very different across-
datasets (very different classification tasks), their relative ranking is much more informative than mean and
standard deviation calculations of actual accuracy rates.

Table 5 illustrates the wBorda rankings of each combination rule, as well as the mean increase in
accuracy (each cell corresponds to the average over ten training/testing realizations) over the mean accuracy of
the individual members in the ensemble of SVM classifiers, for each dataset and K-split value employed.
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Table 5: SVM ensemble results for all combination rules, datasets and K-splits. Improvements on average
group accuracy (%) are presented in decimal numbers, while wBorda ranking values are presented as
integers. The underlined wBorda values indicate top-ranking positions (10 points). All accuracy
improvements were calculated as the difference of accuracy rates between the ensemble and the
corresponding single-classifier configuration. Negative values indicate deterioration in performance.
The combination rules are presented sorted against the SUM column, which represents the total sum of
wBorda points assigned to each combination rule over all datasets and K-splits.

The same approach was applied to ensembles of OBTC and w/k-NN classifiers. Tables 6 and 7 illustrate
the wBorda rankings and mean accuracy improvements of OBTC and w/k-NN ensembles, accordingly.

ringnorm splice twonorm waveform

K=5 K=7 K=5 K=7 K=5 K=7 K=5 K=7
SUM MEAN STDEV

STD: DCS-LA (no priors) 8 8 10 10 9 6 9 10 70 8.75 1.39
16.96 20.25 19.69 22.04 14.55 17.28 8.06 12.87 16.46 4.53

WMR: logodds (adaptive) 7 6 8 8 8 10 10 9 66 8.25 1.39
16.11 18.11 17.68 20.06 14.22 18.80 8.67 12.8 15.81 3.75

STD: DCS-LA (w/priors) 9 9 9 9 9 5 4 3 57 7.13 2.64
17.27 20.43 19.17 21.89 14.55 17.22 -3.31 4.25 13.93 8.83

STD: simple average 10 10 4 4 10 4 7 8 57 7.13 2.80
17.64 21.62 7.76 6.11 15.20 5.82 7.97 11.68 11.73 5.87

STD: LSE-w/average 6 5 7 6 7 7 8 7 53 6.63 0.92
14.81 15.58 16.46 19.04 13.76 17.49 7.98 11.21 14.54 3.56

WMR: logodds (static) 4 4 6 7 7 9 6 5 48 6.00 1.69
14.63 13.62 16.41 19.17 13.76 17.66 7.37 9.77 14.05 3.93

STD: simple majority 5 3 5 5 7 8 6 4 43 5.38 1.60
14.81 12.57 12.28 13.92 13.76 17.64 7.37 7.34 12.46 3.55

STD: maximum 3 7 3 3 6 3 5 6 36 4.50 1.69
14.41 18.68 1.68 -2.18 12.10 1.64 6.07 10.16 7.82 7.21
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Table 6: OBTC ensemble results for all combination rules, datasets and K-splits. The adverted notation is the
same as in Table 5.

ringnorm splice twonorm waveform

K=5 K=7 K=5 K=7 K=5 K=7 K=5 K=7
SUM MEAN STDEV

WMR: logodds (adaptive) 10 8 6 7 9 10 10 10 70 8.75 1.58
14.25 15.34 18.93 21.49 15.00 18.44 7.46 9.78 15.09 4.69

WMR: logodds (static) 9 7 8 8 8 8 9 9 66 8.25 0.71
14.17 14.88 19.16 21.58 14.40 17.84 7.10 9.23 14.76 4.86

STD: LSE-w/average 9 9 7 9 8 7 8 8 65 8.13 0.83
14.17 15.40 18.98 21.65 14.40 17.83 7.05 9.17 14.83 4.87

STD: simple majority 9 6 5 5 8 9 9 9 60 7.50 1.85
14.17 14.86 15.14 16.26 14.40 17.87 7.10 9.23 13.63 3.62

STD: simple average 8 10 4 4 10 6 7 7 56 7.00 2.33
13.51 16.07 12.14 15.10 15.32 16.66 5.49 6.60 12.61 4.31

STD: DCS-LA (no priors) 7 4 10 10 7 4 6 6 54 6.75 2.31
9.23 11.00 20.67 21.92 13.34 12.95 3.89 4.02 12.13 6.70

STD: DCS-LA (w/priors) 6 5 9 6 6 5 4 4 45 5.63 1.60
8.34 11.18 20.57 20.90 13.33 12.99 -5.00 -6.71 9.45 10.40

STD: maximum 5 3 3 3 5 3 5 5 32 4.00 1.07
0.52 -1.48 8.13 9.25 2.05 -1.58 -1.37 -3.46 1.51 4.73

Table 7: w/k-NN ensemble results for all combination rules, datasets and K-splits. The adverted notation is
the same as in Table 5.

