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ABSTRACT
Monte Carlo methods represent the de facto standard for approximating complicated integrals involving multidimensional target
distributions. In order to generate random realizations from the target distribution, Monte Carlo techniques use simpler proposal
probability densities for drawing candidate samples. Performance of any such method is strictly related to the specification of the
proposal distribution, such that unfortunate choices easily wreak havoc on the resulting estimators. In this work, we introduce a
layered, that is a hierarchical, procedure for generating samples employed within a Monte Carlo scheme. This approach ensures that
an appropriate equivalent proposal density is always obtained automatically (thus eliminating the risk of a catastrophic performance),
although at the expense of a moderate increase in the complexity. A hierarchical interpretation of two well-known methods, such as of
the random walk Metropolis-Hastings (MH) and the Population Monte Carlo (PMC) techniques, is provided. Furthermore, we provide
a general unified importance sampling (IS) framework where multiple proposal densities are employed, and several IS schemes are
introduced applying the so-called deterministic mixture approach. Finally, given these schemes, we also propose a novel class of
adaptive importance samplers using a population of proposals, where the adaptation is driven by independent parallel or interacting
Markov Chain Monte Carlo (MCMC) chains. The resulting algorithms combine efficiently the benefits of both IS and MCMC methods.
Keywords: Bayesian Inference; Adaptive Importance Sampling; Population Monte Carlo; parallel MCMC

1. INTRODUCTION

Monte Carlo methods currently represent a maturing toolkit widely used throughout science and technology [1, 2, 3]. Importance
sampling (IS) and Markov Chain Monte Carlo (MCMC) methods are well-known Monte Carlo (MC) techniques applied to computing
integrals involving a high-dimensional target probability density function (pdf) π(x). In both cases, the choice of a suitable proposal
density q(x) is crucial for the success of the Monte Carlo based approximation. For this reason, the design of adaptive IS or MCMC
schemes represents one of the most active research topics in this area and several methods have been proposed in literature [4, 5, 6, 7, 8].

Since both IS and MCMC have certain intrinsic advantages and weaknesses, several attempts have been made to successfully
marry the two approaches: IS-within-MCMC [9, 10, 11] or MCMC-within-IS [12, 13, 14, 15, 16, 17]. To set the scene for such
developments it is useful to recall briefly some main strengths of IS and MCMC, respectively. For instance, one benefit of IS is that it
delivers a straightforward estimate [3, 18] of the normalizing constant of π(x), which is also called evidence or marginal likelihood
and is essential for several applications [19, 20]). However, estimation of the normalizing constant is highly challenging using MCMC
and several authors have investigated different approaches to overcoming the obstacles related to instability of the resulting estimators
[21, 22, 23, 19, 24]. Furthermore, the application and the theoretical analysis of an IS scheme using an adaptive proposal pdf is easier
than of a corresponding adaptive MCMC scheme, where the theoretical analysis is more delicate.

On the other hand, an appealing feature of MCMC algorithms is their explorative behavior. For instance, the proposal function
q(x|xt−1) can depend on the previous state of the chain xt−1 and foster movement between different regions of the target density.
For this reason, MCMC methods are usually preferred when no detailed information about the target π(x) is available, especially
in large dimensional spaces [25, 26, 27, 8]. A common feeling is that this intrinsic explorative nature seems to safeguard in some
way the resulting Monte Carlo estimators with respect to a rough tuning of the proposal q(x), explaining the evident wide success of
the MCMC methods. In this work, we provide a framework for explaining this common feeling about the MCMC based on random
walk proposal densities. In order to amplify their explorative behavior, several parallel MCMC chains can be run jointly [3, 18].
This strategy clearly fosters the exploration of the state space, at the expense of an increasing computational cost. Several schemes
have been introduced in order to share information among the different chains [28, 6, 29, 30], which further improves the overall
convergence.

The first contribution of this work is a description and analysis of a hierarchical proposal procedure for generating samples, which
are then employed within a Monte Carlo algorithm. In this hierarchical scheme, we consider two different conditionally indepen-
dent levels: the first one is only used for generating location parameters for the proposal pdfs used in the second level for drawing



possible candidates. Such an approach can be illustrated with an analogy of having a bag of potato chips/crisps layered on top of
each other, such that their shapes and orientations may vary, mimicking a set of overlaid densities. We show that the random walk
Metropolis [3] and the standard Population Monte Carlo (PMC) methods [4] can be interpreted as techniques which apply implicitly
this hierarchical procedure. Furthermore, a second contribution of this work consists in providing a general framework for multiple
importance sampling (MIS) schemes and their iterative adaptive versions. We discuss several alternative application of the so-called
deterministic approach [31, 32] for sampling a mixture of pdfs. This general framework includes different MIS schemes used within
AIS techniques already proposed in literature such as the standard PMC method [4], the adaptive multiple importance sampling [5, 33]
and the adaptive population importance sampling [34], for instance.

Finally, we combine the general MIS framework with the hierarchical procedure for generating samples, introducing a new class
of adaptive IS (AIS) algorithms. More specifically, one or several MCMC chains are used for driving an underlying MIS scheme. Each
algorithm differs from the others in the specific Markov adaptation employed and the particular MIS technique applied for yielding the
final Monte Carlo estimators. This novel class of algorithms combines efficiently the main strengths of the IS and the MCMC methods
since it maintains an explorative behavior (as in MCMC) and can still easily estimate the normalizing constant (as in IS).

We describe in detail the simplest possible algorithm of this class, called random walk importance sampling. Moreover, we
introduce two other different population-based variants for a specific choice of MIS scheme, which provides a good trade-off between
performance and computational cost. In the first variant, the location parameters are updated according to several parallel MCMC
chains. In the other one, an interacting adaptive strategy is applied. In both cases, all the adapted proposal pdfs collaborate to yield
a single global IS estimator. One of the proposed algorithms, called parallel interacting Markov adaptive importance sampling (PI-
MAIS), can be interpreted as parallel MCMC chains cooperating to produce a single global estimator, since the chains exchange
statistical information to achieve common purpose.

The rest of the paper is organized as follows. Section 2 is devoted to recalling the problem statement. The hierarchical proposal
procedure is introduced in Section 3. In Section 4, we describe a general framework for importance sampling schemes using a pop-
ulation of proposal pdfs. Section 5 introduces the adaptation procedure for updating the location parameters of these proposal pdfs.
Numerical examples are provided in Section 6, including comparisons with several benchmark techniques. Different scenarios have
been considered: multimodality and nonlinearity of the target distribution, as well as a positioning and tuning of parameters problem
in a wireless sensor network. Finally, Section 7 contains some brief final remarks.

2. TARGET DISTRIBUTION AND RELATED INTEGRALS

In this work we focus on the Bayesian applications of IS and MCMC. However, the presented algorithms may be used for approxi-
mating any target distribution that needs to be handled by simulation methods. Let us denote a variable of interest as x ∈ X ⊆ RDx ,
and let y ∈ RDy be the observed data. The posterior pdf is then

π̄(x) = p(x|y) =
`(y|x)g(x)

Z(y)
, (1)

where `(y|x) is the likelihood function, g(x) is the prior pdf and Z(y) is the model evidence or partition function. In general, Z(y) is
unknown, so we consider the corresponding unnormalized target pdf,

π(x) = `(y|x)g(x). (2)

Our goal is computing efficiently an integral measure w.r.t. the target pdf,

I =
1

Z

Z
X
f(x)π(x)dx, (3)

where

Z =

Z
X
π(x)dx, (4)

and f is a continuous function of x. Since both π̄(x) and Z depend on the observations y, the use of π̄(x|y) and Z(y) would be
more precise. However, since the observations are fixed, in the sequel we remove the dependence on y to simplify the notation. In
this work, we address the problem of approximating I and Z via Monte Carlo methods. Since drawing directly from π(x) ∝ π̄(x) is
impossible in general, Monte Carlo techniques use a simpler proposal density for generating random candidates, testing or weighting
them according to some proper suitable rule. We denote this normalized proposal pdf as q(x). More specifically, we focus on the
combined use of several proposal pdfs q1, . . . , qN .



3. HIERARCHICAL PROCEDURE FOR PROPOSAL GENERATION

The performance of MC methods depends strongly on the discrepancy between the target π̄(x) ∝ π(x) and the proposal q(x). Namely,
the performance improves if q(x) is more similar (closer) to π̄(x). In general, tuning the parameters of the chosen proposal is a difficult
task which requires statistical information of the target distribution. In this section, we deal with this important issue, focusing on the
location parameter of the proposal pdf. Using a common formulation, we consider a proposal pdf defined by location µ and scale C

parameters, so that the proposal can be denoted as q(x|µ,C) = q(x − µ|C). We propose the following hierarchical procedure for
generating samples employed afterwards within a Monte Carlo technique:

1. For n = 1, . . . , N :
(a) Draw a possible location parameter µn ∼ h(µ).
(b) Draw x

(m)
n ∼ q(x|µn,C), with m = 1, . . . ,M .

2. Use all the generated samples x
(m)
n ’s as candidates in a Monte Carlo method.

All the samples x
(m)
n are then used as candidates within a Monte Carlo technique. Note that h(µ) plays the role of a prior pdf over the

location parameter of q. Each sample x
(m)
n has the following pdf

eq(x|C) =

Z
X
q(x|µ,C)h(µ)dµ, (5)

i.e., x(m)
n ∼ eq(x|C) for all possible values of n andm. The density eq is an equivalent proposal density corresponding to the hierarchical

generating procedure. Note that the samples µ1, . . . ,µN , are not directly used in the Monte Carlo estimation, only x
(m)
n out of each

pair {µn,x(m)
n } enters the actual estimator. Hence, the immediate computational cost of the hierarchical approach is higher than

in the standard approach, but as shown later, this can nevertheless imply substantial computational savings in terms of improved
convergence towards the target. Furthermore, as shown above, we assume that the generation of µ1, . . . ,µN , is independent of the
generated samples x

(m)
n , n = 1, . . . , N and m = 1, . . . ,M .1

In contrast to the above hierarchical procedure, in standard adaptive Monte Carlo approches the parameter µn is defined as a
function δ : RDx×(n−1) → RDx of the previously generated samples

Xn−1 = [x
(1)
1 , . . . ,x

(M)
1 , . . . ,x

(1)
n−1, . . . ,x

(M)
n−1],

namely,
µn = δ(Xn−1). (6)

Moreover, the sequence µ1 → µ2 → . . . → µN is typically converging to a fixed vector. In the hierarchical strategy, each µn is
always chosen randomly and independently of Xn−1. Certain connections with other well-known Monte Carlo methods, such as the
population Monte Carlo algorithm [4], are discussed in Sections 3.1.1 and 3.1.2. Note also that the complete generating procedure in
Eq. (5) can be also interpreted as a data augmentation approach [18, 3], but we wish to emphasize the role of prior over the location
parameters played by h(µ), for reasons that will become apparent later.

3.1. Optimizing prior for the location parameters

Assuming the parametric form of q(x|µ,C) and its scale parameter C are chosen, we consider the problem of finding the optimal
prior h∗(µ|C) over the location parameter µ. The optimal prior depends on the chosen scale parameter C and since q(x|µ,C) =
q(x− µ|C), as µ is a location parameter, we can write

eq(x|C) =

Z
X
q(x− µ|C)h∗(µ|C)dµ. (7)

The desirable scenario is to have the equivalent proposal eq(x|C) coinciding exactly with the target π̄(x), i.e., eq(x|C) = π̄(x).2

Eq. (7) can be rewritten in terms of the characteristic functions: Q(ν|C) = E[q(x|C)eiνx], H∗(ν|C) = E[h∗(x|C)eiνx] and
Π̄(ν) = E[π̄(x)eiνx]. Hence, the optimal prior pdf has the following characteristic function

H∗(ν|C) =
Π̄(ν)

Q(ν|C)
. (8)

1 Note that, in the ideal case described here, each µn is also independent of the other µ’s. However, in the rest of this work, we also consider the case with
correlation among the location parameters µ1, . . . ,µN .

