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Abstract: The vacuum energy density of free scalar quantum field  with a
distributional background spacetime also is considered.It has been widely
believed that, except in very extreme situations, the influence of gravity on quantum
fields should amount to just small, sub-dominant contributions. Here we argue that
this belief is false by showing that there exist well-behaved spacetime evolutions
where the vacuum energy density of free quantum fields is forced, by the very
same background distributional spacetime such BHs, to become dominant over
any classical energydensity component. This semiclassical gravity effect finds its
roots in the singular behavior of quantum fields on curved spacetimes. In particular
we obtain that the vacuum fluctuations 〈2  has a singular behavior on BHs horizon
r: 〈2r~|r − r |−2.We argue that this vacuum dominance may bear importent
astrophysical implications.
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I.Introduction

I.1.The breakdown of canonical formalism of Riemann

geometry for the singular solutions of the Einstein field
equations



Einstein field equations was originally derived by Einstein in 1915 in respect
with canonical formalism of Riemann geometry,i.e. by using the classical
sufficiently smooth metric tensor, smooth Riemann curvature tensor, smooth Ricci
tensor,smooth scalar curvature, etc.. However have soon been found singular
solutions of the Einstein field equations with singular metric tensor and singular
Riemann curvature tensor.

These singular solutions was formally accepted beyond rigorous canonical
formalism of Riemannian geometry.

Remark 1.1.Note that if some components of the Riemann curvature tensor
Rklm
i x̂ become infinite at point x̂0 one obtain the breakdown of canonical formalism

of Riemann geometry in a sufficiently small neighborhood  of the point x̂0 ∈ , i.e.
in such neighborhood  Riemann curvature tensor Rklm

i x̂ will be changed by
formula (1.7) see remark 1.2.

Remark 1.2.Let Γ be infinitesimal closed contour and let Γ be the
corresponding surface spanning by Γ, see Pic.1. We assume now that: (i)
christoffel symbol Γkli x̂ become infinite at singular point x̂0 by formulae

Γkli x̂  klx̂xi − xi0
−, ≥ 1

klx̂ ∈ CΓ
1.1

and (ii) x̂0 ∈ Γ.Let us derive now to similarly canonical calculation [3]-[4] the

general formula for the regularized change ΔAk in a vector Aix̂ after parallel
displacement around infinitesimal closed contour Γ. This regularized change ΔAk
can clearly be written in the form

ΔAk  
Γ

x̂ − x̂0Ak, 1.2

where x̂ − x̂0 
i0

4

xi − xi0
2, ≥ 1 and where the integral is taken over the

given contour Γ. Substituting in place of Ak the canonical expression
Ak  Γkli x̂Akdxl (see [4],Eq.(85.5)) we obtain

ΔAk  
Γ

x̂ − x̂0Ak  
Γ

x̂ − x̂0 Γkli x̂Akdxl , 1.3

where

∂Ai
∂xl

 Γkli x̂Ak. 1.4



Pic.1.Infinitesimal closed contour Γ

and corresponding singular surface Γ  x̂0

spanning by Γ.

Now applying Stokes’ theorem (see [4],Eq.(6.19)) to the integral (1.3) and
considering that the area enclosed by the contour has the infinitesimal value Δflm,
we get

ΔAk  
Γ

x̂ − x̂0 Γkli x̂Akdxl 

 1
2 

Γ

∂Γkmi x̂Aix̂ − x̂0
∂xl

−
∂Γkli x̂Aix̂ − x̂0

∂xm
dflm ≈

≈
∂Γkmi x̂Aix̂ − x̂0

∂xl
−
∂Γkli x̂Aix̂ − x̂0

∂xm
Δflm

2


x̂ − x̂0
∂Γkmi x̂ − x̂0Ai

∂xl
 Γkmi x̂Ai

∂x̂ − x̂0
∂xl

−

−x̂ − x̂0
∂Γkli x̂Ai
∂xm

− Γkli x̂Ai
∂x̂ − x̂0
∂xm

Δflm

2


x̂ − x̂0
∂Γkmi x̂Ai

∂xl
− x̂ − x̂0

∂Γkli x̂Ai
∂xm

−

Aix̂x̂ − x̂0
2Γkmi x̂
xl − xl0

− Aix̂x̂ − x̂0
2Γkli x̂
xm − xm0

Δflm

2
.

1.5

Substituting the values of the derivatives (1.4) into Eq.(1.5), we get finally:

ΔAk  Rklm
i Aix̂x̂ − x̂0Δflm

2
, 1.6

where Rklm
i
, is a tensor of the fourth rank

Rklm
i

 Rklmi  2
Γkmi x̂
xl − xl0

− Γkli x̂
xm − xm0

. 1.7

Here Rklm
i is the classical Riemann curvature tensor.That Rklm

i
is a tensor is clear

from the fact that in (1.6) the left side is a vector—the difference ΔAk between the



values of vectors at one and the same point.
Remark 1.3. Note that similar result was obtained by many authors [5]-[17] by

using Colombeau nonlinear generalized functions [1]-[2].

Definition1.1. The tensor Rklm
i

is called the generalized curvature tensor or the
generalized Riemann tensor.

Definition1.2. The generalized Ricci curvature tensor Rkm is defined as

Rkm  Rkim
i
. 1.8

Definition1.3. The generalized Ricci scalar R is defined as

R  gkm Rkm. 1.9

Definition1.3. The generalized Einstein tensor Gkm is defined as

Gkm  Rkm − 1
2
gkmR. 1.10

Remark 1.4. Note that in physical literature the spacetime singularity usually is
defined as location where the quantities that are used to measure the gravitational
field become infinite in a way that does not depend on the coordinate system.
These quantities are the classical scalar invariant curvatures of singular spacetime,
which includes a measure of the density of matter.

Remark 1.5. In general relativity, many investigations have been derived with
regard to singular exact vacuum solutions of the Einstein equation and the
singularity structure of space-time. Such solutions have been formally derived
under condition

T
x  0, 1.11

where T
x  0 represent the energy-momentum densities of the gravity source.

This for example is the case for the well-known Schwarzschild solution, which is
given by, in the Schwarzschild coordinates x0, r,,,

ds2  −hrdx02  h−1rdr2  r2d2  sin2d2 ,hr  1 − rsr , 1.12

where, rs is the Schwarzschild radius rs  2GM/c2 with G,M and c being the
Newton gravitational constant, mass of the source, and the light velocity in vacuum
Minkowski space-time, respectively. The metric (1.12) describe the gravitational
field produced by a point-like particle located at r  0.

Remark 1.6. Note that when we say, on the basis of the canonical expression
of the curvature square

R̂rR̂r  12rs2 1
r6

1.13

formally obtained from the metric (1.12), that r  0 is a singularity of the
Schwarzschild space-time, the source is considered to be point-like and this metric
is regarded as meaningful everywhere in space-time.

Remark 1.7. From the metric (1.12), the calculation of the canonical Einstein
tensor proceeds in a straighforward manner gives for r ≠ 0



Gttr  Grrr  −
h′r
r̂
− 1  hr

r̂2
≡ 0 ,G

r  G
r  − h

′′r
2

− hr
r̂2

≡ 0, 1.14

where hr  −1  rs/r.Using Eq.(1.14) one formally obtain boundary conditions

Gtt0 
r→0
lim Gttr  0,Grr0 

r→0
lim Grrr  0,

G
0 

r→0
lim G

r  0,G
0 

r→0
lim G

r  0.
1.15

However as pointed out above the canonical expression of the Einstein tensor in a
sufficiently small neighborhood  of the point r  0 and must be replaced by the

generalized Einstein tensor Gkm (1.10). By simple calculation easy to see that

Gt
t
0 

r→0
lim Gt

t
r  −,Gr

r
0 

r→0
lim Gr

r
r  −,

G

0 

r→0
lim G


r  −,G


0 

r→0
lim G


r  −.

1.16

and therefore the boundary conditions (1.15) is completely wrong. But other hand
as pointed out by many authors [5]-[17] that the canonical representation of the
Einstein tensor, valid only in a weak (distributional) sense,i.e. [12]:

Gb
ax   −8m0ab03

x  1.17

and therefore again we obtain Gb
a0  −  0ab0.Thus canonical definition of the

Einstein tensor is breakdown in rigorous mathematical sense for the Schwarzschild
solution at origin r  0.

I.2.The distributional Schwarzschild geometry
General relativity as a physical theory is governed by particular physical

equations; the focus of interest is the breakdown of physics which need not
coincide with the breakdown of geometry. It has been suggested to describe
singularity at the origin as internal point of the Schwarzschild spacetime, where the
Einstein field equations are satisfied in a weak (distributional) sense [5]-[22].

1.2.1.The smooth regularization of the singularity at the
origin.

