
May 5, 2015

Black Holes without Singularity?

Risto Raitio 1

02230 Espoo, Finland

Abstract

We propose a model scheme of microscopic black holes. We assume that at the
center of the hole there is a spin 1

2
core field. The core is proposed to replace the

singularity of the hole. Possible frameworks for non-singular models are discussed
briefly.
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1 Introduction and Summary

The motivation behind the model described here is to find a way to go beyond the
Standard Model (BSM), including gravity [1]. Gravity would mean energies of the
Planck scale, which is far beyond any accelerator experiment. This work is hoped
to be a small step forward in exploring the role on gravity in particle physics while
any complete theory of quantum gravity is still in an early developmental phase, and
certainly beyond the scope of this note.

In particular we pay attention to the nature of microscopic quantum black holes
at zero temperature. We make a gedanken experiment of what might happen when
exploring a microscopic black hole deep inside with a probe. In [2] we made two
assumptions

(i) when probed with a very high energy E � EPlanck point particle a microscopic
black hole is seen as a fermion core field in Kerr, and ultimately Minkowski, metric.
The point-like core particle of the hole may have a high mass, something like the
GUT unification energy or Planck mass. The core field is called here gravon.

(ii) the core may be the stable (or decaying) remnant of the hole, and the black
hole singularity is replaced by the core field.

The core is considered to illustrate the idea of singularity free black hole, but it
may also be a possible remnant with certain interactions of its own. In this note
we try to discuss theoretical models available in the literature to get support for the
above assumptions.

With the Planck scale having its the conventional value 1019 GeV testing is hard.
Gamma-ray signals from the sky may be a promising way. A gamma-ray, or particle,
with energy half the Planck mass would be a clear signal of the models of this type.

There are models which may bring the relevant energy scale down within reach
of the LHC. Provided the Planck scale is down at TeV scale black holes with mass
in the TeV region may be formed. The basic idea discussed here does not depend on
the value of the Planck scale.

In sections below we discuss briefly some possible scenarios of microscopic black
holes, renormalization group improved gravity, bouncing universes, their roles in cos-
mology and testing the model. The nature of the present note is a short survey of
limited scope.

2 Einstein-Dirac Cosmology

Though not directly relevant to the present work ref. [3] gives another indication
of singularity avoidance in Friedmann-Robertson-Walker (FRW) cosmology. The au-
thors study Einstein-Dirac (ED) equations
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Ri
j −

1

2
Rδij = 8πκT ij (1)

(D −m)Ψ = 0 (2)

where T ij is the energy-momentum tensor of the Dirac particles, κ is the gravitational
constant, D is the Dirac operator and Ψ the wave function. For metric the closed
Friedmann-Robertson-Walker is chosen

ds2 = dt2 −R2(t)dσ2 (3)

where R is the scale function and dσ2 is the line element on the unit 3-sphere

dσ2 =
dr2

1− r2
+ r2dθ2 + r2sin2θdφ2 (4)

where r, θ and φ are the standard polar coordinates. The Dirac operator in this
metric is written as

D = iγ0

(
∂t +

3Ṙ(t)

2R(t)

)
+

1

R(t)

(
0 DS3

−DS3 0

)
, (5)

where γ0 is the standard Dirac matrix, and DS3 is the Dirac operator on the unit
3-sphere. The operator DS3 has discrete eigenvalues λ = ±3

2
,±5

2
, . . ., corresponding

to quantization of momenta of the particles. The Dirac equation is separate with the
ansatz

Ψλ = R(t)−
3
2

[
8πκ

3

(
λ2 − 1

4

)]− 1
2
(
α(t) ψλ(r, ϑ, ϕ)
β(t) ψλ(r, ϑ, ϕ)

)
, (6)

where α and β are complex functions. For a homogenous system the components of
the energy-momentum tensor simplify and the time component is

8πκT tt =

[
m
(
|α|2 − |β|2

)
− 2λ

R
Re(αβ)

]
. (7)

Substituting ψ and T ji into the Einstein-Dirac equation one gets

i
d

dt

(
α
β

)
=

(
m −λ/R
−λ/R −m

)(
α
β

)
(8)