2 For instance, in an MCMC scheme, if eq(x|C) = π̄(x) then the Markov chain is formed by independent samples directly generated from π̄.



In general, it is not possible to determine analytically the optimal prior pdf h∗(µ|C), and thus, an efficient approximation is called
for. For simplicity, here we set M = 1. Thus, we consider the generation of N samples {x1, . . . ,xN}, drawn following the previous
hierarchical procedure, i.e., (a) draw a possible location parameter µn ∼ h(µ) and (b) draw xn ∼ q(x|µn,C). Observe that, in this
procedure, we are using N different proposal pdfs

q(x|µ1,C), . . . , q(x|µN ,C),

for drawing {x1, . . . ,xN}, where each xn is drawn from n-th proposal xn ∼ q(x|µn,C). Thus, we can interpreted that the set
{x1, . . . ,xN} is distributed according to the following mixture

Φ(x) =
1

N

NX
n=1

q(x|µn,C), (9)

following the deterministic mixture argument [5]. Further details are given in Appendix B. The performance of the corresponding
Monte Carlo method, where such a hierarchical procedure is applied, depends on how closely Φ(x) resembles π̄(x). If we choose
h(µ) = π̄(µ), i.e., the prior h is exactly the target then, since µn ∼ π̄(µ), and Φ(x) in Eq. (9) can be interpreted as a kernel estimation
of π̄(x), where q(x|µ1,C), . . . , q(x|µN ,C) play the role of kernel functions.

Therefore, h(µ) = π̄(µ) is a good choice from a kernel density estimation point of view, but it is clearly infeasible in practice
since we are not able to draw from π̄(µ). One of our main ideas is therefore to apply another sampling method, such as an MCMC
algorithm, to obtain the necessary samples {µ1, . . . ,µN} ∼ π̄(µ), for the other layer of the Monte Carlo. For instance, in Section 5 we
design a general adaptive importance sampling (AIS) framework based on this idea, by combining MCMC with multiple importance
sampling (MIS). With the choice h(µ) = π̄(µ), the two levels of the sampler play different roles:

– The first level attends the need of exploration of the state space, providing {µ1, . . . ,µN}.
– The second level is devoted to the approximation of local features of the the target, using {x1, . . . ,xN}.

In general, the two levels require their own tuning of the parameters of the corresponding proposal mechanisms. Two well-known
Monte Carlo schemes, the random-walk Metropolis-Hastings (MH) [3] and the standard Population Monte Carlo (PMC) [4] methods,
can be interpreted as implicitly using the hierarchical generating procedure with the prior h(µ) = π̄(µ), which as exemplified in the
next two subsections. However, there are some notable differences, as in both cases the generation of µ is not independent of the
previously generated x. In random-walk MH, the two different sampling layers are “collapsed” into one, since in that case we have
µn = xn. In the standard PMC technique it is possible to distinguish the two different layers, although the prior used is instead
h(µ) = π̂(N)(µ), where π̂(N) is an approximation of the measure of π̄(µ) obtained using the previously generated samples x (in the
second level of the hierarchical approach). The quality of this approximation increases with N , as discussed below and in Appendix
D.

3.1.1. Hierarchical interpretation of the random walk Metropolis-Hastings algorithm

Consider the target π(x) ∝ π̄(x) and the proposal pdf q(x|xt−1,C) where xt−1 the current state of the chain and C is a covariance
matrix. One transition of the MH algorithm is summarized by

1. Draw x′ from a proposal pdf q(x|xt−1,C).
2. Set xt = x′ with probability

α = min

»
1,

π(x′)q(xt−1|x′,C)

π(xt−1)q(x′|xt−1,C)

–
,

otherwise set xt = xt−1 (with probability 1− α).

There are two well-known general classes of proposal pdf: independent proposal q(x|xt−1,C) = q(x|C) (independent from the
current state), and random walk proposal q(x|xt−1,C) = q(x − xt−1|C). Observe that in a random walk proposal q(x|xt−1,C),
the current state xt−1 plays the role of the location parameter of q. The independent proposal strategy provides better performance
than the random walk in terms of a smaller correlation among the generated samples, if certain prior information is available about
the target so that all the parameters of q can be well-tuned. However, if the parameters of the independent proposal are not properly
chosen, the performance of the algorithm easily deteriorates. In many cases no prior information about the target, such as location of
the modes, mean or variance is available. For this reason, the use of a random walk proposal q(x|xt−1,C) is often preferred due to its
explorative behavior, since it relocates the proposal at the current state of the chain at each iteration. As a consequence, the common
wisdom is that this approach is more robust with respect to the choice of the tuning parameters. Below, we provide some further
arguments explaining the success of the random walk approach.

Consider the use of a random walk proposal density q(x|xt−1,C) in an MH algorithm. Furthermore, let us assume a “burn-in”
length Tb − 1. Hence, considering an iteration t ≥ Tb, we have xt ∼ π̄(x), i.e., the chain has already reached the stationary (target)



⇡(x)

x xtxt�1

q(x|xt�1,C)

(a)

⇡(x)
q(x|xt,C)

xtx
(b)

x

⇡(x)

q̃(x|C)

(c)

Fig. 1. Graphical representation of a random walk proposal and its equivalent independent proposal pdf. A bimodal target pdf π(x) is shown in solid line. The
proposal densities are depicted in dashed lines. (a) A proposal pdf q(x|xt−1,C) at the iteration t− 1, and the next state of the chain xt. (b) The proposal pdf
q(x|xt,C) at the t-th iteration. (c) The equivalent independent proposal pdf eq(x|C).

distribution. Therefore, for t ≥ Tb, the probability of proposing a new sample using the random walk proposal q(x− xt−1|C) can be
written as

eq(x|C) =

Z
X
q(x|xt−1,C)π̄(xt−1)dxt−1,

=

Z
X
q(x− xt−1|C)π̄(xt−1)dxt−1, (10)

since xt−1 ∼ π̄(xt−1) after the burn-in period, t ≥ Tb, and xt−1 represents the location parameter of q. The function eq(x|C) is an
equivalent independent proposal pdf corresponding to a random walk generating process within an MCMC method (after the “burn-
in” period). It implies that the random walk generating process is equivalent, for t ≥ Tb, to the following hierarchical procedure: (a)
draw a location parameter µ′ from π̄(µ), (b) draw x′ from q(x|µ′,C). Clearly, this alternative interpretation has no direct implications
for practical purposes, since we are not able to draw directly form the target π̄. However, it is useful for clarifying the main advantage
of the random walk approach, i.e., that the equivalent proposal eq is a better choice than an independent proposal roughly tuned by the
user with non-optimal parameters. Indeed, the random walk generating procedure includes indirectly certain information about the
target. Let be here C is a covariance matrix. Denoting Z ∼ eq(x|C), S ∼ q(x|µ,C) (assuming E[S] = µ = 0), X ∼ π̄(x), we can
write

E[Z] = E[X], ΣZ = C + ΣX ,

which are the mean and covariance matrix of Z with pdf eq. Moreover, after a finite number of iterations t > Tb, we can define an
equivalent independent density q̃T at the iteration T as

eqT (x|C) =
1

T − Tb

TX
t=Tb

q(x− xt|C). (11)

Since xt ∼ π̄(x), for t ≥ Tb, eqT (x|C) is a kernel estimation of π̄(x) with kernel functions q. Clearly, eqT → eq for t → +∞. Hence,
the random walk generation process is equivalent to an independent proposal built via kernel estimation of the target. Figure 1 shows
a graphical representation of equivalent proposal density eq(x|C). Observe that eq(x|C) is a much better proposal pdf than q(x|µ,C)
with any possible choice of µ.

3.1.2. Hierarchical interpretation of Population Monte Carlo

A standard PMC method [4] is an adaptive importance sampler using a population of proposals q1, . . . , qN . PMC consists of the
following steps, given an initial set

{µ1,0, . . . ,µN,0},

of location parameters:

1. For t = 1, . . . , T :
(a) Draw xn,t ∼ qn(x|µn,t−1,Cn), for n = 1, . . . , N .



(b) Assign to each sample xn,t the weights,

wn,t =
π(xn,t)

qn(xn,t|µn,t−1,Cn)
. (12)

(c) Resampling: draw N independent samples µn,t, n = 1, . . . , N , according to the particle approximation

π̂
(N)
t (µ) =

1PN
n=1 wn,t

NX
n=1

wn,tδ(µ− xn,t). (13)

Note that each µn,t ∈ {x1,t, . . . ,xN,t}, with n = 1, . . . , N .
2. Return all the pairs {xn,t, ρ̄n,t} with

ρ̄n,t =
wn,tPT

t=1

PN
n=1 wn,t

,

n = 1, . . . , N and t = 1, . . . , T .

Fixing an iteration t, the generating procedure used in one iteration of the standard PMC method can be cast in the hierarchical
formulation:

1. Draw N samples µ1,t−1, . . . ,µN,t−1 from π̂
(N)
t−1(µ), i.e., µn,t−1 ∼ π̂(N)

t−1(µ).
2. Draw xn,t ∼ qn(x|µn,t−1,Cn), for n = 1, . . . , N .

Note that π̂(N)
t (x) is a particle approximation of π̄(x) that improves whenN grows (see Appendix D for further details). Furthermore,

the set of samples {xn,t}Nn=1, can be interpreted as having been drawn in a more deterministic manner from the mixture formed by
all the different qn(x|µn,t−1,Cn)’s (see Appendices B-C), i.e.,

{x1,t, . . . ,xN,t} ∼ eq(x|C1, . . . ,Cn) =

=
1

N

NX
n=1

qn(x|µn,t−1,Cn),
(14)

although the standard version of PMC does not take advantages of this observation in the IS estimation. Since each µn,t−1 ∼ π̂(N)
t−1(µ),

and π̂(N)
t−1(x) is an approximation via IS of π̄(x), we can interpret eq(x|C1, . . . ,Cn) as an approximate kernel density estimation of

π̄, where qn’s play the role of the kernel functions. The quality of this density estimation and, as a consequence, the performance of
PMC depends on how well π̂(N)

t approximates π̄ (see Appendix D).

4. GENERALIZED MULTIPLE IMPORTANCE SAMPLING

So far, we have analyzed a hierarchical procedure for generating candidates for an MC technique, adapting the location parameters of a
cloud of proposal densities. In this section, we provide a general framework for multiple importance sampling (MIS) techniques using
a population of proposal densities, which embeds various alternative schemes proposed in the literature. First, we consider several
alternatives of static MIS, and then we focus on adaptive MIS samplers.

4.1. Generalized Static Multiple Importance Sampling

As we have already highlighted, finding a good proposal pdf q(x) is critical and is in general very challenging [32]. An alternative
and more robust strategy consists on using a population of different proposal pdfs. This scheme is often referred in the literature as
multiple importance sampling (MIS) [4, 5, 34]. Consider a set of J (normalized) proposal pdfs,

q1(x), . . . , qJ (x),

with heavier tails than the target π, and let us assume that exactly M samples are drawn from each of them, i.e.,

x
(m)
j ∼ qj(x), j = 1, . . . , J, m = 1, . . . ,M.