The two singular functions we will work with throughout this paper (namely the

singular components of the Schwarzschild metric) are 1
r and 1

r − rs , rs ≥ 0.Since
1
r ∈ Lloc

1 3, it obviously gives the regular distribution 1
r ∈ D

′3. By convolution
with a mollifier ρx (adapted to the symmetry of the spacetime, i.e. chosen radially
symmetric) we embed it into the Colombeau algebra GR3 [22]:

1
r


→  1

r  1
r ∗   1

r 
,  1

3
ρ r , ∈ 0,1. 1.18

Inserting (1.18) into (1.12) we obtain a generalized Colombeau object modeling the



singular Schwarzschild spacetime [22]:

ds2  hrdt
2 − h

−1rdr2  r
2d2  sin2d2 ,

hr  −1  rs 1
r 

, ∈ 0,1.
1.19

Remark 1.8.Note that under regularization (1.18) for any  ∈ 0,1 the metric

ds2  hrdt2 − h−1rdr2  r2d2  sin2d2 

obviously is a classical Riemannian object and there no exist an the breakdown of
canonical formalism of Riemannian geometry for these metrics, even at origin
r  0. It has been suggested by many authors to describe singularity at the origin
as an internal point, where the Einstein field equations are satisfied in a
distributional sense [5]-[22]. From the Colombeau metric (1.19) one obtain in a
distributional sense [22]:

R2
2r,  R3

3 
h′ r
r 

1  hr
r2 

 8m
r
r2

,

R0
0r,  R1

1 
1
2

h′′r
2


h′ r
r


 −4m r

r2
.

1.20

Hence, the distributional Ricci tensor and the distributional curvature scalar Rr 

are of δ-type, i.e. Rr   m
r
r2

.

Remark 1.9. Note that the formulae (1.20) should be contrasted with what is the
expected result Gb

ax  −8m0ab03x given by Eq.(1.17). However the equations
(1.20) are obviously given in spherical coordinates and therefore strictly speaking

this is not correct, because the basis fields ∂
∂r

, ∂
∂

, ∂
∂

are not globally defined.

Representing distributions concentrated at the origin requires a basis regular at the
origin. Transforming the formulae for Rijε into Cartesian coordinates
associated with the spherical ones, i.e., r,θ,φ ↔ xi, we obtain, e.g., for the
Einstein tensor the expected result Gb

ax  −8m0ab03x given by Eq.(1.17), see
[22].

1.2.2.The nonsmooth regularization of the singularity at
the origin.

The nonsmooth regularization of the Schwarzschild singularity at the origin r  0
is considered by N. R. Pantoja and H. Rago in paper [12]. Pantoja non smooth
regularization regularization of the Schwarzschild singularity are

hr  −1 
rs
r Θr −  

, ∈ 0,1, r  rs. 1.21

Here Θu is the Heaviside function and the limit  → 0 is understood in a
distributional sense.Equation (1.19) with h as given in (1.21) can be considered as
an regularized version of the Schwarzschild line element in curvature coordinates.
From equation (1.21), the calculation of the distributional Einstein tensor proceeds



in a straighforward manner. By simple calculation it gives [12]:

Gttr,  Gr
rr,  −

h′ r
r


− 1  hr

r2 


 −rs
r − 
r2 

 −rs
r
r2

1.22

and

G
r,  G

r,  −
h′′r
2 

− hr
r2 



rs
r − 
r2 

− rs 
r2

d
dr
r − 


 −rs

r
r2

.
1.23

which is exactly the result obtained in Ref. [9] using smoothed versions of the
Heaviside function Θr − . Transforming now the formulae for Gbar,ε into
Cartesian coordinates associated with the spherical ones, i.e., r,θ,φ ↔ xi, we
obtain for the generalized Einstein tensor the expected result given by Eq.(1.17)

Gb
ax  −8m0ab03x, 1.24

see Remark 1.9.

1.2.3.The smooth regularization via Horizon.
The smooth regularization via Horizon is considered by J.M.Heinzle and

R.Steinbauer in paper [22]. Note that 1
r − rs ∉ Lloc

1 3. An canonical regularization

is the principal value vp 1
r − rs ∈ D′3 which can be embedded into GR3 [22]:

1
r − rs

vp
→ vp 1

r − rs

→   ∗ vp 1

r − rs  1
r − rs 

∈ GR3. 1.25

Inserting now (1.25) into (1.12) we obtain a generalized Colombeau object
modeling the singular Schwarzschild spacetime [22]:

ds2  hrdt
2 − h

−1rdr2  r
2d2  sin2d2 ,

hr  −1  rsr ,h
−1r  −1 − rs 1

r − rs 
, ∈ 0,1.

1.26

Remark 1.10.Note that obviously Colombeau object, (1.26) is degenerate at
r  rs, because hr is zero at the horizon. However, this does not come as a
surprise. Both hr and h−1r are positive outside of the black hole and negative in
the interior. As a consequence any smooth regularization of hr (or h−1) must pass
through zero somewhere and, additionally, this zero must converge to r  rs as the
regularization parameter goes to zero.

Remark 1.11.Note that due to the degeneracy of Colombeau object (1.26),
even the distributional Levi-Civitá connection obviously is not available.



1.2.4.The nonsmooth regularization via Gorizon

In this paper we leave the neighborhood of the singularity at the origin and turn
to the singularity at the horizon. The question we are aiming at is the following:
using distributional geometry (thus without leaving Schwarzschild coordinates), is it
possible to show that the horizon singularity of the Schwarzschild metric is not
merely a coordinate singularity. In order to investigate this issue we calculate the
distributional curvature at the horizon in Schwarzschild coordinates.

The main focus of this work is a (nonlinear) superdistributional description of the
Schwarzschild spacetime. Although the nature of the Schwarzschild singularity is
much “worse” than the quasi-regular conical singularity, there are several
distributional treatments in the literature [8]-[29], mainly motivated by the following
considerations: the physical interpretation of the Schwarzschild metric is clear as
long as we consider it merely as an exterior (vacuum) solution of an extended
(sufficiently large) massive spherically symmetric body. Together with the interior
solution it describes the entire spacetime. The concept of point particles—well
understood in the context of linear field theories—suggests a mathematical
idealization of the underlying physics: one would like to view the Schwarzschild
solution as defined on the entire spacetime and regard it as generated by a point
mass located at the origin and acting as the gravitational source.

This of course amounts to the question of whether one can reasonably ascribe
distributional curvature quantities to the Schwarzschild singularity at the horizon.

The emphasis of the present work lies on mathematical rigor. We derive the
“physically expected” result for the distributional energy momentum tensor of the
Schwarzschild geometry, i.e., T0

0  8m3x, in a conceptually satisfactory way.
Additionally, we set up a unified language to comment on the respective merits of
some of the approaches taken so far. In particular, we discuss questions of
differentiable structure as well as smoothness and degeneracy problems of the
regularized metrics, and present possible refinements and workarounds.These
aims are accomplished using the framework of nonlinear supergeneralized
functions (supergeneralized Colombeau algebras GR3,).Examining the
Schwarzschild metric (1.12) in a neighborhood of the horizon, we see that, whereas
hr is smooth, h−1r is not even Lloc1 (note that the origin is now always excluded
from our considerations; the space we are working on is R3\0). Thus, regularizing
the Schwarzschild metric amounts to embedding h−1 into GR3, (as done
in (3.2)).Obviously, (3.1) is degenerate at r  2m, because hr is zero at the
horizon. However, this does not come as a surprise. Both hr and h−1r are
positive outside of the black hole and negative in the interior. As a consequence
any (smooth) regularization hr (h−r) [above (below) horizon] of hr must pass
through small enough vicinity O

2m  x ∈ R3|‖x‖  2m,‖x − 2m‖  
(O
−2m  x ∈ R3|‖x‖  2m,‖x − 2m‖  ) of zeros set

O02m  y ∈ R3|‖y‖  2m somewhere and, additionally, this vicinity O
2m

(O
−2m) must converge to O02m as the regularization parameter  goes to



zero.Due to the degeneracy of (1.12), the Levi-Cività connection is not available.
Consider, therefore, the following connections Γkjl  Γkjlh  ∈ GR3, and

Γkj−l  Γkj−lh  ∈ GR3, :

Γkjl  1
2
g

−1 lmgmk,j  gmj,k − gkj,m,

Γkj−l  1
2
g−

−1 lmg−mk,j  g−mj,k − g−kj,m.
1.27

Γkjl0,Γkj−l0 coincides with the Levi-Cività connection on 3\r  0, as g0  g,
g0−  g and g0−1  g−1, g0−−1  g−1 there.Clearly,connections Γkjl,Γkj−l
respect the regularized metric g, i.e., gij;k  0. Proceeding in this manner, we
obtain the nonstandard result

R
 1

1

 R

 0
0


≈ −m̃2m,

R
− 1

1

 R

− 0
0


≃ m̃2m.