Ṙ2 + 1 =
m

R

(
|α|2 − |β|2

)
− λ

R2

(
βα + αβ

)
. (9)

With the ansatz all single particle wave functions have the same time dependence
thus they form a coherent macroscopic quantum state. The fermionic many-particle
state is a spin condensate.
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The ED equations further reduce to ordinary differential equations involving the
scale function R(t) and the complex functions α(t) and β(t). In the limits λ = 0
and m = 0 the equations reduce to the Friedmann equations for dust and radiation
universes, respectively. For large R the universe behaves classically as in the dust
case. But near the singularities big bang and big crunch quantum effects change the
situation. Under certain conditions Ṙ can become zero and change sign even for small
values of R. Now the formation of a big bang or big crunch is prevented. This effect
is called the bouncing scale function.

3 Asymptotically Free Quantum Gravity

Super-renormalizable and asymptotically free theories of gravity have been discussed
in the literature. Asymptotic freedom removes the singularity. Secondly, asymptotic
freedom due to higher derivative form factor causes an effective negative pressure.
Repulsive gravity at high density produces a bounce of a black hole. Black holes in
fact never form. A distant observer sees a long lifetime for the trapped surface and
interprets it as a black hole. The bounce is not given by Heisenberg uncertainty but
follows from the dynamics of the system.

In [4] the following non-polynomial extension of the quadratic gravitational action
of [5] has been considered

S =

∫
d4x

2
√
|g|

κ2

[
R−Gµν

V (−�/Λ2)−1 − 1

�
Rµν

]
, (10)

where κ2 = 32πGN and Λ is the Lorentz invariant energy scale. Its value is of
the order of Planck mass. The form factor, an entire function V contains the non-
polynomial property of the theory. V cannot have poles in the complex plane to
ensure unitarity and it must have at least logarithmic behavior in the UV to give
super-renormalizability at the quantum level. The theory reduces to general relativity
in the low energy limit since all the corrections to the Einstein-Hilbert action are
suppressed by the factor Λ−1.

The form factor is related to the propagator and to the effective potential of the
theory. An example of a form factor is

V (z)−1 = exp(zn) (11)

where z = −�/Λ2 and n is a positive integer. String theory suggests n = 1. These
theories have only the graviton pole. There are no ghosts or tachyons. The UV is
dominated by the bare action, counterterms are negligible. Further details of these
theories are discussed in [4].

According to [6] the behavior of running coupling constant in the coupled system
of higher derivative gravity and gauge fields is renormalizable to all order loops. The
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leading contribution to the gauge coupling beta function comes entirely from quantum
gravity effects and it vanishes to all order loops.

4 Asymptotic Safety

Asymptotic safety was proposed by Weinberg [7] in 1976 as a condition of renor-
malizability. It is based on a nontrivial, or non-Gaussian, fixed point (NGFP) of
the underlying renormalization group (RG) flow for gravity. It is nonperturbative in
character and it guaranties finite results for measureable quantities. The method for
investigation of this scenario is functional renormalization group equation (FRGE) for
gravity. The FRGE defines a Wilsonian RG flow on a theory space which consists of
all diffeomorphism invariant functionals of the metric gµν of the type occuring in the
action of general relatvity. From this construction emerges a theory called Quantum
Einstein Gravity (QEG). QEG is not a quantization of classical general relativity, but
it is consistent and predictive theory within the framework of quantum field theory.

The method of Reuter [8] uses the effective average action Γk, which is background
independent. The RG scale dependence is governed by the FRGE of Wetterich [9]

k∂kΓk[Φ, Φ̄] =
1

2
Str

[(
δ2Γk

δΦAδΦB
+Rk

)−1
k∂kRk

]
. (12)

where ΦA is the collection of all dynamical fields and Φ̄A denotes their background
counterparts. Rk is an infrared cutoff which vanishes for p2 � k2 and provides a
k-dependent mass term for fluctuations with momenta p2 � k2. Solutions of the
FRGE give families of effective field theories Γk[gµν ], 0 ≤ k < ∞, labeled by the
coarse graining scale k. The solution Γk interpolates between the microscopic action
at k →∞ and the effective action Γk→0.