The aim of drawing exactly M samples from each proposal is ensuring that all the proposals have an equal participation in the
estimation in order to increase the robustness of the resulting algorithm. In this scenario, the weights associated to the samples can be
obtained with one of the following strategies:



– Standard MIS (S-MIS):

w
(m)
j =

π(x
(m)
j )

qj(x
(m)
j )

, (15)

with j = 1, ..., J and m = 1, . . . ,M ,
– Deterministic mixture MIS (DM-MIS) [32, 31]:

w
(m)
j =

π(x
(m)
j )

ψ(x
(m)
j )

=
π(x

(m)
j )

1
J

PJ
k=1 qk(x

(m)
j )

, (16)

with with j = 1, ..., J and m = 1, . . . ,M , and where ψ(x) = 1
J

PJ
j=1 qj(x) is the mixture pdf, composed of all the proposal

pdfs. This approach interprets the complete set of samples, {xj}Jj=1, as being distributed according to the mixture ψ(x), i.e.,

{x1, . . . ,xJ} ∼ ψ(x).

See Appendices B and C for further details.

In both cases, the consistency of the estimators is ensured. The main advantage of the DM-MIS weights is that they yield more stable
and statistically efficient estimators [35, 32]. However, the DM-MIS estimator is computationally more expensive, as it requires J
evaluations of the proposal pdfs to obtain each weight instead of just one. In total, JM evaluations of proposals are thus required.
Note that the number of evaluations of the target π(x) is the same regardless of whether the weights are calculated according to (15)
or (16). In some cases this additional computational load may be excessive (especially for large values of J) and alternative efficient
solutions are desirable. For instance, following the argument in Appendix B, different partial mixtures can be considered [35]. As an
example:

– Partial DM-MIS (P-DM-MIS) [35]: divide the J proposals in L = J
P disjoint groups forming L mixtures with P components. We

denote the set of P indices corresponding to the `-th mixture (` = 1, . . . , L) as S` = {k`,1, . . . , k`,P } (hence, |S`| = P ) where
each k`,p ∈ {1, . . . , J}. Thus, we have

S1 ∪ S2 ∪ . . . ∪ SL = {1, . . . , J}, (17)

with Sr ∩ S` = ∅ for all ` = 1, . . . , L and r 6= `. Therefore, in this case, the importance weights are defined as

w
(m)
j =

π(x
(m)
j )

1
P

P
k∈S` qk(x

(m)
j )

, (18)

with j ∈ S`, ` = 1, . . . , L, and m = 1, . . . ,M .

In the next subsection, we describe a framework where a partial grouping of the proposal pdfs arises naturally from the sampler’s
definition. Indeed, all the previous cases can be captured by a generic mixture-proposal pdf Φj(x) under which the MIS weight can
be defined as

w
(m)
j =

π(x
(m)
j )

Φj(x
(m)
j )

, (19)

withm = 1, . . . ,M , and where Φj(x
(m)
j ) = qj(x

(m)
j ) in Eq. (15), Φj(x

(m)
j ) = 1

J

PJ
k=1 qk(x

(m)
j ) in Eq. (16) both with j = 1, . . . , J ,

and finally

Φj(x
(m)
j ) =

1

P

X
k∈S`

qk(x
(m)
j ),

with j ∈ S` in Eq. (18). In any case, the weights are always normalized as

ρ̄
(m)
j =

w
(m)
jPJ

j=1

PM
m=1 w

(m)
j

. (20)

Table 1 shows the different possible choices of Φj(x
(m)
j ), whereas Table 2 summarizes a generic static MIS procedure.



Table 1. Summary of the possible functions Φj(x) for MIS.

MIS approach Function Φj(x), L P
(j = 1, . . . , J) LP = J

Standard MIS qj(x) J 1

DM-MIS ψ(x) = 1
J

PJ
j=1 qj(x) 1 J

Partial DM-MIS 1
P

P
k∈S` qk(x) L P

Table 2. Generalized static MIS scheme.

1. Generation: Draw M samples from each qj , i.e.,

x
(m)
j ∼ qj(x),

with j = 1, . . . , J and m = 1, . . . ,M .
2. Weighting: Assign to the sample x

(m)
j the following weight

w
(m)
j =

π(x
(m)
j )

Φj(x
(m)
j )

, (21)

with j = 1, . . . , J , m = 1, . . . ,M , and where Φj is a finite mixture of qj ’s (with equal weights), as shown in Table 1.
3. Normalization: Set

ρ̄
(m)
j =

w
(m)
jPJ

j=1

PM
m=1 w

(m)
j

.

4. Output: Return all the pairs {x(m)
j , ρ̄

(m)
j }, for j = 1, . . . , J and m = 1, . . . ,M .

Note that the IS estimation Î of a specific moment of π̄, i.e., the integral I given in Eq. (3), and the approximation Ẑ of the
normalizing constant in Eq. (4), are now expressed as

Î =
JX
j=1

MX
m=1

ρ̄
(m)
j f(x

(m)
j ),

Ẑ =
1

JM

JX
j=1

MX
m=1

w
(m)
j .

(22)

Then, the particle approximation of the measure of π̄ is given by

π̂(J)(x) =
1

Ẑ

JX
j=1

MX
m=1

w
(m)
j δ(x− x

(m)
j ). (23)

4.2. Generalized Adaptive Multiple Importance Sampling

In order to decrease the mismatch between the proposal and target pdfs, several Monte Carlo methods adapt the parameters of the
proposal pdf iteratively using the information of the past samples [4, 5, 34]. In the adaptive scenario, we have a set of proposal pdfs
{qn,t(x)}, with n = 1, . . . , N and t = 1, . . . , T , where the subscript t indicates the iteration index and T is the total number of adap-
tation steps. Here J = NT is the total number of proposal pdfs. In the following, we present a unified framework, called generalized
adaptive multiple importance sampling (GAMIS), which includes several methodologies which have bern proposed independently in
literature. In GAMIS, each proposal pdf in the population {qn,t} is updated at each iteration t = 1, . . . , T , forming the sequence

qn,1(x), qn,2(x), . . . , qn,T (x),

for the n-th proposal. A graphical characterization of this process is shown in Figure 2. At the t-th iteration, the adaptation procedure
takes into account certain statistical information about the target distribution achieved in the previous iterations, 1, . . . , t − 1, using
one of the many procedures that have been proposed in literature, for instance see [36, 4, 5, 34]). Furthermore, at the t-th iteration, M
samples are drawn from each proposal qn,t, i.e.,

x
(m)
n,t ∼ qn,t(x), with m = 1, . . . ,M,



n = 1, . . . , N and t = 1, . . . , T . To each sample x
(m)
n,t , an importance weightw(m)

n,t is then assigned. Several strategies can be applied to

buildw(m)
n,t considering the different MIS approaches, as discussed in the previous section. Figure 2 provides a graphical representation

of this scenario, by showing both the spatial and temporal evolution of the J = NT proposal pdfs.
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 (x)

q1,1(x) . . . q1,t(x) . . . q1,T (x)
...

...
...

...
...

qn,1(x) . . . qn,t(x) . . . qn,T (x)
...

...
...

...
...

qN,1(x) . . . qN,t(x) . . . qN,T (x)

�t(x)

⇠n(x)

Fig. 2. Graphical representation of the J = NT proposal pdfs used in the generalized adaptive multiple IS scheme, spread through the state space X
(n = 1, . . . , N ) and adapted over time (t = 1, . . . , T ). There are 3 possible kind of mixtures displayed: ψ(x) involving all the proposals, φt(x) involving
only the proposals at the iteration t and ξn(x) considering the temporal evolution of the n-th proposal pdf.

In any possible AIS algorithm, one weight

w
(m)
n,t =

π(x
(m)
n,t )

Φn,t(x
(m)
n,t )

, (24)

is associated to each sample x
(m)
n,t . In a standard MIS approach, the function employed in the weight denominator is

Φn,t(x) = qn,t(x). (25)

In the complete DM-MIS case, the function Φn,t is defined as

Φn,t(x) = ψ(x) =
1

NT

NX
k=1

TX
r=1

qk,r(x). (26)

This case corresponds to the blue rectangle in Fig. 2. Furthermore, two clear alternatives of partial DM-MIS schemes appear in this
scenario. The first one uses the following partial mixture

Φn,t(x) = ξn(x) =
1

T

TX
r=1

qn,r(x), (27)

with n = 1, . . . , N , as mixture-proposal pdf in the IS weight denominator. Namely, in this case we consider the temporal evolution of
the n-th single proposal qn,t. Hence, we have L = N mixtures, each one formed by P = T components (red rectangle in Fig. 2). The
other possibility consists in considering the mixture of all the qn,t’s at the iteration t, i.e.,

Φn,t(x) = φt(x) =
1

N

NX
k=1

qk,t(x), (28)

with t = 1, . . . , T , so that we have L = T mixtures, each one formed by P = N components (green rectangle in Fig. 2). The function
Φn,t in Eq. (25) is used in the standard PMC scheme [4]; the case in Eq. (27) with N = 1 has been considered in the adaptive multiple
importance sampling (AMIS) [5]. The choice in Eq. (28) has been applied in the adaptive population importance sampling (APIS)
algorithm [34], whereas in [36, 37, 38] a similar strategy is employed but using a standard (non-deterministic) sampling of the mixture
φt(x).

Table 3 summarizes all the possible cases discussed above. The last row corresponds to a different (generic) grouping strategy of
the proposal pdfs qn,t. As previously described, we can also divide the J = NT proposals into L = NT

P disjoint groups forming
L mixtures with P components. We denote the set of P pairs of indices corresponding to the `-th mixture (` = 1, . . . , L) as S` =
{(k`,1, r`,1), . . . , (k`,P , r`,P )} where each k`,p ∈ {1, . . . , N} and r`,p ∈ {1, . . . , T} (hence, |S`| = P where each element is a pair of
indices) . In this scenario, we have

Φn,t(x) =
1

P

X
(k,r)∈S`

qk,r(x), (29)



Table 3. Summary of possible MIS strategies in an adaptive framework.

MIS approach Function Φn,t(x) J
L P Corresponding Algorithm
LP = J

Standard MIS qn,t(x) NT 1 PMC [4]
DM-MIS ψ(x) = 1

NT

PN
n=1

PT
t=1 qn,t(x) 1 NT suggested in [35]

Partial DM-MIS ξn(x) = 1
T

PT
t=1 qn,t(x) NT N T AMIS [5], with N = 1

Partial DM-MIS φt(x) = 1
N

PN
n=1 qn,t(x) T N APIS [34] and [36, 37, 38]

Partial DM-MIS generic Φn,t(x) in Eq. (29) L P suggested in [35]

with (n, t) ∈ S`, for ` = 1, . . . , L. Note that using ψ(x) and ξn(x) the computational cost increases as the total number of iterations
T grows. Indeed, at the generic t-th iteration, all the previous proposals qn,1, . . . , qn,t−1 (for all n) must be evaluated at all the new
samples x

(m)
n,t . Hence, algorithms based on these proposals quickly become unfeasible as the number of iterations grows. On the other

hand, using φt(x), the computational cost is controlled by N , regardless of the number of adaptive steps performed.
Observe that a suitable AIS scheme builds iteratively a global IS estimator which uses the final normalized weights

ρ̄
(m)
n,t =

w
(m)
n,tPT

t=1

PN
n=1

PM
m=1 w

(m)
n,t

, (30)

for n = 1, . . . , N , m = 1, . . . ,M , and t = 1, . . . , T . It is important to remark that the estimators in a GAMIS scheme can be
constructed in two different ways. In a batch mode, the entire population of J = NT proposal pdfs {qn,t}’s is generated in advance
performing the usual adaptation operations according to the chosen algorithm. After that, the algorithm is converted into a simpler
static MIS technique and the importance weights are computed and normalized as in Table 2. This version is simpler than the iterative
mode described below, but no output of the algorithm is provided until adapting all the proposals have been updated, i.e., after T
iterations. In an iterative mode, an output is provided at each iteration t. Table 4 shows this iterative version. It is important to remark
that, at the t-th iteration, the weights of the samples previously generated need to be recalculated, as shown at step 2(c-3) in Table 4.
The choices of Φn,t(x) = qn,t(x) or Φn,t(x) = φt(x) allow one to avoid completely this re-computation step of the weights.