1.28

Investigating the weak limit of the angular components of the generalized Ricci
tensor using the abbreviation

̃r  
0



sind 
0

2

dx

and let x be the function x ∈ S2m3,k, where by S2m3,k we denote the
class of all functions x such that (i) ̃r~r − 2mk, r~2m,k  2 and (ii)
x ∈ C3. Then for any function x ∈ S2m3, 2 with compact support we
get:

w -
→0
lim R

 1
1  w -

→0
lim R

 0
0  m ̃|̃  −m̃2m,

w -
→0
lim R

− 1
1  w -

→0
lim R

− 0
0  m ̃|̃  m̃2m,

1.29

i.e., the Schwarzschild spacetime is weakly Ricci-nonflat (the origin was excluded
from our considerations).
Furthermore,the Tolman formula [3],[4] for the total energy of a static and
asymptotically flat spacetime with g the determinant of the four dimensional metric

and d3x the coordinate volume element, gives

ET   Trr  T
  T

  Ttt −g d3x  m, 1.30

as it should be.
The paper is organized in the following way: in section II we discuss the

conceptual as well as the mathematical prerequisites. In particular we comment on
geometrical matters (differentiable structure, coordinate invariance) and recall the
basic facts of nonlinear superdistributional geometry in the context of algebras
GM, of supergeneralized functions. Moreover, we derive sensible nonsmooth



regularizations of the singular functions to be used throughout the paper. Section III
is devoted to these approach to the problem. We present a new conceptually
satisfactory method to derive the main result. In these final section III we
investigate the horizon and describe its distributional curvature. Using nonlinear
superdistributional geometry and supergeneralized functions it seems possible to
show that the horizon singularity is not only a coordinate singularity without leaving
Schwarzschild coordinates.

II. Generalized Colombeau Calculus
II.1.Notation and basic notions from standard
Colombeau theory

We use [1],[2],[7] as standard references for the foundations and various
applications of standard Colombeau theory. We briefly recall the basic Colombeau
construction. Throughout the paper  will denote an open subset of n. Stanfard
Colombeau generalized functions on  are defined as equivalence classes
u  u of nets of smooth functions u ∈ C (regularizations) subjected to
asymptotic norm conditions with respect to  ∈ 0,1 for their derivatives on
compact sets.

The basic idea of classical Colombeau’s theory of nonlinear generalized
functions [1],[2] is regularization by sequences (nets) of smooth functions and the
use of asymptotic estimates in terms of a regularization parameter . Let u∈0,1
with u ∈ CM for all  ∈ ,where M a separable, smooth orientable
Hausdorff manifold of dimension n.
Definition 2.1.The classical Colombeau’s algebra of generalized functions on M is
defined as the quotient:

GM  EMM/NM 2.1

of the space EMM of sequences of moderate growth modulo the space NM of
negligible sequences. More precisely the notions of moderateness resp.
negligibility are defined by the following asymptotic estimates (where XM
denoting the space of smooth vector fields on M):

EMM  u| ∀KK  M∀kk ∈ ℕ∃NN ∈ ℕ

∀1,…,k1,…,k ∈ XM
p∈K
sup |L1…Lk up| O−N as  → 0 ,

2.2

NM  u| ∀KK  M, ∀kk ∈ ℕ0∀qq ∈ N

∀1,…,k1,…,k ∈ XM
p∈K
sup |L1…Lk up| Oq as  → 0 .

2.3

Remark 2.1. In the definition the Landau symbol a  O appears, having the
following meaning: ∃CC  0∃00 ∈ 0,1∀  0a ≤ C.

Definition 2.3. Elements of GM are denoted by:



u  clu  u  NM. 2.4

Remark 2.2.With componentwise operations (, ) GM is a fine sheaf of
differential algebras with respect to the Lie derivative defined by Lu  clLu.

The spaces of moderate resp. negligible sequences and hence the algebra
itself may be characterized locally, i.e., u ∈ GM iff u ∘  ∈ GV for all charts
V,, where on the open set V ⊂ Rn in the respective estimates Lie
derivatives are replaced by partial derivatives.

The spaces of moderate resp. negligible sequences and hence the algebra
itself may be characterized locally, i.e., u ∈ GM iff u ∘  ∈ GV for all charts
V,, where on the open set V ⊂ Rn in the respective estimates Lie
derivatives are replaced by partial derivatives.

Remark 2.4.Smooth functions f ∈ CM are embedded into GM simply by the
“constant” embedding , i.e., f  clf, hence CM is a faithful subalgebra
of GM.

Point Values of a Generalized Functions on M.
Generalized Numbers.

Within the classical distribution theory, distributions cannot be characterized by
their point values in any way similar to classical functions. On the other hand, there
is a very natural and direct way of obtaining the point values of the elements of
Colombeau’s algebra: points are simply inserted into representatives. The objects
so obtained are sequences of numbers, and as such are not the elements in the
field  or ℂ. Instead, they are the representatives of Colombeau’s generalized
numbers. We give the exact definition of these ”numbers”.

Definition 2.5.Inserting p ∈ M into u ∈ GM yields a well defined element of the
ring of constants (also called generalized numbers) K (corresponding to K  R
resp. C), defined as the set of moderate nets of numbers (r ∈ K0,1 with
|r| O−N for some N) modulo negligible nets (|r| Om for each m);
componentwise insertion of points of M into elements of GM yields well-defined
generalized numbers, i.e.,elements of the ring of constants:

K  EcM/NcM 2.5

(with K   or K  ℂ for K   or K  ℂ), where

EcM  r ∈ K
I|∃nn ∈ ℕ |r |  O−n as  → 0

NcM  r ∈ K
I|∀mm ∈ ℕ |r |  Om as  → 0

I  0,1.

2.6

Generalized functions on M are characterized by their generalized point values,
i.e., by their values on points in M̃c, the space of equivalence classes of compactly
supported nets p ∈ M0,1 with respect to the relation



p  p′ : dhp,p′   Om for all m, where dh denotes the distance on M
induced by any Riemannian metric.

Definition 2.6. For u ∈ GM and x0 ∈ M, the point value of u at the point
x0,ux0, is defined as the class of ux0 in K.

Definition 2.7.We say that an element r ∈ K is strictly nonzero if there exists a
representative r and a q ∈ ℕ such that |r|  

q for  sufficiently small. If r is
strictly nonzero, then it is also invertible with the inverse 1/r. The converse is
true as well.

Treating the elements of Colombeau algebras as a generalization of classical
functions, the question arises whether the definition of point values can be
extended in such a way that each element is characterized by its values. Such an
extension is indeed possible.

Definition 2.8. Let  be an open subset of n. On a set ̂ :

̂  x ∈ 
I|∃pp  0|x |  Op 

x ∈ 
I|∃pp  0∃00  0 |x | ≤ p, for 0    0

2.7

we introduce an equivalence relation:

x  y  ∀qq  0∀  0 |x − y | ≤ q, for 0    0 2.8

and denote by   ̂/  the set of generalized points. The set of points with
compact support is

c 
x  clx ∈ |∃KK ⊂ ∃00  0 x ∈ K for 0    0 2.9

Definition 2.9. A generalized function u ∈ GM is called associated to zero,
u  0 on  ⊆ M in L.Schwartz sense if one (hence any) representative u
converges to zero weakly,i.e.

w - lim→0 u  0 2.10

We shall often write:

u
Sch
 0. 2.11

The GM-module of generalized sections in vector bundles-especially the space of
generalized tensor fields Ts rM-is defined along the same lines using analogous
asymptotic estimates with respect to the norm induced by any Riemannian metric
on the respective fibers. However, it is more convenient to use the following
algebraic description of generalized tensor fields

GsrM  GM ⊗ Ts rM , 2.12

where Ts rM denotes the space of smooth tensor fields and the tensor product is
taken over the module CM. Hence generalized tensor fields are just given by
classical ones with generalized coefficient functions. Many concepts of classical



tensor analysis carry over to the generalized setting [1]-[2], in particular Lie
derivatives with respect to both classical and generalized vector fields, Lie
brackets, exterior algebra, etc. Moreover, generalized tensor fields may also be
viewed as GM-multilinear maps taking generalized vector and covector fields to
generalized functions, i.e., as GM-modules we have

GsrM ≅ LMG10Mr,G01Ms;GM. 2.13

In particular a generalized metric is defined to be a symmetric, generalized
0,2-tensor field gab  gab  (with its index independent of  and) whose
determinant detgab is invertible in GM. The latter condition is equivalent to the
following notion called strictly nonzero on compact sets: for any representative
detgab  of detgab we have ∀K ⊂ M ∃m ∈ ℕinfp∈K|detgab |≥ 

m  for all 
small enough. This notion captures the intuitive idea of a generalized metric to be a
sequence of classical metrics approaching a singular limit in the following sense:
gab is a generalized metric iff (on every relatively compact open subset V of M)
there exists a representative gab  of gab such that for fixed  (small
enough)gab  gab  (resp. gab |V) is a classical pseudo-Riemannian metric
and detgab is invertible in the algebra of generalized functions. A generalized
metric induces a GM-linear isomorphism from G01M to G10M and the inverse
metric gab  gab−1 is a well defined element of G02M (i.e., independent of the
representative gab ). Also the generalized Levi-Civita connection as well as the
generalized Riemann-, Ricci- and Einstein tensor of a generalized metric are
defined simply by the usual coordinate formulae on the level of representatives.