ringnorm splice twonorm waveform

K=5 K=7 K=5 K=7 K=5 K=7 K=5 K=7
SUM MEAN STDEV

WMR: logodds (adaptive) 8 8 8 7 10 10 10 10 71 8.88 1.25

17.17 20.76 16.22 19.03 14.16 18.08 6.98 9.12 15.19 4.85

STD: DCS-LA (no priors) 9 9 9 10 7 6 6 6 62 7.75 1.67

19.68 21.41 19.05 21.49 9.48 10.66 4.55 3.65 13.75 7.52

STD: DCS-LA (w/priors) 10 10 10 9 6 5 4 4 58 7.25 2.76

20.00 21.79 19.30 21.24 9.45 10.64 -7.51 -8.96 10.74 12.62

STD: LSE-w/average 7 5 5 5 9 8 9 9 57 7.13 1.89

13.47 16.99 13.91 17.34 14.08 17.85 6.77 8.86 13.66 4.02

WMR: logodds (static) 7 6 4 4 9 9 8 8 55 6.88 2.03

13.47 17.02 13.78 17.09 14.08 17.93 6.76 8.82 13.62 4.01

STD: simple average 6 4 7 8 8 7 7 7 54 6.75 1.28

3.03 -1.72 15.41 19.20 12.82 13.75 6.42 6.16 9.38 7.03

STD: simple majority 7 7 3 3 9 9 8 8 54 6.75 2.43

13.47 17.03 9.39 12.73 14.08 17.93 6.76 8.82 12.53 3.96

STD: maximum 5 3 6 6 6 3 5 5 39 4.88 1.25

-8.01 -9.72 15.29 18.44 5.82 2.07 4.07 2.07 3.75 9.85
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Table  8  presents  a  summary  of  the  wBorda  rankings  from  Tables  5,  6  and  7.  The  list  of  all  the
combination rules is sorted according to their sum of wBorda points, i.e., their overall efficiency throughout all
the base datasets (four) and K-splits (K=5, K=7). Additionally, based on the results from Tables 2 and 4 through
7, Table 9 presents a summary of the comparative performance of the best ensemble designs against the
corresponding best single-classifier performance, for all datasets.

Table 8: Overall evaluation of all the combination rules, using the wBorda results from all the experiments.
The wBorda sum, mean and standard deviation values for each combination rule were calculated across
all the datasets, K-splits and classifiers. The list is sorted according to the wBorda sum (and mean)
ranking position of each combination rule, from the best to the worst combination rule.

Combination rule w/Borda SUM w/Borda MEAN w/Borda STDEV

WMR: logodds (adaptive) 207 8.63 1.38

STD: LSE-w/average 175 7.29 1.40

STD: DCS-LA (no priors) 173 7.21 2.19

WMR: logodds (static) 169 7.04 1.78

STD: simple average 167 6.96 2.14

STD: DCS-LA (w/priors) 160 6.67 2.41

STD: simple majority 157 6.54 2.11

STD: maximum 107 4.46 1.35

Table 9: Overall evaluation of the best ensemble designs against the best single-classifier configurations, for
all datasets. The values in the rightmost column refer to the difference between the accuracy (%) of the
best ensemble design and the corresponding best single-classifier accuracy for a specific dataset.

Dataset Best single-

classifier

configuration

Best ensemble designs Best ensemble

accuracy

Best accuracy

difference

ringnorm 97.66

(SVM)

SVM: simple average, K=5

OBTC: WMR (adaptive) all, K=5

w/k-NN: DCS-LA (w/priors), K=5

95.27

91.67

93.64

-2.39

splice 92.98

(OBTC)

SVM: DCS-LA (no priors), K=5

OBTC: DCS-LA (no priors), K=5

w/k-NN: DCS-LA (no priors), K=7

86.49

93.24

87.53

+0.26

twonorm 97.85

(w/k-NN)

SVM: simple average, K=5

OBTC: WMR (adaptive), K=7

w/k-NN: WMR (adaptive) all, K=5

96.31

90.22

94.03

-1.54

waveform 90.10

(SVM)

SVM: WMR (adaptive) all, K=5

OBTC: WMR (adaptive) all, K=7

w/k-NN: WMR (adaptive) all, K=5

84.39

86.43

86.90

-3.20
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6.  Discussion

The results from Table 8 clearly demonstrate the overall superior performance of the “adaptive” WMR model.
Both the “adaptive” and the “static” versions of the WMR model show improved performance compared to the
simple majority voting, as well as the maximum rule, for all three types of classifier ensembles (SVM, OBTC,
w/k-NN).

The “adaptive” version of WMR also exhibited better performance compared to the simple averaging
rule, as well as the weighted averaging rule using LSE-trained weights, i.e., both soft-output combination
models. Thus, the “adaptive” WMR model performs equally well or better than simple soft-output averaging
combination rules.