However, the output are after T iterations is the same in both cases. For simplicity, in Table 4, we have provided the output of the
algorithms as weighted samples, i.e., all the pairs {x(m)

n,t , ρ̄
(m)
n,t }. However, the output can be equivalently expressed as an estimation

of a specific moment of the target. Indeed, in this case, the final global IS estimations ÎT and ẐT are

ÎT =
TX
τ=1

NX
n=1

MX
m=1

ρ̄
(m)
n,τ f(x

(m)
n,τ ),

ẐT =
1

NMT

TX
τ=1

NX
n=1

MX
m=1

w
(m)
n,τ ,

(31)

where ρ̄(m)
n,τ =

w(m)
n,τ

ẐT
. Moreover, the particle approximation of the measure of π̄ is

π̂(NMT )(x) =
1

ẐT

TX
τ=1

NX
n=1

MX
m=1

w
(m)
n,τ δ(x− x

(m)
n,τ ). (32)

Eqs. (31) can be expressed recursively, thus providing an estimation at each iteration t, as stated before. Starting with H0 = 0, Î0 = 0,
and setting St =

PN
n=1

PM
m=1 w

(m)
n,t , Ht = Ht−1 + St, we have

Ît =
1

Ht

"
Ht−1Ît−1 +

NX
n=1

MX
m=1

w
(m)
n,t f(x

(m)
n,t )

#
,

Ît =
Ht−1

Ht−1 + St
Ît−1 +

St
Ht−1 + St

Ât, (33)

where Ât =
PN
n=1

PM
m=1

w
(m)
n,t

St
f(x

(m)
n,t ) is a partial IS estimator using only the samples drawn at the t-th iterations. Therefore, Ît

can be seen as a convex combination of the two IS estimators Ît−1 and Ât (for further explanations see Eqs. (45)- (45) in Appendix



Table 4. Generic GAMIS scheme: iterative version.

1. Initialization: Set t = 1, H0 = 0 and choose N initial proposal pdfs qn,0(x).
2. For t = 1, . . . , T :

(a) Adaptation: update the proposal pdfs {qn,t−1}Nn=1 providing {qn,t}Nn=1, taking into account the information of the previously generated

samples x
(m)
n,τ , with τ = 1, . . . , t− 1, n = 1, . . . , N and m = 1, . . . ,M (see [4, 36, 5, 34] for some specific adaptive algorithms).

(b) Generation: Draw M samples from each qn,t, i.e., x(m)
n,t ∼ qn,t(x), with n = 1, . . . , N and m = 1, . . . ,M .

(c) Weighting:
(c-1) Update the function Φn,t(x) given the current population {q1,t, . . . , qN,t}.
(c-2) Assign the weights to the new samples x

(m)
n,t ,

w
(m)
n,t =

π(x
(m)
n,t )

Φn,t(x
(m)
n,t )

, (35)

for n = 1, . . . , N , and m = 1, . . . ,M .
(c-3) Re-weight the previous samples x

(m)
n,τ for τ = 1, . . . , t− 1 as

w
(m)
n,τ =

π(x
(m)
n,τ )

Φn,t(x
(m)
n,τ )

, (36)

with τ = 1, . . . , t− 1, n = 1, . . . , N , and m = 1, . . . ,M .
(d) Normalization: Set St =

PM
m=1

PN
n=1 w

(m)
n,t , Ht = Ht−1 + St , and normalize all the weights (so far),

ρ̄
(m)
n,τ = ρ̄

(m)
n,τ−1

Ht−1

Ht
, (37)

for τ = 1, . . . , t, n = 1, . . . , N , and m = 1, . . . ,M .
(e) Output: Return all the pairs {x(m)

n,τ , ρ̄
(m)
n,τ }, for τ = 1, . . . , t, n = 1, . . . , N , and m = 1, . . . ,M .

C.1). Observe that, the final global estimator ÎT in Eq. (31), obtained recursively in Eq. (33), is simply a standard IS estimator using
all the samples x

(m)
n,t and considering the mixtures Φn,t(x) as proposal pdfs in the IS weight ratio. Finally, note that

Ẑt =
1

t

1

NM
Ht. (34)

A brief discussion about the consistency of Ît and Ẑt is provided in Appendix A.

5. MARKOV ADAPTATION FOR GAMIS

In this section, we combine the two general ideas discussed previously, in order to design efficient AIS techniques. More specifically,
we apply the hierarchical Monte Carlo approach to adapt the proposal pdfs within a GAMIS scheme. Therefore, a Markov GAMIS
technique consists on the two following layers:

1. Upper level (Adaptation): Given the set of location parameters,

Pt−1 = {µ1,t−1, . . . ,µN,t−1},

obtain the new set Pt = {µ1,t, . . . ,µN,t} according to MCMC transitions with π̄ as invariant density.
2. Lower level (MIS estimation): Given the population of proposals

q1,t(x|µ1,t,C1), . . . , qN,t(x|µN,t,CN ),

choose a function Φn,t(x) employed in the computation of the weights in Eq. (24), and perform a MIS approximation of the target
as described in Section 4.2.

The theoretical motivation of this adaptation procedure is supported by the previously discussed kernel density estimation argument.
Observe that the adaptation process is independent from the underlying IS steps. Markov GAMIS is a general framework which
contains several possible algorithms, depending on the MCMC strategy used for updating the location parameters and the specific
choice of the function Φn,t. Table 5 provides several examples of novel techniques determined by the value of N , the choice of Φn,t,
and the type of MCMC adaptation. Some of them are variants of well-known techniques like PMC [4] and AMIS [5] where the Markov



adaptation procedure is employed. Others, such as the Random Walk Importance Sampling (RWIS), the Parallel Interacting Markov
Adaptive Importance Sampling (PI-MAIS) and Doubly Interacting Markov Adaptive Importance Sampling (I2-MAIS) are described
below in detail. For these novel algorithms, we have set Φn,t(x) = φt(x) so that the computational cost is directly controlled by the
parameter N and, therefore, the re-weighting step 2(c-3) in Table 4 is not required.

RWIS is the simplest possible Markov GAMIS algorithm. Specifically, for the MCMC adaptation we consider a standard MH
technique, setting N = 1 and choosing Φn,t(x) = φt(x) = qn,t(x) (since N = 1, the two cases coincide). Table 6 shows the
RWIS algorithm. Note that we can distinguish the proposal pdf used in MH, ϕ(µ|µt−1,Λ), from the proposal pdf used in the IS part,
q(x|µt,C). As described in the general motivation, there are now two different proposal densities, one at each level of the hierarchical
Monte Carlo. The MH technique is applied to obtain good location parameters for the underlying IS and the particle approximation of
π̄ is then obtained iteratively using NT samples. RWIS is a special case of the more general scheme described in Table 7 whenN = 1.

Table 5. Example of possible Markov GAMIS algorithms.
Parallel adaptation Interacting adaptation

Function Φn,t(x) N = 1 N > 1 N > 1

qn,t(x)
RWIS Markov PMC (related to [4])

(see Table 6)

ξn(x) = 1
T

PT
t=1 qn,t(x)

Markov AMIS N parallel Population-based
(related to [5]) Markov AMIS (rel. to [5]) Markov AMIS (rel. to [5])

φt(x) = 1
N

PN
n=1 qn,t(x)

RWIS PI-MAIS I2-MAIS
(see Table 6) (see Section 5.1) (see Section 5.1)

ψ(x) = 1
NT

PN
n=1

PT
t=1 qn,t(x)

Markov AMIS Full Markov GAMIS
(related to [5])

generic Φn,t(x) Partial Markov GAMIS

5.1. Population-based algorithms

The RWIS technique can be easily extended by using a population of N proposal pdfs. We choose again

Φn,t(x) = φt(x) =
1

N

NX
n=1

qn,t(x),

so that the computational cost depends only on N , regardless of the total number of iterations T . Moreover, step 2(c-3) in Table 4 is
not required, in this case. Table 7 describes the corresponding algorithm without specifying the MCMC approach used for generating
the cloud of the new parameters Pt = {µ1,t, ...,µN,t} given the previous set Pt−1.

Two possible adaptation procedures via MCMC are discussed below. In the first one, we consider N independent parallel chains
for updating the N location parameters. We refer to this method as Parallel Interacting Markov Adaptive Importance Sampling (PI-
MAIS). Although PI-MAIS is parallelizable, in the iterative version of Table 7 the N independent processes cooperate together in
Eq. (38) in order to provide unique global IS estimate. In the second adaptation scheme, we consider an interaction also at the upper
level. Hence, we refer to this method as Doubly Interacting Markov Adaptive Importance Sampling (I2-MAIS). In both cases, the
corresponding technique provides an IS approximation of the target or, equivalently the estimate ÎT and ẐT in Eq. (31), using NMT

samples.

5.1.1. MCMC adaptation for PI-MAIS

The simplest option consists on applying one iteration ofN parallel MCMC chains, one for each µn,t−1 returning µn,t, n = 1, . . . , N .
For instance, considering MH transitions, we have:

For n = 1, . . . , N :

1. Draw µ′ from a proposal pdf ϕn(µ|µn,t−1,Λn).



Table 6. Random Walk Importance Sampling (RWIS) algorithm.

1. Initialization: start with t = 1, H0 = 0, choose the values M and T , the initial location parameter µ0, and the scale parameters C and Λ.
2. For t = 1, . . . , T :

(a) MH step:
(a-1) Draw µ′ from a proposal pdf ϕ(µ|µt−1,Λ).
(a-2) Set µt = µ′ with probability

α = min

»
1,

π(µ′)ϕ(µt|µ′,Λ),

π(µt)ϕ(µ′|µt−1,Λ)

–
,

otherwise set µt = µt−1 (with probability 1− α).
(b) IS steps:

(b-1) Draw x
(m)
t ∼ qt(x|µt,Cn) with m = 1, . . . ,M .

(b-2) Weight the samples as

w
(m)
t =

π(x
(m)
t )

qt(x
(m)
t |µt,Cn)

,

(b-3) Set St =
PM
m=1 w

(m)
t , Ht = Ht−1 + St, and normalize the weights

ρ̄
(m)
t =

w
(m)
tPt

τ=1

PM
m=1 w

(m)
t

= ρ̄
(m)
t−1

Ht−1

Ht
.

(c) Output: Return all the pairs {x(m)
τ , ρ̄

(m)
τ } for m = 1, . . . ,M and τ = 1, . . . , t.

Table 7. Population-Based MAIS algorithms.

1. Initialization: Set t = 1, Î0 = 0 and H0 = 0. Choose the initial population

P0 = {µ1,0, ...,µN,0},

and N covariance matrices Cn (n = 1, . . . , N ). Choose also the parametric form of the N normalized proposal pdfs qi,t with parameters µn,t
and Cn. Let T be the total number of iterations.

2. For t = 1, . . . , T :
(a) Update of the location parameters: Perform one transition of one or more MCMC techniques over the current population,

Pt−1 = {µ1,t−1, ...,µN,t−1},

obtaining a new population,
Pt = {µ1,t, ...,µN,t}.

(b) IS steps:
(b-1) Draw x

(m)
n,t ∼ qi,t(x|µn,t,Cn) for m = 1, . . . ,M and n = 1, . . . , N .

(b-2) Compute the importance weights,

w
(m)
n,t =

π(x
(m)
n,t )

1
N

PN
k=1 qk,t(x

(m)
n,t |µk,t,Ck)

, (38)

with n = 1, . . . , N , and m = 1, . . . ,M .
(b-3) Set St =

PN
n=1

PM
m=1 w

(m)
n,t , Ht = Ht−1 + St, and normalize the weights

ρ̄
(m)
n,t =

w
(m)
n,tPt

τ=1

PN
n=1

PM
m=1 w

(m)
t

= ρ̄
(m)
n,t−1

Ht−1

Ht
.

