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Consideration of the irreversible processes resulting from the interaction between two

subsystems (consisting of   ideal gases) resulted in two controversies [1-16]. The resolution

of these controversies can be achieved by analyzing relevant  contradictory formulations

[2-4, 5, 8-11, 12, 15, 16].  Comments on one  of this controversies were published recently in

the JCE [16] and were about an earlier  article published  in the JCE [15].

The  analysis of several processes involving the interaction between two ideal gases

clears up the physical meaning of the equations and permits the determination of the final

equilibrium state. If one of the subsystems is at constant volume,  the increase of the entropy

of the universe, the global entropy  increase, the Second Law, implies the local law,  the  

positive entropy production. If the volumes of the subsystems change through the movement

of a partition, it is not possible to generalize the equations for this configuration. The local

law for the first case (the volume is constant) it is unnecessary, for the other it doesn't make

sense. For one case it gives a false interpretation [15-16]. For the other it was the source of a

false impossibility statement   [1-14]. To show that we need to consider two configurations:

1. One mole of an ideal gas A occupies an initial volume  VAi and the initial

temperature is TAi . One mole of an ideal gas B occupies an initial volume VBi and the initial



temperature is  TBi. For this first configuration the gas A is connected with gas B and the

volume of gas B is constant. Energy flows from A to B, because TBi<TAi . The final

temperature, we impose, is  TAf =TBf=TAi , since work is done by an exterior force. The  work

 is equal to the potential energy change of a part of the universe, without entropy change [17,

18]. This configuration originates, recently, a controversy [15-16].

2. One mole of an ideal gas occupies an initial volume VAi and the initial temperature

is TAi .  The interaction between the two gases results from the movement of a piston, that

separates the two gases. The total volume is constant,  V=VA+VB. The initial temperature of

B, TBi is lower than the temperature of A, TAi...  This configuration also gives a controversy

[1-14].

I.  The Fundamental Relation of Thermodynamics  dU=-pdV+TdS,

the First and Second Laws of Thermodynamics - meaning and

validity conditions.

 Internal energy U , entropy S, volume V, pressure p and temperature T  are related by

the following expressions

(1)U = U(V, S)

(2)⎛
⎝
∂U
∂S

⎞
⎠ V

= T

(3)⎛
⎝
∂U
∂V

⎞
⎠ S

= −p.
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Since 

(4)dU =< dU, dP >

with  (  is the exterior differential) and (4) is the contraction of  dU = ⎛
⎝
∂U
∂V

⎞
⎠ S

dV + ⎛⎝
∂U
∂S

⎞
⎠ V

dS d

form dU   with vector  dP=dV uV +dS uS   [19], we have

. (5)dU = −pdV + TdS

Lets  us consider a process described in time by U=U(t), V=V(t) . Since U=U(V,S),

exists one S(t) satisfying  U(t)=U[V(t),S(t)].  If  we  put  the  subsystem  at  an  equilibrium  

point  with energy U=U(t), volume V=V(t) and entropy S=S(t) then makes sense the

quantities

p = −⎛⎝
∂U
∂V

⎞
⎠ S

and

, T = ⎛
⎝
∂U
∂S

⎞
⎠ V

p and T are the pressure and the temperature at the equilibrium point with energy U=U(t)   

the same  volume V(t)   and the same entropy S(t) . It is important to remark that when the

subsystem describes in time an actual trajectory, does not make sense the temperature and the

pressure for the actual trajectory. But the meaning is clear for the equilibrium points with the

same energy, the same entropy and the same volume. Lets call this points equivalent

equilibrium points (EP). Since dU=-pdV+TdS from (4), equation (5) is  general and well

defined for any  process. 
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A reversible process is a process which can be globally reverted. This process is

obviously isentropic. As an example lets consider the reversible adiabatic compression of an

ideal gas. From the energy conservation law and from equation (5) we have

, (6)dWext = dU

, (7)dWext = −pextdV

, (8)−pextdV = −pdV + TdS

, (9)pext = p

, (10)dS = 0

and if compressed isothermally and reversibly we have 

, (11)dWext = dU + dUH

where dWext  is the work of an exterior force and dUH  the variation of  the  internal  energy  

of  a heat source.  From (5), (7) and (11) we have 

, (12)−pextdV = −pdV + TdS + TdSH

(13)pext = p,

. (14)dS + dSH = 0

4



To be reversible it was necessary that the exterior pressure was equal to the interior

pressure, and evidently, the initial state was a global equilibrium point with the same

temperature T for all the subsystems.