II.2. Generalized Colombeau Calculus.
We briefly recall the basic generalized Colombeau construction. Colombeau

supergeneralized functions on  ⊆ n, where dim  n are defined as
equivalence classes u  u of nets of smooth functions u ∈ C\,where
dim  n (regularizations) subjected to asymptotic norm conditions with respect
to  ∈ 0,1 for their derivatives on compact sets.

The basic idea of generalized Colombeau’s theory of nonlinear
supergeneralized functions [1],[2] is regularization by sequences (nets) of smooth
functions and the use of asymptotic estimates in terms of a regularization
parameter . Let u∈0,1 with u such that: (i) u ∈ CM\ and (ii) u ∈ D′M, for
all  ∈ 0,1,where M a separable, smooth orientable Hausdorff manifold of
dimension n.

Definition 2.10.The supergeneralized Colombeau’s algebra G  GM, of
supergeneralized functions on M, where  ⊂ M, dimM  n, dim  n , is defined
as the quotient:

GM,  EMM,/NM, 2.14

of the space EMM, of sequences of moderate growth modulo the space NM,
of negligible sequences. More precisely the notions of moderateness resp.



negligibility are defined by the following asymptotic estimates (where XM\
denoting the space of smooth vector fields on M\):

EMM,  u| ∀KK  M\∀kk ∈ ℕ∃NN ∈ ℕ

∀1,…,k1,…,k ∈ XM\
p∈K
sup |L1…Lk up| O−N, → 0 &

∀KK  M∀kk ∈ ℕ∃NN ∈ ℕ∀f ∈ CM∀1,…,k1,…,k ∈ XM

|L1
w…Lk

w uf|
p∈K

supL1…Lk fp O−N, → 0 ,

2.15

NM,  u| ∀KK  M\, ∀kk ∈ ℕ0∀qq ∈ N

∀1,…,k1,…,k ∈ XM\
p∈K
sup |L1…Lk up| Oq, → 0 &

∀KK  M∀kk ∈ ℕ∃NN ∈ ℕ∀f ∈ CM∀1,…,k1,…,k ∈ XM

|L1
w…Lk

w uf|
p∈K

supL1…Lk fp Oq, → 0 ,

2.16

where Lk
w denoting the weak Lie derivative in L.Schwartz sense.In the definition the

Landau symbol a  O appears, having the following meaning:
∃CC  0∃00 ∈ 0,1∀  0a ≤ C.

Definition 2.11. Elements of GM, are denoted by:
u  clu  u  NM,. 2.17

Remark 2.5.With componentwise operations (, ) GM, is a fine sheaf of
differential algebras with respect to the Lie derivative defined by Lu  clLu.

The spaces of moderate resp. negligible sequences and hence the algebra
itself may be characterized locally, i.e., u ∈ GM, iff u ∘  ∈ GV for all
charts V,, where on the open set V ⊂ Rn in the respective estimates Lie
derivatives are replaced by partial derivatives.

The spaces of moderate resp. negligible sequences and hence the algebra
itself may be characterized locally, i.e., u ∈ GM, iff u ∘  ∈ GV for all
charts V,, where on the open set V ⊂ Rn in the respective estimates Lie
derivatives are replaced by partial derivatives.

Remark 2.6.Smooth functions f ∈ CM\ are embedded into GM, simply by
the “constant” embedding , i.e., f  clf, hence CM\ is a faithful
subalgebra of GM,.

Point Values of a Supergeneralized Functions on M.



Supergeneralized Numbers
Within the classical distribution theory, distributions cannot be characterized by

their point values in any way similar to classical functions. On the other hand, there
is a very natural and direct way of obtaining the point values of the elements of
Colombeau’s algebra: points are simply inserted into representatives. The objects
so obtained are sequences of numbers, and as such are not the elements in the
field  or ℂ. Instead, they are the representatives of Colombeau’s generalized
numbers. We give the exact definition of these ”numbers”.

Definition 2.12.Inserting p ∈ M into u ∈ GM, yields a well defined element of
the ring of constants (also called generalized numbers) K (corresponding to K  R
resp. C), defined as the set of moderate nets of numbers (r ∈ K0,1 with
|r| O−N for some N) modulo negligible nets (|r| Om for each m);
componentwise insertion of points of M into elements of GM, yields well-defined
generalized numbers, i.e.,elements of the ring of constants:

K EcM,/NcM, 2.18

(with K   or K  ℂ for K   or K  ℂ), where

EcM,  r ∈ K
I|∃nn ∈ ℕ |r |  O−n as  → 0 ,

NcM,  r ∈ K
I|∀mm ∈ ℕ |r |  Om as  → 0

I  0,1.

2.19

Supergeneralized functions on M are characterized by their generalized point
values, i.e., by their values on points in M̃c, the space of equivalence classes of
compactly supported nets p ∈ M\0,1 with respect to the relation
p  p′ : dhp,p′   Om for all m, where dh denotes the distance on M\
induced by any Riemannian metric.

Definition 2.13. For u ∈ GM, and x0 ∈ M, the point value of u at the point
x0,ux0, is defined as the class of ux0 in K.

Definition 2.14.We say that an element r ∈ K is strictly nonzero if there exists a
representative r and a q ∈ ℕ such that |r|  

q for  sufficiently small. If r is
strictly nonzero, then it is also invertible with the inverse 1/r. The converse is
true as well.

Treating the elements of Colombeau algebras as a generalization of classical
functions, the question arises whether the definition of point values can be
extended in such a way that each element is characterized by its values. Such an
extension is indeed possible.

Definition 2.15. Let  be an open subset of n\. On a set ̂ :



̂  x ∈ \
I|∃pp  0|x |  Op 

x ∈ \
I|∃pp  0∃00  0 |x | ≤ p, for 0    0

2.20

we introduce an equivalence relation:

x  y  ∀qq  0∀  0 |x − y | ≤ q, for 0    0 2.21

and denote by   ̂/  the set of supergeneralized points. The set of points
with compact support is

,c 
x  clx ∈ |∃KK ⊂ \∃00  0 x ∈ K for 0    0 2.22

Definition 2.16. A supergeneralized function u ∈ GM, is called associated to
zero, u  0 on  ⊆ M in L. Schwartz’s sense if one (hence any) representative
u converges to zero weakly,i.e.

w - lim→0 u  0 2.23

We shall often write:

u
Sch
 0. 2.24

Definition 2.17.The GM,-module of supergeneralized sections in vector
bundles- especially the space of generalized tensor fields Ts rM\-is defined along
the same lines using analogous asymptotic estimates with respect to the norm
induced by any Riemannian metric on the respective fibers. However, it is more
convenient to use the following algebraic description of generalized tensor fields

GsrM,  GM, ⊗ Ts rM\ , 2.25

where Ts rM\ denotes the space of smooth tensor fields and the tensor product is
taken over the module CM\. Hence generalized tensor fields are just given by
classical ones with generalized coefficient functions. Many concepts of classical
tensor analysis carry over to the generalized setting [], in particular Lie derivatives
with respect to both classical and generalized vector fields, Lie brackets, exterior
algebra, etc. Moreover, generalized tensor fields may also be viewed as
GM,-multilinear maps taking generalized vector and covector fields to
generalized functions, i.e., as GM,-modules we have

GsrM, ≅ LMG1
0
M,r,G01M,s;GM,. 2.26

In particular a supergeneralized metric is defined to be a symmetric,
supergeneralized 0,2-tensor field gab  gab  (with its index independent of 
and) whose determinant detgab is invertible in GM\. The latter condition is
equivalent to the following notion called strictly nonzero on compact sets: for any
representative detgab  of detgab we have
∀K ⊂ M\ ∃m ∈ ℕinfp∈K|detgab |≥ q  for all  small enough. This notion
captures the intuitive idea of a generalized metric to be a sequence of classical



metrics approaching a singular limit in the following sense: gab is a generalized
metric iff (on every relatively compact open subset V of M) there exists a
representative gab  of gab such that for fixed  (small enough)gab  gab 
(resp. gab |V) is a classical pseudo-Riemannian metric and detgab is invertible in

the algebra of generalized functions. A generalized metric induces a GM,-linear
isomorphism from G01M, to G1

0
M, and the inverse metric gab  gab−1 is a

well defined element of G0
2
M, (i.e., independent of the representative gab ).

Also the supergeneralized Levi-Civita connection as well as the supergeneralized
Riemann, Ricci and Einstein tensor of a supergeneralized metric are defined simply
by the usual coordinate formulae on the level of representatives.