(c) Outputs: Return all the pairs {x(m)
τ , ρ̄

(m)
τ } for m = 1, . . . ,M and τ = 1, . . . , t.

2. Set µn,t = µ′ with probability

α = min

»
1,

π(µ′)ϕn(µn,t−1|µ′,Λn)

π(µn,t−1)ϕn(µ′|µn,t−1,Λn)

–
,

otherwise set µn,t = µn,t−1 (with probability 1− α).
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Fig. 3. Different possible adaptation procedures for Population-based MAIS schemes. (a) One transition of N independent parallel MH chains (µn,t ∈ RDx )
for PI-MAIS. (b) One transition of an MH method working in the extended space [µ1,t, . . . ,µN,t] ∈ RDx×N . (c) One transition of SMH [18, Chapter
5], considering the population of location parameters Pt = {µ1,t, ...,µN,t}. (d) N sequential transitions of (possibly) different MH kernels starting from
µ0,t = µN,t−1.

Figure 3(a) illustrates this scenario. Each location parameter µn,t is updated independently from the rest. Therefore, in PI-MAIS,
the interaction among the different processes occurs only in the underlying IS layer of the hierarchical structure: the importance
weights in Eq. (38) are built using the partial DM-MIS strategy with φt(x) = 1

N

PN
n=1 qn,t(x|µn,t,Cn). However, PI-MAIS can be

parallelized if the IS estimators are computed in a batch manner as explained in Section 4.2. Namely, all the weights can be computed
and normalized at the end of the T iterations, after building the NT different proposals qn,t. Note that the proposal pdfs ϕn can easily
incorporate gradient information as in the Metropolis adjusted Langevin algorithm (MALA) [3, 18]. Different strategies for sharing
information among the parallel chains can also be applied [6, 29, 30], introducing interaction at both levels: among the chains and
within the IS estimation. Hence, in this case PI-MAIS becomes an I2-MAIS scheme, detailed below.

5.1.2. MCMC adaptation for I2-MAIS

In PI-MAIS the adaptation of the location parameters is performed independently from the rest of the population. Here, we discuss
some non-independent strategies for updating theN location parameters µn,t. For this purpose, let us consider an extended state space
RDx×N and an extended target pdf

π̄g(µ1, . . . ,µN ) ∝
NY
n=1

π(µn), (39)

where each marginal π(µn), i = 1, ..., N , coincides with the target pdf in Eq. (2). In this subsection, we describe different possible
interacting adaptation procedures for the location parameters, which consider the generalized pdf in Eq. (39) as invariant density. They
are represented graphically in Figs. 3(b), (c) and (d).

5.1.2.1 MH in the extended space RDx×N

The simplest possibility is to apply directly a block-MCMC technique, transitioning from the matrix

Pt−1 = [µ1,t−1, . . . ,µN,t−1],

to the matrix Pt = [µ1,t, . . . ,µN,t]. Let us consider an MH method and a proposal pdf ϕ(Pt|Pt−1) : RDx×N → RDx×N . For
instance, one can consider a proposal of the type

ϕ(µ1,t, . . . ,µN,t|µ1,t−1, . . . ,µN,t−1)

=
NY
n=1

ϕn(µn,t|µn,t−1,Λn).

Thus, one transition is formed by the following steps:

1. Draw P′ ∼ ϕ(P|Pt−1), where P′ = [µ′1, . . . ,µ
′
N ].



2. Set Pt = P′ with probability

α = min

»
1,

πg(P
′)ϕ(Pt−1|P′)

πg(Pt−1)ϕ(P′|Pt−1)

–
,

otherwise set Pt = Pt−1 (with probability 1− α).

At each iteration,N new samples µ′n are drawn (as in PI-MAIS) and thereforeN new evaluations of π are required (i.e., one evaluation
of πg). When a new P’ is accepted, all the components of Pt differ from Pt−1, unlike in the strategy described later. However, the
probability of accepting a new population becomes dramatically lower as N grows.

5.1.2.2 Sample Metropolis-Hastings (SMH) algorithm

SMH [18, Chapter 5] is a population-based MCMC technique, suitable for our purposes. At each iteration t, given the previous
set

Pt−1 = {µ1,t−1, ...,µN,t−1},

a new possible parameter µ0,t−1, drawn from an independent proposal ϕ(µ), is tested to be interchanged with another parameter in
Pt−1 = {µ1,t−1, ...,µN,t−1}. Namely, the underlying idea of SMH is to replace one “bad” sample in the population Pt−1 with a
potentially “better” one, according to a certain suitable probability α. The algorithm is designed so that, after a burn-in period, the
elements in Pt are distributed according to πg(µ1, . . . ,µN ). One iteration of SMH consists of the following steps:

1. Draw a new candidate µ0,t−1 ∼ ϕ(µ).
2. Choose a “bad” sample, µk,t−1 with k ∈ {1, ..., N}, from the population according to a probability proportional to ϕ(µk,t−1)

π(µk,t−1)
,

which corresponds to the inverse of the importance sampling weights.
3. Accept the new population, Pt = {µ1,t, . . . ,µN,t}, where µn,t = µn,t−1 for all n 6= k and µk,t = µ0,t−1, with probability

α(Pt−1,µ0,t−1) =

PN
n=1

ϕ(µn,t−1)
π(µn,t−1)PN

i=0
ϕ(µi,t−1)
π(µi,t−1)

− min
0≤i≤N

ϕ(µi,t−1)
π(µi,t−1)

.

Otherwise, set Pt = Pt−1.

Unlike in the previous strategy, the difference between Pt−1 and Pt is at most one sample. Observe that α depends on Pt−1

and the new possible parameter µ0,t−1. However, at each iteration, only one new evaluation of π (and ϕ) is needed at µ0,t−1, since
the rest of the weights have already been computed in the previous steps (except for the initial iteration, where all need to be computed).

5.1.2.3 MH within Gibbs

Another simple alternative, following an “MH within Gibbs” approach for sampling from π̄g , is to update sequentially each µn,t−1

using one step of MH in RDx . Hence, setting µ0,t = µN,t−1, we have:

For n = 1, . . . , N :

1. Draw µ′ from a proposal pdf ϕn(µ|µn−1,t,Λn).
2. Set µn,t = µ′ with probability

α = min

»
1,

π(µ′)ϕn(µn−1,t|µ′,Λn)

π(µn−1,t)ϕn(µ′|µn−1,t,Λn)

–
,

otherwise set µn,t = µn−1,t.

This scenario is illustrated in Fig. 3(d). In practice, in this case, we have a unique chain of NT total iterations, where each N

(sequential) states are employed as location parameters of N proposal pdfs used in a MIS estimation, in the lower level.

5.1.2.4 Final remarks

In all cases above, if ϕ’s are not properly chosen, the population of parameters hardly changes. However, the diversity in the
population is preserved, unlike in the resampling procedure, typically applied in several multiple AIS approaches [4, 3]. However, the
parameters of ϕ’s can be updated using an adaptive scheme [7, 8] in order to avoid this issue (see also Section 5.3). Techniques like
the Normal Kernel Coupler [39] are other possible alternatives to the use of SMH.



5.2. Computational cost: comparison between PI-MAIS and I2-MAIS

In the previously described algorithms, the samples generated by the Markov chain are not used for the estimation but only for updating
the location parameters. The total number of samples involved in the final estimation is NMT , in both cases. The total number of
evaluations of target E is bigger due to the MCMC implementation, i.e., E > NMT . Specifically, the total number of evaluations of
the target is:

– E = MNT +NT , for PI-MAIS,
– E = MNT +NT , for I2-MAIS with MH in the extended space RDX×N ,
– E = MNT + T , for I2-MAIS with SMH,
– E = MNT +NT , for I2-MAIS with the MH-within-Gibbs approach,

where we have taken into account that several evaluations of the target have been computed in the previous iterations. Moreover,
the application of the MCMC techniques requires generation of L additional uniform random variables (r.v.’s) for performing the
acceptance tests, and choosing a “bad” candidate in SMH, for instance. Specifically, we need: L = NT uniform r.v.’s in PI-MAIS and
the I2-MAIS with MH-within-Gibbs scheme, L = T uniform r.v. for I2-MAIS with MH in the extended space, L = 2T , one uniform
r.v. and one multinomial r.v., for I2-MAIS with SMH. However, the main computational effort is required for the target evaluation. It
is important to remark that the computing time required in the multinomial sampling within SMH increases with N . Finally, we recall
that, in the population-based MAIS schemes, we have considered a deterministic mixture procedure with Φn,t(x) = φt(x) which
requires MN2T evaluations of the proposal pdfs, qn,t(x), n = 1, . . . , N and t = 1, . . . , T .

5.3. Adaptation of the covariance matrices Cn

The adaptation of the scale parameters is in general a delicate task in adaptive Monte Carlo schemes. Indeed, a bad update of a scale
parameter can easily jeopardize the rest of the adaptation and the global performance of the algorithm. Observe that a population-based
method offers the opportunity of using jointly different scale parameters (Λ1,Λ2, . . . ,ΛN and C1,C2, . . . ,CN , in this work), thus
increasing the robustness of the resulting estimator. In order to design robust black-box methods, we advise against the adaptation of
the scale parameters Λn’s in the above level of the hierarchical procedure. We suggest a less sensitive approach in which the samples
µn,t’s generated at the higher level can also be used for updating the Cn’s. For the sake of simplicity, let Cn’s be covariance matrices.
The covariance matrices Cn’s could be adapted following different strategies proposed in the literature [6, 7, 8]. For instance, a
possible procedure consists of setting

Cn,t =
1

t

tX
τ=1

(µn,τ − µ̄n,t)
>(µn,τ − µ̄n,t) + βtC,

where µ̄n,t = 1
t

Pt
τ=1 µn,τ . C is a covariance matrix chosen by the user and βt is a decreasing function of t. An alternative is to

consider a unique covariance matrix Cn,t = Ct for all the proposals qn,t as suggested in [6], i.e.,

Ct =
1

Nt

NX
n=1

tX
τ=1

(µn,τ − ¯̄µt)
>(µn,τ − ¯̄µt) + βtC,

where ¯̄µt = 1
Nt

PN
n=1

Pt
τ=1 µn,τ .

6. NUMERICAL SIMULATIONS

In this section, we test the performance of the proposed scheme comparing them with other benchmark techniques. First of all,
we tackle two challenging issues for adaptive Monte Carlo methods: multimodality in Section 6.1 and nonlinearity in Section 6.2.
Furthermore, in Section 6.3 we consider an application of positioning and tuning model parameters in a wireless sensor network
[40, 41, 42].

6.1. Multimodal target distribution

In this section, we test the novel proposed algorithms in a multimodal scenario, comparing with several other methods. Specifically,
we consider a bivariate multimodal target pdf, which is itself a mixture of 5 Gaussians, i.e.,

π̄(x) =
1

5

5X
i=1

N (x; νi,Σi), x ∈ R2, (40)



with means ν1 = [−10,−10]>, ν2 = [0, 16]>, ν3 = [13, 8]>, ν4 = [−9, 7]>, ν5 = [14,−14]>, and covariance matrices Σ1 =
[2, 0.6; 0.6, 1], Σ2 = [2, −0.4;−0.4, 2], Σ3 = [2, 0.8; 0.8, 2], Σ4 = [3, 0; 0, 0.5] and Σ5 = [2, −0.1;−0.1, 2]. The main
challenge in this example is the ability in discovering the 5 different modes of π̄(x) ∝ π(x). Since we know the moments of π(x), we
can easily assess the performance of the different techniques.