It is also important to remark, for a compression or expansion, the piston which

permits the change of volume has mass.  The piston kinetic energy  Ekin  satisfies the

following relation

, (15)dW = dEkin

with .  (16)dW = dWext. + dWint. = −pextdV + p dV

 dWint is the work done by an interior pressure p' , the dynamic pressure over the

piston, which is different from the equilibrium pressure p.  If the piston speed is not zero, for

a compression the dynamic pressure is higher than the equilibrium pressure and for an

expansion the dynamic pressure is smaller than the equilibrium pressure (for a reversible

process those pressures are equal because the piston speed is zero) [20].

For an irreversible process the energy conservation principle must consider the kinetic

energy change of the piston (dEkin)

, (17)dEkin + dEpot + dU = 0

and

, (18)dWext = −dEpot

5



therefore from  (15), (17) and (18)

. (19)−d(Ekin + Epot) = dU = −dW + dWext = −dWint = −p dV

Then, for an irreversible process,  

(20)−d(Ekin + Epot) = −dWint = dU = −p dV

and from (5)

. (21)−dWint = −p dV = dU = −pdV + TdS

If the process was reversible 

(22)−dWint = dWext = dU.

If the System contains a heat source with energy  and not only , then we have UH U

. (23)dWint = −p dV = dU + dUH = −pdV + TdS + THdSH

The Second Law states that the change of entropy of a System (whole subsystems) is

equal or greater than  zero. When p=p' and T=TH, dS+dSH =0. If dV<0 , p' p. If  dV>0, p' p.≥ ≤

For both cases, since T and TH are greater then zero, and since the energy flows from the

higher  temperature subsystem to the one with lower temperature,dS+dSH>0. The positive

entropy variation  results from the energy exchanges and from the change of volume due to

the interaction with the piston, and the energy exchange between the subsystems at different

temperatures.  When the interaction between the subsystems is achieved by the movement of
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a movable partition separating the two gases, relations (21) and (22) are verified with  

U=UA+UB and the dynamic pressure  p' is substituted by the difference between the dynamic

pressures  p'A-p'B and TdS is substituted by TAdSA +TBdSB . Although the expression is similar

to (23), obviously neither TAdSA  or TBdSB has a similar meaning to the term  TH dSH  at

expression (23), which can be interpreted as the heat exchanged through the fixed partition.

Here the two terms   has the two effects that change the entropy, the change ofTidSi (i = A, B)

volume and the change of energy trough the global movement of the piston. At II, III,  IV, V

and VI we are going to analyse the interaction between subsystems when the volume of

subsystem B is constant, and at  VII we are going to consider the interaction when the

volume of  B changes.

II.  Irreversible Isothermal Process (I I P)

Lets consider one mole of an ideal gas A  with internal energy UA=CVA TA . Gas B,

also ideal, has a constant volume VB, and the initial temperature is TBi. If  gas A is

compressed and if energy can flow from A to B, it is possible, through the compression, to

compensate the energy flux to B, and we can have the energy of A constant and therefore the

temperature of A constant. The speed of this compression depends of the speed of  the energy

flow to B. Therefore the exterior pressure is  not equal to the interior pressure and the

transformation is not reversible, although the temperature that can be associated to A (EP) is

constant.
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When an equilibrium point is achieved,  , we have  (integrating (19)TB = TBf = TAi

between the initial and final states, when the piston is not moving)

(24)Wext = ΔUA + ΔUB

and since ΔUA = 0

. (25)Wext = ΔUB

The volume achieved by A, it depends on the value of   ,  which is determined  dWext

by the speed of the energy flux to B, conditioned by the geometry of the interaction.

Therefore the final equilibrium state, the final volume is not the same for two different

apparatus with different geometries.

III.  Isothermal "Reversible" Process (I R P)

Another process is the following:

Gas A is compressed reversibly, and the work on this compression   isWext = ΔUB

introduced in the heat reservoir which is in contact with subsystem A. The temperature of the

reservoir is equal to the initial temperature of A, TAi . After this first process is completed the

reservoir transfers to B the same energy that has received   The reservoir returns to theΔUB.

initial state and apparently, but only  apparently, did not  interfere on the process. 

The two previous processes  (I I P and I R P) are approximately equivalents. The final

volume for A is nearly the same. But rigorously the two processes are not equivalent because

the final volume for A is not rigorously the same.

The entropy variation for A is

ΔSA = R ln ⎛
⎝

VAf

VAi

⎞
⎠
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and can be calculated by equation (5) through the equivalent points EP, between the initial

state and the final state. For the process  IRP the final volume is  determined by

. (26)Wext = ∫−pdV = ∫−R TAi
dVA
VA

= CVB (TAi − TBi)

IV.  "Isothermal" Irreversible Process with exterior constant

pressure.      