Suppose there is a set of basic functionals Pα[·]. Any functional can be written as
a linear combination of the Pα’s. The the solutions Γk of the FRGE have expansions
of the form

A[Φ, Φ̄] =
∞∑
α=1

ūα Pα[Φ, Φ̄] . (13)

The basis Pα[·] may include local field monomials and non-local invariants. We use the
generalized couplings ūα as local coordinates. Or better, we use a subset of couplings,
so called essential couplings which cannot be absorbed by a field reparametrization.
Though the method is non-perturbative truncations have to be made to the expan-
sions of solutions.

Expandin Γk as above and inserting into FRGE we obtain a system of infinitely
many coupled differential equations for the ūα’s
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k∂k ūα(k) = βα(ū1, ū2, · · · ; k) , α = 1, 2, · · · . (14)

which can be solved using analytical or numerical methods.
A simple ansatz for action is the Einstein-Hilbert action where Newton’s constant

Gk and the cosmological constant Λk depend on the RG scale k. Let gµν and ḡµν
denote the dynamical and background metric, respectively. The effective action then
satisfies in arbitrary spacetime dimension d

Γk[g, ḡ, ξ, ξ̄] =
1

16πGk

∫
ddx
√
g
(
−R(g) + 2Λk

)
+ Γgfk [g, ḡ] + Γghk [g, ḡ, ξ, ξ̄] (15)

where R(g) is the scalar curvature from metric gµν , Γgfk denotes the gauge fixing

action and Γghk the ghost action with the ghost fields ξ and ξ̄.
The corresponding β-functions describing the evolution of the dimensionless New-

ton constant gk = kd−2Gk and dimensionless cosmological constant λk = k−2Λk, were
derived the first time by Reuter in [8] for any value of the spacetime dimensionality.
The most important result is the existence of a non-Gaussian fixed point suitable for
asymptotic safety. It is UV-attractive both in g- and λ-directions (roughly λ ≈ .35
and g ≈ .4).

In the study of [10] it was shown that for r → 0 the RG improved black hole metric
approaches that of de Sitter space. This means that the quantum corrected spacetime
is completely regular, free from any curvature singularity unlike the Schwarzschild
black hole. The improved regularity comes because the 1/r-behavior of fclass = 1 −
2G0M/r is tamed by very rapidly vanishing of the Newton constant at small distances.

A very heavy black hole obeys the classical relation TBH ∼ 1/M . The mass of the
hole is reduced by the radiation the temperature increases. This tendency is opposed
by quantum effects. Once the mass is as small as Mcr ∼ MPlanck the temperature
reaches its maximum value TBH(Mcr) [10]. For even smaller masses it drops very
rapidly and vanishes at or below the MPlanck. The microscopic black hole could have
a remnant which does not Hawking radiate any more.

5 Planck Stars

In [11] the quantum gravitational effects come from quantum cosmology. In loop
cosmology the scale factor a(t) of the universe is modified by quantum gravitational
effects ( ȧ

a

)2
=

8πG

3
ρ
(

1− ρ

ρP

)
(16)

where G is the Newton constant, ρ the energy density of matter and
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ρP ∼ mP/l
3
P ∼ c5/(~G2) (17)

where ~ is the reduced Planck constant. Quantum gravity corrections appear when
ρ ∼ ρc. This may happen before l ∼ lP . A collapsing universe may bounce back into
expansion. This repulsion is due to Heisenberg uncertainty relations. In a matter
dominated universe the volume of the universe at the bounce is

V ∼ m/mP l
3
P (18)

where m is the total mass of the universe. This volume of the universe is estimated
to be about 75 orders of magnitude larger than the Planck volume.

Quantum analysis of a collapsing star leads to similar results. The gravitational
collapse of a star does not lead to singularity but to a new phase of the star where
the large gravitational attraction is balanced by large quantum pressure. The authors
call stars in this phase Planck stars, and they estimate that a stellar mass black hole
could have a radius of the order of 10−10 cm. This is very small of course compared
to the original star but still more than 20 orders of magnitude larger than the Planck
length.