Given a random variable X ∼ π̄(x), we consider the problem of approximating via Monte Carlo the expected value E[X] =
[1.6, 1.4]> and the normalizing constant Z = 1. Note that an adequate approximation of Z requires the ability of learning about all
the 5 modes. We compare the performances of different sampling algorithms in terms of Mean Square Error (MSE): (a) the AMIS
technique [5], (b) three different PMC schemes3, two of them proposed in [36, 4] and one PMC using a partial DM-MIS scheme with
Φn,t(x) = φt(x), (c) N parallel independent MCMC chains and (d) the proposed PI-MAIS method. Moreover, we test two static MIS
approaches, the standard MIS and a partial DM-MIS schemes with Φn,t(x) = φt(x), computing iteratively the final estimator.

For a fair comparison, all the mentioned algorithms have been implemented in such a way that the number of total evaluations of the
target density isE = 2·105. All the involved proposal densities are Gaussian pdfs. More specifically, in PI-MAIS, we use the following
parameters: N = 100, M ∈ {1, 19, 99}, T ∈ {20, 100, 1000} in order to fulfill E = MNT + NT = (M + 1)NT = 2 · 105 (see
Section 5.2). The proposal densities of the upper level of the hierarchical approach, ϕn(x|µn,t,Λn), are Gaussian pdfs with covariance
matrices Λn = λ2I2 and λ ∈ {5, 10, 70}. The proposal densities used in the lower importance sampling level, qn,t(x|µn,t,Cn) are
Gaussian pdfs with covariance matrices Cn = σ2I2 and σ ∈ {0.5, 1, 2, 5, 10, 20, 70}. We also try different non-isotropic diagonal
covariance matrices in both levels, i.e, Λn = diag(λ2

n,1, λ
2
n,2), where λi,j ∼ U([1, 10]), and Cn = diag(σ2

n,1, σ
2
n,2), where σn,j ∼

U([1, 10]) for j ∈ {1, 2} and n = 1, . . . N . We test all these techniques using two different initializations: first, we choose deliberately
a “bad” initialization of the initial location parameters, denoted as In1, in the sense that the initialization region does not contain
the modes of π. Thus, we can test the robustness of the algorithms and their ability to improve the corresponding static approaches.
Specifically, the initial location parameters are selected uniformly within the following square

µn,0 ∼ U([−4, 4]× [−4, 4]),

for n = 1, . . . , N . Different examples of this configuration are shown in Fig. 4 with squares. Secondly, we also consider a better
initialization, denoted as In2, where the initialization region contains all the modes. Specifically, the initial location parameters are
selected uniformly within the following square

µn,0 ∼ U([−20, 20]× [−20, 20]),

for n = 1, . . . , N . All the results are averaged over 2 · 103 independent experiments. Tables 8 and 9 show the Mean Square Error
(MSE) in the estimation of the first component of E[X], with the initialization In1 and In2 respectively. Table 10 provides the MSE
in the estimation of Z with In1. The best results in each column are highlighted in bold-face. In AMIS [5], the location and scale
parameter of one proposal (N = 1) are adapted, using Φ1,t(x) = ξ1(x) in the computation of the IS weights. Hence, in AMIS, we
have tested different values of samples per iterations M ∈ {500, 103, 2 · 103, 5 · 103, 104} and T = E

M . For the sake of simplicity, we
directly show the worst and best results among the several simulations made with different parameters. PI-MAIS outperforms the other
algorithms virtually for all the choices of the parameters, with both initializations. In general, a greater value of T is needed since the
proposal pdfs are initially bad localized. Moreover, PI-MAIS always improves the performance of the static approaches. These two
consideration show the benefit of the Markov adaptation. Hence, PI-MAIS presents more robustness with respect to the initial values
and the choice of the scale parameters. Figure 4 depicts the initial (squares) and final (circles) configurations of the location parameters
of the proposal densities for the standard PMC and the PI-MAIS methods, in a specific run and different values of σ, λ ∈ {3, 5}. In
both cases, PI-MAIS guarantees a better covering of the modes of π(x).
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(b) PMC (N = 100, σ = 5)

−20 −10 0 10 20−20

−10

0

10

20
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(d) PI-MAIS (N = 100, λ = 5)

Fig. 4. Initial (squares) and final (circles) configurations of the location parameters of the proposal densities for the standard PMC and the PI-MAIS methods,
in different specific runs. The initial configuration corresponds to In1.

3 The standard PMC method [4] is described in Section 3.1.2.



6.2. Nonlinear banana-shaped target distribution

Here we consider a bi-dimensional “banana-shaped” target distribution [7], which is a benchmark function in the literature due to its
nonlinear nature. Mathematically, it is expressed as

p(x1, x2) ∝ exp

„
−

1

2η2
1

`
4−Bx1 − x2

2

´2 − x2
1

2η2
2

−
x2
2

2η2
3

«
,

where, we have set B = 10, η1 = 4, η2 = 5, and η3 = 5. The goal is to estimate the expected value E[X], where X = [X1, X2] ∼
p(x1, x2), by applying different Monte Carlo approximations. We approximately compute the true value E[X] ≈ [−0.4845, 0]> using
an exhaustive deterministic numerical method (with an extremely thin grid), in order to obtain the mean square error (MSE) of the
following methods: standard PMC [4], the Mixture PMC [36], the AMIS [5], PI-MAIS and I2-MAIS with SMH adaptation.

We consider Gaussian proposal distributions for all the algorithms. The initialization has been performed by randomly drawing
the parameters of the Gaussians, with the mean of the n-th proposal given by µn,0 ∼ U([−6,−3]× [−4, 4]), and its covariance matrix
given by Cn = [σ2

n,1 0; 0 σ2
n,2]>. We have considered two cases: an isotropic setting where σn,k ∈ {1, 2, . . . , 10} with k = 1, 2,

and an anisotropic case with random selection of the parameters where σn,k ∼ U([1, 20]), with k = 1, 2. Recall that in AMIS and
Mixture PMC, the covariance matrices are also adapted.

For each algorithm, we test several combinations of parameters, keeping fixed the total number of target evaluations, E = 2 · 105.
In the standard PMC method, described in Section 3.1.2), we consider N ∈ {50, 100, 103, 5 · 103} and T = E

N (here M = 1). In
Mixture PMC, we consider different number of component in the mixture proposal pdf N ∈ {10, 50, 100}, and different samples per
proposal S ∈ {100, 200, 103, 2 ·103, 5 ·103} at each iteration (here T = E

S ). In AMIS, we test S ∈ {500, 103, 2 ·103, 5 ·103, 104} and
T = E

S (we recall N = 1). The range of these values of parameters are chosen, after a preliminary study, in order to obtain the best
performance from each technique. In PI-MAIS an I2-MAIS, we set N ∈ {50, 100}. For the adaptation in PI-MAIS, we also consider
Gaussian pdfs ϕn(x|µn,t,Λn), covariance matrices Λn = λ2I2 with λ ∈ {3, 5, 10, 20}. In I2-MAIS, for the SMH method we use a
Gaussian pdf with mean [0, 0]> and covariance matrix Λ = λ2I2 and again λ ∈ {3, 5, 10, 20}. We test M ∈ {1, 9, 19} for both, so
that T = E

N(M+1) for PI-MAIS and T = b E
NM+1c for I2-MAIS (see Section 5.2).

The results are averaged 500 over independent simulations, for each combination of parameters. Table 11 shows the smallest and
highest MSE values obtained in the estimation of the expected value of the target, averaged between the two components of E[X],
achieved by the different methods. The smallest MSEs in each column (each σ) are highlighted in bold-face. PI-MAIS and I2-MAIS
outperform the other techniques virtually for all the values of σ. In this example, AMIS also provides good results. Fig. 5 displays
the initial (squares) and final (circles) configurations of the location parameters of the proposals for the different algorithms, in one
specific run. Since in Mixture PMC and AMIS the covariance matrices are also adapted, we show the shape of some proposals as
ellipses representing approximately 85% of probability mass. For, PMC we also depict a last resampling output with triangles, in
order to show the loss in diversity. Unlike PMC, PI-MAIS ensures a better covering of the region of high probability.
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Fig. 5. Initial (squares) and final (circles) configurations of the location parameters of the proposal densities for the banana-shaped target distribution, in one
specific run for the different methods. The Mixture PMC [36] and AMIS techniques [5] also adapt the covariance matrices (the ellipses show approximately
85% of the probability mass).

6.3. Localization problem in a wireless sensor network

We consider the problem of positioning a target in a 2-dimensional space using range measurements. This problem appears frequently
in localization applications in wireless sensor networks [40, 41, 42]. Namely, we consider a random vector X = [X1, X2]> to denote



the target position in the plane R2. The position of the target is then a specific realization X = x. The range measurements are obtained
from 3 sensors located at h1 = [−10, 2]>, h2 = [8, 8]> and h3 = [−20,−18]>. The observation equations are given by

Yj = a log

„
||x− hj ||

0.3

«
+Θj , j = 1, . . . , 3, (41)

where Θj are independent Gaussian variables with identical pdfs,N (ϑj ; 0, ω2), j = 1, 2. We also consider a prior density over ω, i.e.,
Ω ∼ p(ω) = N (ω; 0, 25)I(ω > 0), where I(ω > 0) is 1 if ω > 0 and 0 otherwise. The parameter A = a is also unknown and we
again consider a Gaussian prior A ∼ p(a) = N (a; 0, 25). Moreover, we also apply Gaussian priors over X, i.e., p(xi) = N (xi; 0, 25)
with i = 1, 2. Thus, the posterior pdf is

π(x1, x2, a, ω) = p(x1, x2, a, ω|y)

∝ `(y|x1, x2, a, ω)p(x1)p(x2)p(a)p(ω),

where y ∈ RDy is the vector of received measurements. We simulate d = 30 observations from the model (Dy/3 = 10 from each of
the three sensors) fixing x1 = 3, x2 = 3, a = −20 and ω = 5. With Dy = 30, the expected value of the target (E[X1] ≈ 2.8749,
E[X2] ≈ 3.0266, E[A] ≈ 5.2344, E[Ω] ≈ 20.1582)4 is quite close to the true values.

Our goal is computing the expected value of

(X1, X2, A,Ω) ∼ π(x1, x2, a, ω)

via Monte Carlo, in order to provide an estimation of the position of the target, the parameter a and the standard deviation ω of the
noise in the system. We apply PI-MAIS and three different PMC schemes (see example in Section 6.1, for a description), all using N
Gaussian proposals. We initialize the cloud of location parameters spread out randomly in the space of the variables of interest, i.e.,

µn,0 ∼ N (µ; 0, 302I4), n = 1, ..., N,

and the scale parameters Cn = diag(σ2
n,1, . . . , σ

2
n,4)I4 with n = 1, . . . , N . The values of the standard deviations σn,j are chosen

randomly for each Gaussian pdf. Specifically, σn,j ∼ U([1, Q]),, j = 1, . . . , 4, where we have considered three possible values
for Q, i.e., Q ∈ {5, 10, 30}. For the adaptation process of PI-MAIS, we consider also Gaussian proposals with covariance matrices
Λn = λ2I2 and λ ∈ {5, 10, 70}. We also try different non-isotropic diagonal covariance matrices, i.e, Λn = diag(λ2

n,1, λ
2
i,2), where

λn,j ∼ U([1, 30]).
For a fair comparison, all the techniques have been simulated with sets of parameters that yield the same number of target evalu-

ations, fixed to E = 2 · 105. In PI-MAIS, we have chosen parameters N = 100, M = {1, 19, 99}, T = {20, 100, 1000}. The PMC
algorithms has been simulated with N = 100 and T = 2000. The MSE of the estimation (averaged over 3000 independent runs) are
provided in Table 12. PI-MAIS outperforms always PMC when σn,j ∼ U([1, 5]) and σn,j ∼ U([1, 10]) whereas PMC provides better
results for σn,j ∼ U([1, 30]). Therefore, the results show jointly the robustness and flexibility of the proposed PI-MAIS technique.