If  gas A was compressed with an exterior  constant pressure contacting an heat

reservoir at temperature  TAi we have, between the initial and final equilibrium points 

. (27)Wext = −pext ΔV = ΔUH

Lets impose 

. (28)Wext = ΔUB = CVB(TAi − TBi)

When the equilibrium point is attained the temperature of A is evidently  TAi but

during the  compression, because   the temperature is not  .pext ≠ pA TAi

The final volume can be calculated  with  (27), (28) and

  

.            (29)pext VAf = R TAi

If the condition of constant  temperature was not imposed, although the initial and the

final temperature are the same,  the final volumes can be very different from the final volume

of  I R P and consequently from I I P.
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If the process was performed contacting directly subsystem B, without the previous

contact with a heat reservoir, the final state, the final volume of A, is the same. Equations  

(28) and (29) determines the same volume for A. The same happens for I R P and I I P when

Wext has the same value and the final pressure is the same.

V. The meaning of entropy production.

For the IRP, as was previously  verified, the final state can be easily determined   and

 the entropy variation for A is equal to

.
Q

TAi
= −ΔUB

TAi

For the I I P the entropy variation for A, is not equal to

 . (30)
Q

TAi
= −ΔUB

TAi

The entropy production   was introduced in the following manner ΔSiA

. (31)ΔSA =
Q

TAi
+ ΔSiA

Equation (31) is verified by definition.  Historically entropy was introduced by the relation  

 valid on a reversible process. This relation originates a fluid like interpretation,dS =
dQ
T

attributing to the expression   the interpretation that exists an exchange of entropy,dS =
dQ
T

not only an exchange of energy. Therefore, if this is so, it was necessary for irreversible
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processes, to introduce the entropy production term (eq. (31)). The entropy of a subsystem

changes either because the energy of the subsystem changes or/and because the deformation

variable changes. Those changes for the two quantities, for the System, for a reversible

process, compensate each other, and the entropy is constant. 

Lets clarify that matter.

For a reversible process, we have:

(32)dS + dSH = 0,

therefore, relation (5) when applied to a heat source, since the volume is constant, gives for

(32)

. (33)dS = −dSH = −dUH
T =

dQ
T

For an irreversible process, between two equilibrium points (the piston is also in

equilibrium)  we have

. (34)Wext = ∫−pextdV = ΔU + ΔUH

Since   and  ΔSH = ΔUH
TH

ΔS + ΔSH > 0,

(35)ΔS > −ΔUH
TH

or
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(36)ΔS >
Q
TH

since Q = −ΔUH.

For A interacting with B, similar considerations gives

. (37)ΔSA > ∫
dQ
TB

Since , we have TB ≤ TAi

(38)∫
dQ
TB

<
Q

TAi

therefore, from (36) and (38) 

. (39)ΔSA >
Q

TAi
> ∫

dQ
TB

This being so, it is obvious, that we can introduce , satisfying ΔSiA

(40)ΔSA =
Q

TAi
+ ΔSiA

or

(41)ΔSiA = ΔSA −
Q

TAi
.

Since  ΔSA >
Q

TAi
,

(42)ΔSiA > 0.
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We obtain a positive entropy production from the Second Law. It is not possible to

have  [16]. ΔSiA < 0

We can obtain the same result from 

, (43)−p AdVA = dUA + dUB = −pAdVA + TAidSA + TBdSB

or since -p'A > pA 

(44)TAidSA > −TBdSB

or 

. (45)dSA >
dQ
TAi

VI. "Isothermal" Processes with final volume  inferior then the  

isothermal reversible process .

The process that conducts the subsystem A to the minimum final volume, with the

final temperature equal to the initial temperature,  is the IRP (eq. (26)). This being so all the

other processes , with the same final temperature  (and of course with the sameTAf = TAi,

final temperature for subsystem B) have the final volume VAf  greater  than the IRP volume.

Therefore for all those processes   [16].ΔSA ≥ ΔSA(IRP)

 Therefore if the gas A is compressed  connecting  a heat reservoir with temperature

TAi, leaving the volume of subsystem A to a value inferior then the volume of the reversible

process (IRP), the energy introduced in the reservoir is higher then   ΔUB= CVB (TAi - TBi)  

since   If after this compression the reservoir is connected withWext = ∫−pextdV > ΔUB.

subsystem B the energy that flows to B is ΔUB . For this process, the total entropy change is
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. (46)ΔS = ΔSA + ΔSB + ΔSH = R ln ⎛⎝
VAf

VAi

⎞
⎠ +CVBln ⎛⎝

TAi
TBi

⎞
⎠ +

Wext − ΔUB
TAi

 The entropy change that Belandria calculates (Belandria equation (16) at [15]) does

not contain    This and inequality (42) completely explains the firstΔSH = Wext−ΔUB
TAi

.

controversy.