The lifetime of a Planck star is very long for a distant observer since it is deter-
mined to the Hawking evaporation time of the black hole. But if measured on the
surface of the star it is very short, the time light takes to cross the star.

A primordial black hole with mass about 1012 kg has a lifetime of the order of the
age of the universe tH ∼ 14× 109 years. So they would be at the end of their lifetime
now and be detectable at present. The size of this kind of object is

r = 3
√
tH/(348πtP )lP ∼ 10−14cm (19)

The size of the black hole is the only scale in the process and it therefore fixes the
energy scale of the emitted particles in the last stage. Assuming that all fundamental
particles emitted with about the same energy taken at

Eburst =
hc

2r
∼ 3.9GeV (20)

From detectional viewpoint it is natural to measure emitted gamma-rays. Only di-
rectly emitted gamma-rays (estimated to be about 3 per cent) are at the energy
Eburst. Most gamma-rays come from decays of hadrons, mainly from neutral pions.
The authors [11] have made a Pythia analysis of secondary gamma-rays emitted by a
Planck star at the end of its life. The mean energy is of the order 0.03 ×Eburst, which
is in the tens of MeV range. The multiplicity is quite high at about 10 photons per
qq̄. A major hindrance comes from the maximum distance at which bursts can be
detected. For measuring say 10 photons using a 1 m2 detector surface the estimated
distance of burst origin is only about 200 light years.
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6 Cosmology

In the quantum schemes of gravitation the relativity theory initial singularity is most
likely smoothed into a very high but finite density and temperature objects. After
inflationary phase the standard model particles are formed together with occasional
black holes. This does not lead to major deviations from the standard cosmological
model. The abundance of primordial black holes may contribute to the distribution of
dark matter of the universe. Quantitative differences to the standard model should be
looked for from gamma-ray spectra. The formation of stellar size black holes proceeds
as in general relativity theory.

7 Experimental Tests

As mentioned, high accuracy measurements of gamma-ray signals from the sky [12]
is at present the most promising key to observe new physics. With the Planck scale
at about 1019 GeV, all particles coupling to gravity, any particle with energy half
the Planck energy is a clear signal. A remnant is expected to have two and many
particle decay channels, of which the few particle channels have rather clear signals.
Information and global charge conservation are imteresting questions.

There are models which may bring the relevant energy scale down within reach
of the LHC. These include models of ref. [13]. Provided the Planck scale is brought
down to TeV scale black holes with mass in the TeV region may be produced by
gravitational interaction. The basic idea discussed here does not depend on the value
of the Planck scale.

Cross sections and decay channels have been extensively calculated in [14]. De-
tailed analysis indicates best few body decay channels, in particular eµ pair, for black
hole production.

8 Conclusions

The present note contains some tentative thoughts how to go beyond the standard
model towards a model of Planck scale phenomena, assuming the standard model is
valid up to that scale. At the Planck scale black holes are the key object to study.
Unfortunately model calculation results concerning Planck mass region black holes
are still uncertain.

Examples were given above which indicate that bouncing black holes and universes
may be relevant in quantum gravity. The classical singularity is probably removed,
or at least softened, by quantum gravitational effects. Asymptotic freedom of gravity
is not supported unambiguously. In [6] non-abelian gauge theory coupling constants
go to zero at Planck scale. The length scale where quantum gravity effects may occur
is surprisingly large. The details of the theoretical models discussed in Sections 2-5
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vary somewhat but the softening trends seems to be on rather sound basis. Our
assumptions (i) and (ii) of section 1 could not be proven but are endorsed by some
the above models. The possible remnant of black hole decay is interesting and it
could be studied as a heavy decaying particle.

A realistic model of quantum gravity should start from the microscopic entities
operating at the quantum scale, like the Planck scale. Then the methods of the new
model theory, be it quantum field theory or something else, can be introduced to
calculate the properties of the model like the UV behavior of the interaction. In
principle the building blocks are known but (i) the nature of black holes changes from
thermal to non-thermal when the black hole mass comes down to Planck scale, (ii)
scalar particles may play a role not visible today, and (iii) the theory most likely has
connection to the details of big bang.
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