II.3.Superdistributional general relativity
We briefly summarize the basics of superdistributional general relativity, as a

preliminary to latter discussion.In the classical theory of gravitation one is led to
consider the Einstein field equations which are,in general,quasilinear partial
differential equations involving second order derivatives for the metric tensor.
Hence, continuity of the first fundamental form is expected and at most,
discontinuities in the second fundamental form, the coordinate independent
statements appropriate to consider 3-surfaces of discontinuity in the spacetime
manifolfd of General Relativity.

In standard general relativity, the space-time is assumed to be a
four-dimensional differentiable manifold M endowed with the Lorentzian metric
ds2  gdxdx ,  0,1,2,3. At each point p of space-time M, the metric can be

diagonalized as dsp2  dXpdXp with   −1,1,1,1, by choosing the
coordinate system X;  0,1,2,3 appropriately.

In superdistributional general relativity the space-time is assumed to be a four-
dimensional differentiable manifold M\, where dimM  4,dim  3 endowed
with the Lorentzian supergeneralized metric

ds2  gdx
dx ;,  0,1,2,3. 2.27

At each point p ∈ M\, the metric can be diagonalized as

dsp2  dX
pdXp with   −1,1,1,1, 2.28

by choosing the generalized coordinate system X;  0,1,2,3 appropriately.

The classical smooth curvature tensor is given by

R  ∂


 
− ∂



 
 

 

 

− 

 

 

2.29

with 

 
being the smooth Christoffel symbol.The supergeneralized nonsmooth

curvature tensor is given by



R  ∂


   
− ∂



   
 

   


   

−

− 

   


   

2.30

with 

   
being the supergeneralized Christoffel symbol.The fundamental

classical action integral I is

I  1
c L̄G  LMd4x, 2.31

where LM is the Lagrangian density of a gravitational source and L̄G is the
gravitational Lagrangian density given by

L̄G  1
2
G . 2.32

Here  is the Einstein gravitational constant   8G/c4 and G is defined by

G  −g g 
 



 
− 

 



 
2.33

with g  detg. There exists the relation

−g R  G  ∂D , 2.34

with

D  − −g g 
 

− g 

 
. 2.35

Thus the supergeneralized fundamental action integral I is

I 
1
c  L̄G  LMd4x , 2.36

where LM is the supergeneralized Lagrangian density of a gravitational
source and L̄G is the supergeneralized gravitational Lagrangian density given
by

L̄G 
1
2 

G . 2.37

Here  is the Einstein gravitational constant   8G/c4 and G is defined by

G  −g g



  



  
− 

  



  
2.38

with g  detg . There exists the relation

−g R  G  ∂D
 , 2.39

with

D
  − −g g


   

− g


   
. 2.40

Also, we have defined the classical scalar curvature by

R  R 2.41



with the smooth Ricci tensor

R  R . 2.42

From the action I, the classical Einstein equation

G
  R  − 1

2
R  T  , 2.43

follows, where T  is defined by

T  
T



−g 2.44

with

T

 2g LMg

2.45

being the energy-momentum density of the classical gravity source. Thus we have
defined the supergeneralized scalar curvature by

R  R

 2.46

with the supergeneralized Ricci tensor

R  R

 . 2.47

From the action I, the generalized Einstein equation

G
  R

 −
1
2
R  T  , 2.48

follows, where T  is defined by

T  
T




−g
2.49

with

T




 2g

LM
g

2.50

being the supergeneralized energy-momentum density of the supergeneralized

gravity source.The classical energy-momentum pseudo-tensor density

t 

of the

gravitational field is defined by

t 
  L̄G − ∂L̄G

∂g,
g, 2.51

with g,  ∂g/∂x.The supergeneralized energy-momentum pseudo-tensor

density

t 

of the gravitational field is defined by


t 




 L̄G −

∂L̄G
∂g, 

g, 2.52

with g,  ∂g/∂x
.



III.Distributional Schwarzschild Geometry from
nonsmooth regularization via Horizon

In this last section we leave the neighborhood of the singularity at the origin and
turn to the singularity at the horizon. The question we are aiming at is the following:
using distributional geometry (thus without leaving Schwarzschild coordinates), is it
possible to show that the horizon singularity of the Schwarzschild metric is not
merely only a coordinate singularity. In order to investigate this issue we calculate
the distributional curvature at horizon (in Schwarzschild coordinates). In the usual
Schwarzschild coordinates t, r  0,, the metric takes the form

ds2  hrdt2 − hr−1dr2  r2d2,

hr  −1  2m
r .

3.1

Following the above discussion we consider the singular metric coefficient hr as
an element of D′3 and embed it into G3 by replacement

r − 2m  r − 2m2  2 .

Note that, accordingly, we have fixed the differentiable structure of the manifold:
the Cartesian coordinates associated with the spherical Schwarzschild coordinates
in (3.1) are extended through the origin. We have above r  2m (below (r  2m))
horizon



hr 
− r − 2mr if r  2m

0 if r  2m
 hr  −

r − 2m2  2
r



,

where hr ∈ G3,B2m,R,B2m,R  x ∈ 3|2m  ‖x‖  R.

h−1r 
− r
r − 2m , r  2m

, r  2m
 h

−1r 

h−r 
− r − 2mr if r  2m

0 if r ≥ 2m
 h−r 


2m − r2  2

r


∈ G3,B−0,2m ,

where B−0,2m  x ∈ 3|0  ‖x‖  2m

− r
r − 2m , r  2m

, r  2m
 h−

−1r 

 r

r − 2m2  2


∈ G3,B−0,2m

3.2

Inserting (3.2) into (3.1) we obtain a generalized object modeling the singular
Schwarzschild metric above (below) gorizon, i.e.,

ds2  h
rdt2 − hr

−1dr2

 r2d2 ,

ds−2  h
−rdt2 − h−r

−1dr2

 r2d2

3.3

The generalized Ricci tensor above horizon R 
 may now be calculated

componentwise using the classical formulae

R
 0

0

 R

 1
1


 1

2
h′′ 

2
r h

′

R
 2

2

 R

 3
3



h′
r 

1  h
r2

.
3.4

From (3.2) we obtain



h′r  − r − 2m
r r − 2m2  2 1/2


r − 2m2  2 1/2

r2
,

rh′  1  h
 

r − r − 2m
r r − 2m2  2 1/2


r − 2m2  2 1/2

r2
 1 −

r − 2m2  2
r 

− r − 2m
r − 2m2  2 1/2


r − 2m2  2 1/2

r  1 −
r − 2m2  2

r 

− r − 2m
r − 2m2  2 1/2

 1.

h′′r  − r − 2m
r r − 2m2  2 1/2

′


r − 2m2  2 1/2

r2

′



 − 1
r r − 2m2  2 1/2

 r − 2m2

r r − 2m2  2 3/2
 r − 2m
r2 r − 2m2  2 1/2



 r − 2m
r2 r − 2m2  2 1/2

−
2 r − 2m2  2 1/2

r3
.

r2h′′  2rh
′ 

r2 − 1
r r − 2m2  2 1/2

 r − 2m2

r r − 2m2  2 3/2
 r − 2m
r2 r − 2m2  2 1/2



 r − 2m
r2 r − 2m2  2 1/2

−
2 r − 2m2  2 1/2

r3


2r − r − 2m
r r − 2m2  2 1/2


r − 2m2  2 1/2

r2


− r
r − 2m2  2 1/2


rr − 2m2

r − 2m2  2 3/2
 r − 2m

r − 2m2  2 1/2


 r − 2m
r − 2m2  2 1/2

−
2 r − 2m2  2 1/2

r 

− 2r − 2m

r − 2m2  2 1/2

2 r − 2m2  2 1/2

r 

− r
r − 2m2  2 1/2


rr − 2m2

r − 2m2  2 3/2
.

3.5

Investigating the weak limit of the angular components of the Ricci tensor (using
the abbreviation



̃r  
0



sind 
0

2

dx

and let x be the function x ∈ S2m3,k, where by S2m3,k we denote the
class of all functions x such that (i) ̃r~r − 2mk, r~2m,k  2 and (ii)
x ∈ C3. Then for any function x ∈ S2m3, 2 with compact support we
get:


K
R

 2
2


xd3x  

K
R

 3
3


xd3x 


2m

R

rh′  1  h
̃rdr 


2m

R

− r − 2m
r − 2m2  2 1/2

̃rdr  
2m

R

̃rdr.

3.6

By replacement r − 2m  u, from (3.6) we obtain


K
R

 2
2


xd3x  

K
R

 3
3


xd3x  − 

0

R−2m
u̃u  2mdu
u2  21/2

 
0

R−2m

̃u  2mdu. 3.7

By replacement u  , from (3.7) we obtain the expression

I3
  

K
R

 3
3


xd3x  I2

  
K
R

 2
2


xd3x 

−  
0

R−2m


̃  2md
2  11/2

− 
0

R−2m


̃  2md .
3.8

From Eq.(3.8) we obtain

I3
  I2

  − ̃2m
0! 