The final volume can not have the value proposed by Belandria because when the process is

realized with sub-system A in contact with a reservoir at the same temperature TAi the energy

conservation law (ΔURes=ΔUB) and the entropy Law (ΔSA+ΔSRes>0) implies a greater volume

then the volume proposed by Belandria.

VII. Interactions through a movable partition.

Lets consider that gas A and gas B occupy a constant total volume  

, separated by a movable piston. If the piston is blocked and if it isV = VA + VB = const.

covered by an adiabatic film, the two subsystems, A and B, achieve a local  equilibrium state.

The initial volume and initial temperature for A and B, are respectively ,  and  , .VAi TAi VBi TBi

The pressures  are

(47)pAi =
RTAi
VAi

and

(48)pBi =
RTBi
VBi

.
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Lets apply to the piston an exterior force and simultaneously retire the  adiabatic film.

When an equilibrium point is reached, we have

 (49)Wext = −pextΔVA = ΔUA + ΔUB.

If the final temperature for A is equal to the initial temperature , we have   TAi ΔUA = 0

and

, (50)Wext = ΔUB = CVB(TAi − TBi)

 (51)−pext(VAf − VAi) = CVB(TAi − TBi).

 For the equilibrium state, we must have an equilibrium for the pressures, for example

 (52)pext + pBf = pAf

or

  (53)pext +
RTAi

(v − vAf)
= RTAi

VAf
.

Equations (51) e (53) allows to calculate  and  The entropy changes for A and B areVAf pext.

, (54)ΔSA = R ln ⎛⎝
VAf

VAi

⎞
⎠
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. (55)ΔSB = R ln ⎛⎝
V − VAf

VBi

⎞
⎠ + CVln ⎛⎝

TAf

TAi

⎞
⎠

For this configuration it is not possible to obtain    For this  process theΔSB = ∫
dQ
TB

.

energy exchanged through the movement of the piston results from the collisions of the

molecules of the gas. For this configuration it is not possible to separate a Q term. To clarify

this matter it helps to consider the limiting case where the thermal conductivity of the piston

is zero. We have the following equations :

. (56)dEKin + dEpot + dUA + dUB = 0

. (57)dWext + dWint + dEpot + dUA + dUB = 0

and since  dWext = −dEpot

, (58)dUA + dUB = −dWint

, (59)dUA + dUB = −p AdVA − p BdVB

, (60)dUA = −p AdVA − p BdVB − dUB

or

. (61)dUA = −p AdVA − p BdVB + pBdVB − TBdSB

If the process is reversible we must have   and     and from  p B = pB pA = pB

(61) 

(62)dUA = −pAdVA − TBdSB.

Equation (61) is consistent with    and  .dUA = −pAdVA + TAdSA, TA = TB dSA + dSB = 0
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If , we have from (60)dVB = 0

, (63)dUA = −p AdVA − TBdSB

which can be put with the form  

. (64)dUA = dWA + dQA

 has, here a clear meaning, energy that flows between A and B through the partitiondQA

(configuration 1) 

If this is so lets consider initial conditions    TAi ≠ TBi, pext + pBi = pAi.

We can admit an evolution of  pext   that  imposes a constant temperature for A,   TAi

until the final equilibrium point was attained with TAf = TAi = TBf . For this configuration it is

 not possible to calculate   and therefore it is not possible to calculate the entropyQ
TAi

production, based on equation (40).

Finally, lets consider the other controversy [1-15]:

Gas A and gas B have equal initial pressures, and initial different temperatures. The

movable piston, separating the two gases has zero thermal conductivity. A kinetic analysis

[8-12] gives for the final equilibrium state, equal temperatures and equal pressures, that can

be easily calculated. If we admit as true the relations   with  we mustdSA,B ≥
dQA,B

TA,B
dQA,B = 0

have dSA,B >0. But the subsystem which initially has an higher temperature , during the

process decreases the temperature and therefore the volume, decreases the entropy.

Therefore the relations dSA,B>0 can not be simultaneously verified. dSA +dSB >0   can not be
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put on the form  [5-7, 10-14]  with   dQ equal to zero.  This solves the otherdSA,B ≥
dQ

TA,B

controversy.

Conclusion

In this work we analyse several irreversible processes arising from the interaction of

two subsystems, for two configurations. When one of the subsystems has a constant volume  

the energy that flows from the other subsystem is identified with a heat term. For this case,

the entropy production,  results from the global entropy increase. If the interaction between

the subsystems results from the movement of a piston that separates the two subsystems, the

energy exchange between the subsystems can not have the same interpretation, the relation

 can not be established. Therefore the motion of an adiabatic piston, when the initialdSi >
dQi

Ti

pressures are equal and the temperatures different, satisfies  the Second Law, with a decrease

of the entropy of one of the subsystems and an increase of the entropy of the other. With this

work we contribute to the solution of two controversies.
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