7. CONCLUSIONS

In this work, we have introduced a layered (i.e., hierarchical) framework for designing adaptive Monte Carlo methods. In general
terms, we have shown that such a hierarchical interpretation lies behind the good performance of two well-known algorithms; a
random walk proposal within an MH scheme and the standard PMC method. Furthermore, we have used this approach to introduce
a novel class of adaptive importance sampling (AIS) schemes. The novel class of AIS algorithms employs the determinist mixture
(DM) idea [32, 31] in order to reduce the variance of the resulting IS estimators. We have extended the use of the DM strategy
with respect to other algorithms available in the literature, providing a more general and flexible framework. From the estimation
perspective, this framework includes different schemes proposed in literature [5, 34] as special cases, although they differ to an extent
in terms of the employed adaptation procedure. Our framework also contains several other sampling schemes considering full or
partial DM approaches. Finally, we have discussed several aspects of the trade-offs in terms of the computational cost and advantages
due to improved accuracy of the resulting estimators. Numerical comparisons with different algorithms on benchmark models have
confirmed the benefit of the layered adaptive sampling approaches.

4 These values have been obtained with a deterministic, expensive and exhaustive numerical integration method, using a thin grid.
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A. CONSISTENCY OF GAMIS ESTIMATORS

The consistency of the global estimators in Eq. (31) provided by GAMIS can be considered when number of samples per time step (M ×N ) and the number
of iterations of the algorithm (T ) grow to infinity. For some exhaustive studies of specific cases, see the analysis in [3, 37] and [33]. Here we provide some
brief arguments for explaining why ÎT and ẐT obtained by a GAMIS scheme are, in general, consistent.5 Let us assume that qn,t’s have heavier tails than
π̄(x) ∝ π(x). Note that the global estimator ÎT can be seen as a result of a static batch MIS estimator involving L different mixture-proposals Φn,t(x)

and J = NMT total number of samples. The weights w(m)
n,t built using Φn,t(x) in the denominator of the IS ratio are suitable importance weights yielding

consistent estimators, as explained in detail in Appendices B-C. Hence, for a finite number of iterations T <∞, whenM →∞ (orN →∞), the consistency
can be guaranteed by standard IS arguments, since it is well known that ẐT → Z and ÎT → I as M →∞, or N →∞ [3].

Furthermore, for T → ∞ and N,M < ∞ finite, we have a convex combination, given in Eq. (33), of conditionally independent (consistent but biased)
IS estimators [3]. Indeed, although in an adaptive scheme the proposals depend on the previous configurations of the population, the samples drawn at each
iteration are conditionally independent of the previous ones, and independent of each other drawn at the same iteration. The bias is due to unknown Z (see Eq.
(4)), and hat ẐT is used to replace Z. However, ẐT → Z as T → ∞, as discussed in [3, Chapter 14]: hence, ÎT is asymptotically unbiased as T → ∞.
Furthermore, in this work, we consider an adaption procedure completely independent of the estimation steps and, as a consequence, independent of the samples
x included in the estimation procedure.

B. DRAWING FROM A MIXTURE OF PDFS

Let us consider a mixture composed of N normalized densities with equal weights, i.e.,

ψ(x) =
1

N

NX
n=1

qn(x). (42)

The classical procedure for drawing J = NM samples from ψ(x) is (starting with j = 1):

1. Draw k∗ ∈ {1, . . . , N} with equal weights 1
N

.

5 A complete analysis should take in account the chosen adaptive procedure since, in general, the adaptation uses the information of previous weighted
samples. However, in this work we consider an adaption procedure completely independent of the estimation steps, as clarified in the next section.



2. Draw x(j) ∼ qk∗ (x).
3. Set j = j + 1 and repeat until j > J = NM .

In this way, each sample x(j) is distributed according ψ(x) and, as a consequence, the entire set,

{x(1), . . . , x(J)} ∼ ψ(x),

is also distributed as ψ(x). An alternative procedure, more deterministic than the previous one, consists of the following steps (starting with n = 1):

1. Draw M independent samples from qn(x), i.e., x(m)
n ∼ qn(x), m = 1, . . . ,M .

2. Set n = n+ 1 and repeat until n > N .

In this case, we have x
(m)
n ∼ qn(x) for n = 1, . . . , N and m = 1, . . . ,M , but the joint set

{x(1)
1 , . . . , x

(M)
1 , . . . , x

(1)
N , . . . , x

(M)
N } ∼ ψ(x),

is again distributed as ψ(x) (recall that J = NM ). This alternative approach can be interpreted as an application of a variance reduction method [3] for
sampling a mixture. Moreover for the same arguments, we can also assert that, given R indices jr ∈ {1, . . . , N} with r = 1, . . . , R, we have

{x(j1), . . . ,x(jR)} ∼
1

R
qj1 (x) + . . .+

1

R
qjR (x).

This is the theoretical base of the partial DM-MIS procedure described in Section 4.

C. IS APPROACHES USING WITH MULTIPLE PROPOSAL PDFS

Recall that our goal is computing efficiently the integral I = 1
Z

R
X f(x)π(x)dx where f is a generic smooth function and Z =

R
X π(x)dx < ∞ with

π(x) ≥ 0 for all x ∈ X ⊆ RDx . Let us assume that we have to normalized proposal pdfs, q1(x) and q2(x), from which we intend to draw M1 and M2

samples respectively:

x
(1)
1 , . . . ,x

(M1)
1 ∼ q1(x) and x

(1)
2 , . . . ,x

(M2)
2 ∼ q2(x).

There are at least two procedures to build a joint IS estimator: the standard multiple importance sampling (MIS) approach and the full deterministic mixture
(DM-MIS) scheme.

C.1. Standard IS approach

The simplest approach [3, Chapter 14] is computing the classical IS weights:

w
(i)
1 =

π(x
(i)
1 )

q1(x
(i)
1 )

, w
(k)
2 =

π(x
(k)
2 )

q2(x
(k)
2 )

, (43)

with i = 1, . . . ,M1 and k = 1, . . . ,M2. The IS estimator is then built by normalizing them jointly, i.e., computing

ÎIS =
1

Stot

0@M1X
i=1

w
(i)
1 f(x

(i)
1 ) +

M2X
k=1

w
(k)
2 f(x

(k)
2 )

1A , (44)

where Stot =
PM1
i=1 w

(i)
1 +

PM2
k=1 w

(k)
2 . Note that, by defining Stot = S1 + S2, where the two partial sums are given by S1 =

PM1
i=1 w

(i)
1 and

S2 =
PM2
k=1 w

(k)
2 , and considering the normalized weights, w̄(i)

1 =
w

(i)
1
S1

and w̄(k)
2 =

w
(k)
2
S2

, Eq. (44) can be rewritten as

ÎIS =
1

S1 + S2

“
S1Î1 + S2Î2

”
=

S1

S1 + S2
Î1 +

S2

S1 + S2
Î2,

where Î1 and Î2 are the two partial IS estimators, obtained by considering only one proposal pdf. This procedure can be easily extended for N > 2 different
proposal pdfs, obtaining the complete IS estimator as the convex combination of the N partial IS estimators:

ÎIS =

PN
n=1 SnÎnPN
n=1 Sn

, (45)

where x
(1)
n , . . . ,x

(Mn)
n ∼ qn(x), w(i)

n = π(x
(i)
n )/qn(x

(i)
n ), Sn =

PMn
i=1 w

(i)
n and În =

PMn
i=1 w

(i)
n f(x

(i)
n ).



C.2. Deterministic mixture

An alternative approach is based on the deterministic mixture sampling idea [32, 31] described previously in Appendix B. Considering N = 2 proposals q1,
q2, and setting

Z =
n
x

(1)
1 , . . . ,x

(M1)
1 ,x

(1)
2 , . . . ,x

(M2)
2

o
,

with x
(mn)
n ∈ RDx (n ∈ {1, 2} and 1 ≤ mn ≤Mn), the weights are now defined as

w
(mn)
n =

π(x
(mn)
n )

M1
M1+M2

q1(x
(mn)
n ) + M2

M1+M2
q2(x

(mn)
n )

. (46)

In this case, the complete proposal is considered to be a mixture of q1 and q2, weighted according to the number of samples drawn from each one. Note that,
unlike in the standard procedure for sampling from a mixture, a deterministic and fixed number of samples are drawn from each proposal in the DM approach. It
can be easily shown that the set Z of samples drawn in this deterministic way is distributed according to the mixture q(z) = M1

M1+M2
q1(z) + M2

M1+M2
q2(z)

[32]. The DM estimator is finally given by

ÎDM =
1

Stot

2X
n=1

MnX
mn=1

w
(mn)
n f(x

(mn)
n ),

where Stot =
P2
n=1

PMn
mn=1 w

(mn)
n and the w(mn)

n are given by (46). For N > 2 proposal pdfs, the DM estimator can also be easily generalized:

ÎDM =
1PN

n=1

PMn
mn=1 w

(mn)
n

NX
n=1

MnX
mn=1

w
(mn)
n f(x

(mn)
n ),

with

wi =
π(x

(mn)
nPN

n=1
Mn
Mtot

qn(x
(mn)
n )

,

and Mtot = M1 +M2 + . . .+MN . On the one hand, the DM approach is more stable than the IS method, thus providing a better performance in terms of a
reduced variance of the corresponding estimator, as shown in the following section. On the other hand, it needs to evaluate every proposal Mtot times instead
of only Mn times (in the standard MIS procedure), and therefore is more costly from a computational point of view. However, this increased computational
cost is negligible when the proposal is much cheaper to evaluate than the target, as it often happens in practical applications.

D. DISTRIBUTION OF THE LOCATION PARAMETERS AFTER RESAMPLING

Let us consider a standard PMC scheme [4], with N different proposal pdfs q1, . . . , qN . Recall that in a standard PMC method, one sample (M = 1) is
drawn from each proposal. For the sake of simplicity, since we are considering a generic iteration t, let us simplify the notation denoting as xi = xn,t ∼
qn,t(x|µn,t,Cn) (1 ≤ n ≤ N , 1 ≤ t ≤ T ), and as qn(x) = qn,t(x|µn,t,Cn). Moreover, we define as

m¬n = [x1, . . . ,xn−1,xn+1, . . . ,xN ]>,

the vector containing all the samples except for the n-th. Let us also denote as x′ ∈ {x1 . . . ,xN}, a generic location parameter after applying a multinomial
resampling step with replacement. Hence, the distribution of x is given by

φ(x′) =

Z
XN

π̂(N)(x′)

"
NY
n=1

qn(xn)

#
dx1 . . . dxN , (47)

where π̂(N)(x′) =
PN
n=1 w̄n,tδ(x

′ − xi), and w̄i,t =
wi,tPN
n=1 wn,t

, with i = 1, . . . , N . Then, after some straightforward rearrangements, Eq. (48) can be

rewritten as

φ(x
′
) =

=
NX
j=1

0BB@Z
XN−1

π(xj)
qj(xj)PN

n=1
π(xn)
qn(xn)

2664 NY
n=1
n6=j

qn(xn)

3775 dm¬j
1CCA δ(x

′ − xj).

Finally, we can write

φ(x′) = π(x′)
NX
j=1

0BB@Z
XN−1

1

NẐ

2664 NY
n=1
n 6=j

qn(xn)

3775 dm¬j
1CCA , (48)

where Ẑ = 1
N

PN
n=1

π(xn)
qn(xn)

is the estimate of the normalizing constant of the target obtained using the classical IS weights. When N →∞, then Ẑ → Z

[3], and thus φ(x)→ 1
Z
π(x) = π̄(x).