0

R−2m



2  11/2

− 1 d 

− 
2

1! 
0

R−2m



2  11/2

− 1 ̃1d 

−̃2m R − 2m


2
 1 − 1 − R − 2m 

− 
2

1 
0

R−2m



2  11/2

− 1 ̃1d,

3.9

where we have expressed the function   2m as



  2m  ∑ l0
n−1 l2m

l!
l  1

n!
nn ,

    2m , 1    0 , n  1
3.10

with ̃l  dl̃/d l. Equations (3.9)-(3.10) gives

→0
lim I3

 
→0
lim I2

 

→0
lim −̃2m R − 2m


2
 1 − 1 − R − 2m 


→0
lim − 

2

1 
0

R−2m



2  11/2

− 1 ̃1d  0

3.11

Thus in S2m
′ BR2m,k ⊂ S2m

′ 3,k ⊂ D′3, where
B2m,R  x ∈ 3|2m  ‖x‖  R from Eq.(3.11) we obtein

w −
→0
lim R

 3
3 

→0
lim I3

  0,

w −
→0
lim R

 2
2 

→0
lim I2

  0.
3.12

For R
 1

1

, R

 0
0


we get:

2 
K
R

 1
1


xd3x  2 

K
R

 0
0


xd3x 


2m

R

r2h′′  2rh
′̃rdr 

 
2m

R

− r
r − 2m2  2 1/2


rr − 2m2

r − 2m2  2 3/2
̃rdr.

3.13

By replacement r − 2m  u, from (3.13) we obtain

I1
  2 

K
R

 1
1


xd3x  I2  2 

K
R

 0
0


xd3x

 
2m

R

r2h′′  2rh
′̃rdr 

 
0

R−2m

− u  2m
u2  21/2


u2u  2m
u2  23/2

̃u  2mdu.

3.14

By replacement u  , from (3.14) we obtain



2 
K
R

 1
1


xd3x  2 

K
R

 0
0


xd3x 

 
2m

R

r2h′′  2rh
′̃rdr 

  
0

R−2m


−   2m

22  21/2

22  2m
22  23/2

̃  2md 

− 
0

R−2m


2̃  2md
22  21/2

− 2m 
0

R−2m


̃  2md
22  21/2




0

R−2m


43̃  2md
22  23/2

 2m 
0

R−2m


32̃  2md
22  23/2



 − 
0

R−2m


̃  2md
2  11/2

 
0

R−2m


3̃  2md
2  13/2



2m − 
0

R−2m


̃  2md
2  11/2

 
0

R−2m


2̃  2md
2  13/2

.

3.15

From Eq.(3.15) we obtain

I0
  I1

  2m
̃2m
0! 

0

R−2m


− 1
2  11/2


2

2  13/2
d 

 
1! 

0

R−2m


̃1 − 1
2  11/2


2

2  13/2
d 

 ̃2m
0! 

−2m


R−2m


− 1
2  11/2


2

2  13/2
d 

 
2

1! 
0

R−2m


̃1 − 1
2  11/2


2

2  13/2
d,

3.16

where we have expressed the function   2m as

  2m  ∑ l0
n−1 l2m

l!
l  1

n!
nn ,

    2m , 1    0 , n  1
3.17

with ̃l  dl̃/d l.Equation (3.17) gives



w -
→0
lim I0

  w -
→0
lim I1

 

2m̃2m
→0
lim 

0

R−2m


− 1
2  11/2


2

2  13/2
d 

2m̃2m
s→
lim 

0

s 2d
2  13/2

− 
0

s d
2  11/2



 −2m̃2m.

3.18

where use is made of the relation

s→
lim 

0

s
2d

2  13/2
− 

0

s
d

u2  11/2
 −1 3.19

Thus in S2m
′ B2m,R,k ⊂ S2m

′ 3,k we obtain

w -
→0
lim R

 1
1  w -

→0
lim R

 0
0  −m̃2m. 3.20

The supergeneralized Ricci tensor below horizon R
− 

  R
− 

 may now be
calculated componentwise using the classical formulae

R
− 0

0

 R

− 1
1


 1

2
h−′′ 

2
r h

−′ ,

R
− 2

2

 R

− 3
3



h−′
r 

1  h−
r2

.
3.21

From (3.2) we obtain

h−r  − r − 2mr  h−r 
2m − r2  2

r  −hr, r  2m.

h−′r  −h′r  r − 2m
r r − 2m2  2 1/2

−
r − 2m2  2 1/2

r2
,

rh−′  1  h
−  −rh

′  1 − h
 

r − 2m
r − 2m2  2 1/2

 1.

h−′′r  −h′′r 

− r − 2m
r2 r − 2m2  2 1/2


2 r − 2m2  2 1/2

r3
.

r2h−′′  2rh
−′  −r

2h′′ − 2rh
′ 

r
r − 2m2  2 1/2

− rr − 2m2

r − 2m2  2 3/2
.

3.22

Investigating the weak limit of the angular components of the Ricci tensor (using



the abbreviation ̃r  
0



sind 
0

2

dx where

x ∈ S2m3,k, i.e.̃r~r − 2mk, k  2 and x is a function with compact
support K of the class C3 ,such that K ⊆ B−0,2m  x ∈ 3|0  ‖x‖  2m
we get:


K
R
− 2

2

xd3x  

K
R
− 3

3

xd3x 


0

2m

rh−′  1  h
−̃rdr 


0

2m

r − 2m
r − 2m2  2 1/2

̃rdr  
0

2m

̃rdr.

3.23

By replacement r − 2m  u, from Eq.(3.23) we obtain


K
R
− 2

2

xd3x  

K
R
− 3

3

xd3x 


−2m

0
u̃u  2mdu
u2  21/2

 
−2m

0

̃u  2mdu.
3.24

By replacement u  , from (3.23) we obtain

I3
−  

K
R
− 3

3

xd3x  I2

−  
K
R
− 2

2

xd3x 

  
− 2m



0
̃  2md
2  11/2

 
− 2m



0

̃  2md ,
3.25

which is calculated to give

I3
−  I2

−   ̃2m
0! 

− 2m


0


2  11/2
 1 d 

 
2

1! 
− 2m



0


2  11/2
 1 ̃1d 

̃2m 1 − 2m


2
 1  2m

 

 
2

1 
− 2m



0


2  11/2
 1 ̃1d,

3.26

where we have expressed the function   2m as



  2m  ∑ l0
n−1 l2m

l!
l  1

n!
nn ,

    2m , 1    0 , n  1
3.27

with ̃l  dl̃/drl. Equation (3.27) gives

→0
lim I3

− 
→0
lim I2

− 

→0
lim ̃2m 1 − 2m


2
 1  2m

 


→0
lim 2

2 
− 2m



0


2  11/2
 1 ̃1d  0.

3.28

Thus in S2m
′ BR−2m,k ⊂ S2m

′ 3,k, where B−0,2m  x ∈ 3|0  ‖x‖  2m from
Eq.(3.28) we obtain

w −
→0
lim R

− 3
3 

→0
lim I3

−  0.

w −
→0
lim R

− 2
2 

→0
lim I2

−  0.
3.29

For R
− 1

1

, R

− 0
0


we get:

2 
K
R
− 1

1

xd3x  2 

K
R
− 0

0

xd3x 


0

2m

r2h−′′  2rh
−′̃rdr 

 
0

2m

r
r − 2m2  2 1/2

− rr − 2m2

r − 2m2  2 3/2
̃rdr.

3.30

By replacement r − 2m  u, from (3.30) we obtain

I1
  2  R

− 1
1


xd3x  I2  2  R

− 0
0


xd3x

 
0

2m

r2h−′′  2rh
−′̃rdr 

 
−2m

0

u  2m
u2  21/2

− u
2u  2m
u2  23/2

̃u  2mdu.

3.31

By replacement u  , from (3.31) we obtain



2 
K
R
− 1

1

xd3x  2 

K
R
− 0

0

xd3x 


− 2m



0

r2h−′′  2rh
−′̃rdr 

  
− 2m



0
  2m

22  21/2
− 22  2m
22  23/2

̃  2md 


− 2m



0
2̃  2md
22  21/2

 2m 
− 2m



0
̃  2md
22  21/2

−

− 
− 2m



0
43̃  2md
22  23/2

− 2m 
− 2m



0
32̃  2md
22  23/2



 
− 2m



0
̃  2md
2  11/2

− 
− 2m



0
3̃  2md
2  13/2



2m 
− 2m



0
̃  2md
2  11/2

− 
− 2m



0
2̃  2md
2  13/2

.

3.32

which is calculated to give

I0
−  I1

−  2m
̃2m
0!

l 
− 2m



0

1
2  11/2

− 2

2  13/2
d 

 
1! 

0

2m


̃1 1
2  11/2

− 2

2  13/2
d  O2.