With regard to weighted versus non-weighted combination rules, all three weighted combination rules,
i.e., the two WMR and the LSE-trained weighted average, have been clearly proven better than the non-weighted
hard-output combination rules (i.e., maximum and simple majority). Moreover, in the overall evaluation, the
“static” WMR outperformed the Bayesian-based combination rule using priors (“STD: DCS-LA (with priors)”).
This essentially means that the WMR model is a very effective way of exploiting information about the
classifiers’ competencies, even when this information refers to global (i.e., prior) and not localized (i.e.,
posterior) probabilities. The overall performance of the WMR improved significantly when local accuracy
estimates was used in the “adaptive” version of the model, reaching the top-ranking position over all the other
combination rules, including the best soft-output (“STD: LSE-weighted average”) and the best Bayesian-based
(“STD: DCS-LA (no priors)”) combination rules.

The w/Borda rankings from Tables 5 through 8 also demonstrate the robustness and stability of the each
combination rule. For small values of standard deviation (close to one) in the corresponding w/Borda mean
ranks, the relative ranking position of a combination rule against the others remains more or less the same. Thus,
the “static” version of the WMR exhibited a consistently lower ranking position compared to the corresponding
“adaptive” WMR model in general. Likewise, the “adaptive” WMR model is more stable than almost all the
other combination rules (except maximum), including the LSE-weighted average, which exhibits more or less
the same consistency and robustness as the “adaptive” WMR but with lower relative ranking.

In terms of the overall performance of the combination rules, results from Tables 5 through 7
demonstrate that in all cases the best combination rules increased the average success rates (Table 4) of the
classifier pool significantly, up to +22% (mainly in the “ringnorm” and “splice” datasets), with larger relative
improvements as the size of the ensemble increased from five to seven members, for all the three types of base
classifiers. Furthermore, Table 9 shows that the performance of the best ensemble designs closely matched the
performance of the corresponding best single-classifier configuration and even surpassed it (“splice” dataset).
Although the WMR rule was not always selected as the best ensemble design, its overall performance and the
top-ranking positions in Table 8 clearly demonstrate that it is inherently robust and consistently efficient.

The general behavior of almost all the ensembles was consistent with the theoretical background and
experimentally verified the assertion that combining even moderately independent experts results to the
improvement of their individual competencies [1]. Previous studies [61] have shown experimental evidence that
optimal combination of SVM classifiers can be achieved through linear combination rules. Ensembles of SVM
or other type of robust classifiers, as a combination of multiple simpler models, each using a 1/K portion
(subspace) of the feature space of the dataset instead of a single classifier of the same type for the complete
feature space, can be used to reduce the overall training effort significantly. In particular, for the SVM model
case, kernel evaluation employs inner product between vectors, i.e., its complexity is directly proportional to the
dimensionality (number of features) of the input vectors. Thus, feature space reduction, from F to F/K features,
results in significant decrease in the overall complexity during training. A similar approach has also been
examined in [61], where an ensemble of SVM classifiers has been used, trained with small training sets, instead
of a single SVM trained with one large training set. Furthermore, there is evidence that such ensembles of kernel
machines are more stable than the equivalent kernel machine itself and that their model need not be more
complex than a simple linear combination of its member outputs [61], which is consistent with the theoretical
assertion of the WMR formulation as the optimal aggregation model for any n-label voting task (see section 2.3).
This reduction in training time, of course, has to be compared to the additional overhead of calculating a
combination rule for every output vector from the classifier pool, as well as the total training time of the K SVM
classifiers. This is one of the main reasons for preferring very simple, linear aggregation schemes with non-
trained weights, such as the WMR, for the design of robust classifier ensembles.

It should be noted that using simple linear combination models, including weights that do not require
iterative training, can be extremely useful in applications that require parallel and/or on-line updating. In the case
of WMR, the combination rule is fully parallelizable, even when using local accuracy estimates in the weighting
formula, since they are based on histogram calculations and not on iterative off-line optimization of the weights.
Furthermore, the updating of the histogram can also be realized on-line, simply by adding new evaluation results
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as the model runs on new input data (without any new re-training of classifiers), and only if needed, i.e., when
the new data invalidate the statistics of the previous histogram estimations.

7.  Conclusions

In this paper, a game-theoretic framework for combining classifiers has been proposed. The adapted WMR has
been, for the first time, presented as an alternative approach to design simple and efficient ensembles of voting
classifiers, even when the conditional independence assumption is only moderately satisfied via feature subspace
methods. Experimental comparative results have shown that such simple combination models for combining
classifiers can be more efficient than typical rank-based and simple majority schemes, as well as simple soft-
output averaging schemes in some cases. Moreover, when the weighting profiles required in the WMR are
associated with the posterior (localized), instead of the prior (global), approximations of the classifiers’
accuracies, the resulting ensemble can outperform many commonly used combination methods of similar
complexity. The use of simple linear combination models that employ analytically computed weights may
provide the necessary means to apply multi-expert classification schemes in parallel implementations with on-
line updating capabilities. Therefore, the WMR can be asserted as a simple, yet effective tool in the palette for
combining classifiers in an optimal, adaptive and theoretically well-defined framework.
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