ALGORITHM σ = 0.5 σ = 1 σ = 2 σ = 5 σ = 10 σ = 70 σn,j ∼ U([1, 10])

λ = 5
M = 99, T = 20 1.2760 0.5219 0.5930 0.0214 0.0139 0.1815 0.0107
M = 19, T = 100 0.2361 0.1205 0.0422 0.0087 0.0140 0.1868 0.0052
M = 1, T = 1000 0.1719 0.0019 0.0155 0.0103 0.0273 0.3737 0.0070

λ = 10
M = 99, T = 20 1.0195 0.1546 0.2876 0.0178 0.0133 0.1789 0.0098
M = 19, T = 100 0.1750 0.0120 0.0528 0.0086 0.0136 0.1856 0.0050

PI-MAIS (N = 100) M = 1, T = 1000 0.1550 0.0021 0.0020 0.0095 0.0252 0.3648 0.0066

λ = 70
M = 99, T = 20 16.9913 5.5790 1.4925 0.0382 0.0128 0.1834 0.0252
M = 19, T = 100 2.6693 0.9182 0.1312 0.0147 0.0143 0.1844 0.0120
M = 1, T = 1000 0.3014 0.1042 0.0136 0.0115 0.0267 0.3697 0.0093

λn,j ∼ U([1, 10])
M = 99, T = 20 1.0707 0.5364 0.3523 0.0199 0.0121 0.1919 0.0094
M = 19, T = 100 0.2481 0.0595 0.1376 0.0075 0.0144 0.1899 0.0049
M = 1, T = 1000 0.1046 0.0037 0.0045 0.0099 0.0274 0.3563 0.0065

STATIC STANDARD MIS Φn,t(x) = qn,t(x) 29.56 41.95 64.51 2.17 0.0147 0.1914 4.55
STATIC PARTIAL DM-MIS Φn,t(x) = φt(x) 29.28 47.74 75.22 0.2424 0.0124 0.1789 0.0651

AMIS [5] (best results) 124.22 121.21 100.23 0.8640 0.0121 0.0136 0.7328
(worst results) 125.43 123.38 114.82 16.92 0.0128 18.66 13.49

PMC [4] 112.99 114.11 47.97 2.34 0.0559 2.41 0.3017
PMC WITH PARTIAL DM-MIS N = 100, T = 2000 111.92 107.58 26.86 0.6731 0.0744 2.42 0.0700
MIXTURE PMC [36] 110.17 113.11 50.23 2.75 0.0521 2.57 0.6194

PARALLEL INDEP. MH CHAINS N = 100,T = 2000 1.6910 1.7640 1.8832 1.4133 0.2969 0.5475 7.3446

Table 8. (Ex-Sect 6.1) MSE of the estimation of the expected value (first component) with the initialization In1. For all the techniques, the total number of evaluations of the target
is E = 2 · 105. We recall that, in AMIS [5], N = 1 and Φ1,t(x) = ξ1(x). The last row corresponds to the application of N = 100 parallel MH methods (the same used
in PI-MAIS for the adaptation) where the random walk proposals have covariance matrices C = σ2I2. The lengths of the chains, as well as of the PMC runs, is T = 2000 for
maintaining the same number of target evaluations E than in PI-MAIS. For the techniques which adapt the covariance matrices of the proposal pdfs, the values of σ have been
employed as initial values of the scale parameters. For AMIS, we show the best and worst results obtained testing different combinations ofM ∈ {500, 103, 2 ·103, 5 ·103, 104}
and T = E

M . The best results, in each column, are highlighted with bold-faces.

ALGORITHM σ = 0.5 σ = 1 σ = 2 σ = 5 σ = 10 σ = 70 σn,j ∼ U([1, 10])

λ = 5
M = 99, T = 20 0.6096 0.0657 0.0023 0.0056 0.0124 0.1768 0.0051
M = 19, T = 100 0.2878 0.0358 0.0010 0.0050 0.0127 0.1802 0.0038
M = 1, T = 1000 0.1244 0.0011 0.0014 0.0091 0.0242 0.3510 0.0064

λ = 10
M = 99, T = 20 0.9236 0.0543 0.0021 0.0062 0.0137 0.1815 0.0054
M = 19, T = 100 0.2294 0.0077 0.0012 0.0054 0.0132 0.1890 0.0044

PI-MAIS (N = 100) M = 1, T = 1000 0.0786 0.0042 0.0014 0.0086 0.0256 0.3503 0.0066

λ = 70
M = 99, T = 20 5.9889 0.3662 0.0082 0.0089 0.0140 0.1841 0.0093
M = 19, T = 100 1.6670 0.0871 0.0045 0.0080 0.0139 0.1971 0.0074
M = 1, T = 1000 0.2579 0.0134 0.0024 0.0097 0.0258 0.3543 0.0082

λn,j ∼ U([1, 10])
M = 99, T = 20 0.5623 0.0417 0.0025 0.0059 0.0124 0.1848 0.0056
M = 19, T = 100 0.2704 0.0204 0.0011 0.0048 0.0136 0.1726 0.0037
M = 1, T = 1000 0.0750 0.0014 0.0013 0.0089 0.0247 0.3540 0.0066

STATIC STANDARD MIS Φn,t(x) = qn,t(x) 12.00 9.40 10.26 7.67 0.5443 0.1764 4.37
STATIC PARTIAL DM-MIS Φn,t(x) = φt(x) 10.14 0.9469 0.0139 0.0100 0.0146 0.1756 0.0106

AMIS [5] (best results) 113.97 112.70 107.85 44.93 0.7404 0.0141 31.02
(worst results) 116.66 115.62 111.83 70.62 9.43 18.62 58.63

PMC [4] 111.54 110.78 90.21 2.29 0.0631 2.42 0.3082
PMC WITH PARTIAL DM-MIS N = 100, T = 2000 23.16 7.43 7.56 0.6420 0.0720 2.37 0.0695
MIXTURE PMC [36] 25.43 10.68 6.29 0.6142 0.0727 2.55 0.1681

PARALLEL INDEP. MH CHAINS N = 100,T = 2000 1.3813 1.3657 1.2942 1.0178 0.3644 1.0405 5.3211

Table 9. (Ex-Sect 6.1) MSE of the estimation of the expected value (first component). For all the techniques, the total number of evaluations of the target is again E = 2 · 105. In
this case, we have applied the initialization In2, differently from Table 8. The best results, in each column, are highlighted with bold-faces.



ALGORITHM σ = 0.5 σ = 1 σ = 2 σ = 5 σ = 10 σ = 70 σn,j ∼ U([1, 10])

λ = 5
M = 99, T = 20 0.0388 0.0120 0.0070 0.0002 0.0001 0.0016 0.0001
M = 19, T = 100 0.0031 0.0013 0.0004 0.0001 0.0001 0.0017 0.0001
M = 1, T = 1000 0.0016 0.0001 0.0001 0.0001 0.0002 0.0031 0.0001

λ = 10
M = 99, T = 20 0.0217 0.0046 0.0040 0.0001 0.0001 0.0016 0.0002
M = 19, T = 100 0.0019 0.0002 0.0005 0.0001 0.0001 0.0017 0.0001

PI-MAIS (N = 100) M = 1, T = 1000 0.0016 0.0001 0.0001 8 ·10−5 0.0002 0.0031 0.0001

λ = 70
M = 99, T = 20 6.3732 0.2713 0.0226 0.0003 0.0001 0.0016 0.0002
M = 19, T = 100 0.1082 0.0114 0.0019 0.0001 0.0001 0.0017 0.0001
M = 1, T = 1000 0.0038 0.0009 0.0001 0.0001 0.0002 0.0033 0.0001

λn,j ∼ U([1, 10])
M = 99, T = 20 0.0350 0.0101 0.0043 0.0001 0.0001 0.0015 0.0001
M = 19, T = 100 0.0029 0.0007 0.0010 8 ·10−5 9 ·10−5 0.0017 9 ·10−5

M = 1, T = 1000 0.0014 0.0001 9 · 10−5 0.0001 0.0002 0.0036 0.0001

STATIC STANDARD MIS Φn,t(x) = qn,t(x) 3.94 ·104 7.12 ·107 1.07 ·103 0.0113 0.0001 0.0016 0.2190
STATIC PARTIAL DM-MIS Φn,t(x) = φt(x) 9.51·108 4.60 ·105 15.34 0.0016 0.0001 0.0016 0.0005

AMIS [5] (best results) 15.92 15.66 12.81 0.0069 8 ·10−5 0.0001 0.0002
(worst results) 15.97 15.92 14.87 0.4559 0.0001 1.62 0.0084

PMC [4] 33.53 17.10 14.42 0.4249 0.0015 0.0016 0.3542
PMC WITH PARTIAL DM-MIS N = 100, T = 2000 15.85 14.31 1.81 0.0402 0.0002 0.0016 0.0004
MIXTURE PMC [36] 14.51 12.09 3.56 0.0287 0.0002 0.0015 0.0010

Table 10. (Ex-Sect 6.1) MSE of the estimation of the normalizing constant Z with the initialization In1. For all the techniques, the total number of evaluations of the target is
E = 2 · 105. The smallest MSE for each σ is bold-faced.

ALGORITHM σ = 0.5 σ = 1 σ = 2 σ = 3 σ = 5 σ = 10 σ = 70 σi,j ∼ U([1, 20])

PI-MAIS Worst 0.0083 0.0081 0.0012 0.0005 0.0050 0.0126 0.1126 0.0218
Best 0.0025 0.0001 0.0002 0.0001 0.0002 0.0003 0.0361 0.0004

I2-MAIS Worst 0.0335 0.0227 0.0053 0.0044 0.0041 0.0096 0.2130 0.0181
Best 0.0082 0.0025 0.0013 0.0008 0.0001 0.0002 0.0265 0.0003

PMC [4] Worst 0.0670 0.0461 0.0209 0.0093 0.0055 0.0072 9.4749 0.1065
Best 0.0210 0.0164 0.0069 0.0016 0.0015 0.0011 0.0262 0.0026

MIXTURE PMC [36] Worst 3.5772 0.0113 0.0044 0.0066 0.0174 0.0267 0.0913 0.0103
Best 0.0092 0.0020 0.0018 0.0035 0.0034 0.0055 0.0138 0.0025

AMIS [5] Worst 0.0040 0.0039 0.0040 0.0016 0.0011 0.0012 0.0035 0.0013
Best 0.0023 0.0028 0.0023 0.0009 0.0003 0.0004 0.0023 0.0007

Table 11. (Ex-Section-6.2) Bi-dimensional banana-shaped distribution example: Best and worst results in terms of MSE, obtained with the different techniques
for different values of σ. The smallest MSE for each σ is bold-faced.

ALGORITHM σi,j ∼ U([1, 5]) σi,j ∼ U([1, 10]) σi,j ∼ U([1, 30])

PI-MAIS

λ = 5
M = 99, T = 20 0.3819 0.3508 0.3626
M = 19, T = 100 0.0728 0.0738 0.0710
M = 1, T = 1000 0.0173 0.0164 0.0171

λ = 10
M = 99, T = 20 0.5701 0.5943 0.5605
M = 19, T = 100 0.1389 0.1429 0.1425
M = 1, T = 1000 0.0401 0.0408 0.0393

λi,j ∼ U([1, 30])
M = 99, T = 20 0.3758 0.3795 0.4028
M = 19, T = 100 0.0741 0.0793 0.0771
M = 1, T = 1000 0.0169 0.0167 0.0162

PMC [4] 0.0642 0.4345 0.1533
PMC WITH PARTIAL DM-MIS N = 100, T = 2000 0.0524 0.3163 0.0817
MIXTURE PMC [36] 0.0577 0.2870 0.4083

Table 12. (Ex-Sect 6.3) MSE of the estimation of E[(X1, X2, A,Ω)] using different techniques, keeping constant the total number of target evaluation,
E = 2 105. The best results, in each column, are highlighted with bold-faces.