3.33

where we have expressed the function   2m as

  2m  ∑ l0
n−1 l2m

l!
l  1

n!
nn ,

    2m , 1    0 , n  1
3.34

with ̃l  dl̃/d l.Equation (3.34) gives



→0
lim I0

− 
→0
lim I1

− 

2m
→0
lim

̃2m
0! 

− 2m


0

1
2  11/2

− 2

2  13/2
d 

2m̃2m
s→0
lim 

−s

0 d
2  11/2

− 
−s

0 2d
2  13/2



 2m̃2m.

3.35

where use is made of the relation

s→
lim 

−s

0
d

u2  11/2
− 
−s

0
2d

2  13/2
 1. 3.36

Thus in S2m
′ B−0,2m,k ⊂ S2m

′ 3,k we obtain

w -
→0
lim R

− 1
1  w -

→0
lim R

− 0
0  m̃2m. 3.37

Using Egs. (3.12),(3.20),(3.29),(3.37) we obtain

 Trr  T
  T

  Ttt  Tr−r  T
−  T

−  Tt−t −g d3x  0 3.38

Thus the Tolman formula [3],[4] for the total energy of a static and asymptotically
flat spacetime with g the determinant of the four dimensional metric and d3x the

coordinate volume element, gives

ET   Trr  T
  T

  Ttt −g d3x  m, 3.39

IV. Quantum scalar field in curved distributional
spacetime

4.1 Canonical quantization in curved distributional spacetime
Much of formalism can be explained with Colombeau generalized scalar

field.The basic concepts and methods extend straightforwardly to distributional
tensor and distributional spinor fields. To being with let’s take a spacetime of
arbitrary dimension D, with a metric gµν of signature −. . .−. The action for the
Colombeau generalized scalar field  ∈ GM is

S  
M

dDx 1
2

|g | g
∂∂ − m2  R

2



. 4.1

The corresponding equation of motion is



  m2  R , ∈ 0,1. 4.2

Here

  |g |−1/2∂|g |1/2g
∂ 

. 4.3

With  explicit, the mass m should be replaced by m/.Separating out a time
coordinate x0, xµ  x0,xi, i  1,2,3 we can write the action as

S   dx0L

, L   dD−1xℒ


. 4.4

The canonical momentum at a time x0 is given by

x  L /∂0x  |h |
1/2n∂x, 4.5

where x labels a point on a surface of constant x0, the x0 argument of  is
suppressed, nµ is the unit normal to the surface, and |h | is the determinant of
the induced spatial metric hij. To quantize, the Colombeau generalized field
 and its conjugate momentum x are now promoted to hermitian
operators and required to satisfy the canonical commutation relation,

x,y  i
D−1x,y, ∈ 0,1. 4.6

Here dD−1yD−1x,yfy  fx for any scalar function f ∈ D3, without the use of

a metric volume element. We form now a conserved bracket from two complex
Colombeau solutions to the scalar wave equation (4.2) by

〈,   


dj




, ∈ 0,1. 4.7

where

j,  i/ |g |1/2g
∂ − ∂ 

. 4.8

This bracket is called the generalized Klein-Gordon inner product, and 〈, 
the generalized Klein Gordon norm of . The generalized current density
j, is divergenceless,i.e. ∂j

,  0 when the Colombeau

generalized functions  and  satisfy the KG equation (4.2), hence the
value of the integral in (4.7) is independent of the spacelike surface Σ over which it
is evaluated, provided the functions vanish at spatial infinity. The generalized KG
inner product satisfies the relations

〈,  
 −〈,   〈, , ∈ 0,1. 4.9

We define now the annihilation operator associated with a complex Colombeau
solution  by the bracket of  with the generalized field operator  :

a  〈, . 4.10

It follows from the hermiticity of  that the hermitian conjugate of a is
given by



a†  −a. 4.11

From Eq.(4.5) and CCR (4.6) one obtain

a,a†  〈, . 4.12

Note that from Eq.(4.11) follows

a,a  −〈, , a
†,a†  −〈,  4.13

Note that if  is a positive norm solution with unit norm hf with, then a
and a† satisfy the commutation relation a†,a  1. Suppose now
that |Ψ is a normalized quantum state satisfying a|Ψ  1, then for each n,

the state |n,Ψ  1/n!an|Ψ 
is a normalized eigenstate of the number

operator N  a
†a with eigenvalue n. The span of all these states

defines a Fock space of the distributional - wavepacket “n-particle excitations”
above the state |Ψ. If we want to construct the full Hilbert space of the field theory
in curved distributional spacetime,how can we proceed? We should find a
decomposition of the space of complex Colombeau solutions to the wave equation
(4.2) S into a direct sum of a positive norm subspace Sp and its complex conjugate
Sp, such that all brackets between solutions from the two subspaces vanish. That
is, we must find a direct sum decomposition:

S  Sp ⊕Sp 4.14

such that

〈,   0,∀ ∈ Sp 4.15

and

〈,   0,∀,  ∈ Sp. 4.16

The condition (4.15) implies that each  in Sp can be scaled to define its own
harmonic oscillator sub-albegra. The second condition implies, according to (4.13),
that the annihilators and creators for  and  in the subspace Sp commute
amongst themselves:

a,a  a
†,a†  0. 4.17

Given such a decompostion a total Hilbert space H for the field theory can be
defined as the space of finite norm sums of possibly infinitely many states of the
form

a†1,. . .a†n,|0, 4.18

where |0 is a state such that an,|0  0 for all  in Sp. The state |0, as in
classical case, is called a Fock vacuum and Hilbert space H is called a Fock space.
The representation of the field operator on this Fock space is hermitian and
satisfies the canonical commutation relations in sense of Colombeau generalized
function.

4.2 Defining distributional outgoing modes



For illustration we consider the non-rotating,uncharged d-dimensional SAdS BH
with a distributional line element

ds2  −fdt2  f−1dr2

 r2dd−2

2 , ∈ 0,1, 4.19

where

f ≠ 0, ∈ 0,1,

f0  1  r2

L2
− r0

d−3

rd−3
,

4.20

where dd−2
2 is the metric of the (d − 2)-sphere, and the AdS curvature radius

squared L2 is related to the cosmological constant by L2  −d − 2d − 1/2Λ. The
parameter r0 is proportional to the mass M of the spacetime:
M  d − 2Ad−2r0d−3/16π, where Ad−2  2πd−1/2/Γd − 1/2. The distributional
Schwarzschild geometry corresponds to L → .The corresponding equation of
motion (4.2) for massless case are

∇∇ 
d − 2
4d − 1

R,

G,  g,  8GT,,

T,~x.

4.21

The time-independence and the spherical symmetry of the metric imply the
canonical decomposition

t, r,  e
−it ∑ lm,rYlm

rd−2/2   
, 4.22

where Ylm denotes the d-dimensional scalar spherical harmonics, satisfying

∆Ωd−2Ylm  −ll  d − 3Ylm, 4.23

the Laplace-Beltrami operator.Substituting the decomposition (4.22) into Eq. (6)
one get a radial wave equation

f2
d2lm,r
dr2

 ff
′ dlm,r

dr
 2 − Vlm,rlm,r


 0. 4.24

We define now a “tortoise” distributional coordinate r∗  r
∗r by the relation

dr∗

dr 
 f

−1r

. 4.25

By using a “tortoise” distributional coordinate the Eq.(4.24) can be written in the
form of a Schrödinger equation with the potential Vlm,r

dr∗
dr∗ 

 2 − Vr∗r∗  0. 4.26

Note that the tortoise distributional coordinate r∗r becomes to infinite
Colombeau constant r∗r   ln  at the horizon, i.e. as r → r, but its
behavior at infinity is strongly dependent on the cosmological constant:



r∗r    for asymptotically-flat spacetimes, and r∗r   finite
Colombeau constant for the SAdSd geometry.

4.2.1. Boundary conditions at the horizon of the distributional SAdS BH
geometry.

For most spacetimes of interest the potential Vr∗r  0 as r  r, i.e.
|r∗r|  , and in this limit solutions to the wave equation (4.26) behave as

t, r∗~exp−it  r
∗r, as r~r. 4.27

Note that classically nothing should leave the horizon and thus classically only
ingoing modes (corresponding to a plus sign) should be present,i.e.

t, r∗~exp−it  r
∗r, as r~r. 4.28

Note that for non-extremal spacetimes, the tortoise coordinate tends to

r∗r   f−1rdr

~ f

′r


−1
ln|r − r |   as r~r, 4.29

where f
′r


 0. Therefore near the horizon, outgoing modes behave as

exp−it − r∗r  exp−i
∗t, rexp−2ir

∗r 

 exp−i∗t, r |r − r |  2i/f
′r 


,

4.30

where ∗t, r  t  r
∗r. Now Eq. (4.30) shows that outgoing modes is

Colombeau generalized function of class G.
V. Distributional SAdS BH spacetime-induced vacuum
dominance

We shall assume now any distributional spacetime which is conformally static in
both the asymptotic past and future. We will be considered distributional spacetime
which is conformally flat in the asymptotic past,i.e.

ds2  f,in2 −dt2  dx2 asymp. past

ds2  f,out2 −dt2  h,ijdxidxj, asymp. future
5.1

where  ∈ 0,1 f,J  f,Jt,x  0,J ∈ in,out, are smooth functions and
h,ij  h,ijx, i, j  1,2,3, are the components of an arbitrary distributional spatial
metric. Note that we use the same labels t and x  x1,x2,x3 for coordinates in the
asymptotic past and future only for simplicity; they are obviously defined on
non-intersecting regions of the spacetime.) In each of these asymptotic regions the
distributional field  can be written as   ̃/f,J, where ̃ satisfies

− ∂2
∂t2

̃

 −Δ,J̃  V,J̃, 5.2



where Δ,in is the flat Laplace operator, Δ,out is the Laplace operator
associated with the spatial metric hij, and the effective potential VJ is given by

V,J 
ΔJf,J
f,J 

 f,J
2 m2  R




1 − 6 ΔJf,J
f,J 

 m2 f,J
2


 K,J,

5.3

with K,in  0, K,out  K,outx the scalar curvature associated with the spatial
distributional metric h,ij,

We assume now this condition: (i) the massless (m  0) field with arbitrary
coupling  in spacetimes which are asymptotically flat in the past and
asymptotically static in the future,i.e. fin  1 and f,out  f,outx, as those describing
the formation of a static BH from matter initially scattered throughout space, and (ii)
the massless, conformally coupled field (m  0 and   1/6). With this assumptions
for the potential, two different sets of positive-norm distributional modes,

u
,k



and v,




, can be naturally defined by the requirement that they are the

solutions of Eq.(5.2) which satisfy the asymptotic conditions:

u
,k



 past 163k

−1/2 e−ikt−k
x f,in

−1


5.4

and

v,



 future 2−1/2e−it f,out

−1 F,x

, 5.5

where k ∈ R3, k : ‖k‖,   0, and F,x are Colombeau solutions of

−Δ,out  V,outxF,x  
2F,x 5.6

satisfying the normalization


out
d3x h F,x∗F,x


 , 5.7

on a Cauchy surface out in the asymptotic future. Note that each F,, ∈ 0,1 can
be chosen to be real without loss of generality. There are reasonable situations
where the distributional modes v,




, given in Eq. (5.5), together with

distributional modes v,
−


fail to form a complete set of normal modes. This

happens whenever the operator −Δ,out  V,outx in Eq. (5.2) happens to
possess normalizable i.e., satisfying Eq. (5.7) eigenfunctions with negative
eigenvalues, 

2  −
2  0. In this case, additional positive-norm modes w,





with the asymptotic behavior

w,



 future et−i/12  e−ti/12

F,x
2 f,outx 

5.8

and their complex conjugates w,
−


are necessary in order to expand an arbitrary

Colombeau solution of Eq.(5.1) As a direct consequence, at least some of the

in-modes u
,k



(typically those with low k) eventually undergo an exponential



growth.This asymptotic divergence is reflected on the unbounded increase of the
vacuum fluctuations,

〈
2x  future  e2̄t

2̄
F̄x
f,outx 

2

1  Oe−t, 5.9

where F̄x is the eigenfunction of Eq. (5.6) associated with the lowest negative
eigenvalue allowed, 

2  −̄2,  is some positive constant, and  is a
dimensionless constant (typically of order unity) whose exact value depends
globally on the spacetime structure (since it crucially depends on the projection of

each u
,k



on the mode w,




whose 

2  −̄2;  also depends on the initial

state, here assumed to be the vacuum |0in). As one would expect, these wild
quantum fluctuations give an important contribution to the vacuum energy stored in
the field. In fact, the expectation value of its distributional energy-momentum
tensor, 〈T,x, ∈ 0,1, in the asymptotic future is found to be dominated by
this exponential growth:

〈T,00x 
future 〈

2x
1 − 4

2
̄2  DF̄2

F̄2
 m2f

2  K


1 − 6 2D2f
f

 Df
2

2f
2
− DifD

iF̄
fF̄



 Oe−t ,

5.10

〈T,0ix 
future

〈
2x 1 − 4 ̄DiF̄

F̄ 
− 1 − 6 ̄Dif

f 
 Oe−t ,

5.11

〈T,ijx 
future

〈
2x 1 − 2

DiF̄DjF̄
F̄2 

− 2
DiDjF̄
F 

  R,ij



1 − 4hij

2
̄2 − DF̄2

F̄2
− m2f2 − K



1 − 6
DifDjf
f2

−
DifDjF̄
fF̄

−
DjfDiF̄
fF̄ 



h,ij
2D2f
f

− Df2

2f2
 DkfD

kF̄
fF̄ 

 Oe−t,

5.12

where Di is the derivative operator compatible with the distributional metric h,ij
(so that Δout  D2), R,ij


is the associated distributional Ricci tensor so that

K,out  hijR,ij

, and we have omitted the subscript out in f,out and K,out

for simplicity. The Eqs. (5.10-5.12), together with Eq.(5.9), imply that on time scales
determined by ̄−1, the vacuum fluctuations of the field should overcome any other
classical source of energy, therefore taking control over the evolution of the



background geometry through the semiclassical Einstein equations (in which
〈T,  is included as a source term for the distributional Einstein tensor). We are

then confronted with a startling situation where the quantum fluctuations of a field,
whose energy is usually negligible in comparison with classical energy
components, are forced by the distributional background spacetime to play a
dominant role. We are still left with the task of showing that there exist indeed
well-behaved distributional background spacetimes in which the operator
−Δ,out  V,outx  possesses negative eigenvalues 

2  0,condition on which

depends Eq(5.9). Experience from quantum mechanics tells us that this typically
occurs when V,out gets sufficiently negative over a sufficiently large region. It is
easy to see from Eq. (5.3) that, except for very special geometries (as the flat one),
one can generally find appropriate values of  ∈ R which make V,out as negative
as would be necessary in order to guarantee the existence of negative
eigenvalues. For distributional BH spacetime using Eq.(5.9)-Eq.(5.12) one obtain

〈
2r  future

 e2̄t f′r
2

2̄
F̄r

|r − r |   

2

, r → r 5.13

〈T,00r 
future

〈
2r

1 − 4
2

̄2 
DF̄r2

F̄2r
 m2|r − r |  2  K



1 − 6 2f′rD2fr
|r − r |  


f
′r

2
Dfr2

2|r − r |   2
− f

′rDifrDiF̄
|r − r |  F̄



,

r → r,

5.14

〈T,0ir 
future

〈
2r 1 − 4 ̄DiF̄r

F̄r 

− 1 − 6 ̄f′rDifr
|r − r |  



,

r → r,

5.15



〈T,ijr 
future

〈
2r 1 − 2

DiF̄DjF̄
F̄2 

− 2
DiDjF̄
F 

  R,ij



1 − 4hij

2
̄2 − DF̄2

F̄2
− m2|r − r |  2 − K



1 − 6
f
′r

2
DifDjf

|r − r |  2
−
f
′rDifDjF̄

|r − r |  F̄
−
f
′rDjfDiF̄
|r − r |  F̄





h,ij
2f

′rD2f
|r − r |  

−
f
′r

2
Df2

2|r − r |  2

f
′rDkfDkF̄
|r − r |  F̄



,

r → r.

5.16

Remark 5.1.Note that in spite of the unbounded growth at r → r in
Eq.(5.13)-Eq.(5.16), 〈T,  is covariantly conserved: ∇〈T,

   0. In the static

case f,out  f,outx, for instance for distributional BH geometry, this implies

that the total vacuum energy is kept constant, although it continuously flows from
spatial regions where its density is negative to spatial regions where it is positive.

Remark 5.2. Note that the singular behavior at r → r appearing in
Eq.(5.13)-Eq.(5.16) leads only to asymptotic divergences, i.e. all the quantities
remain finite everywhere except horizon.

VI.Conclusions and remarks.
We have shown that a succesfull approach for dealing with curvature tensor

valued distribution is to first impose admisible the nondegeneracy conditions on the
metric tensor, and then take its derivatives in the sense of classical distributions in
space S2m

′ 3,k,k  2.
The distributional meaning is then equivalent to the junction condition

formalism. Afterwards, through appropiate limiting procedures, it is then possible to
obtain well behaved distributional tensors with support on submanifolds of d ≤ 3, as
we have shown for the energy-momentum tensors associated with the
Schwarzschild spacetimes. The above procedure provides us with what is
expected on physical grounds. However, it should be mentioned that the use of
new supergeneralized functions (supergeneralized Colombeau algebras GR3,).
in order to obtain superdistributional curvatures, may renders a more rigorous
setting for discussing situations like the ones considered in this paper.
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