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Abstract

The nucleus displaying both the single particle aspects as well as
the collective aspects simultaneously, does not seem to be amenable
to a simple group theoretical structure to explain its existence. The
isospin group SU(2) takes account of the single particle aspects quite
well but the collectivity is basically put in by hand. The point is that,
is there some inherent symmetry connecting the single particle aspect
and the collective aspects through some group theoretical structure.
We do consistent and exact matching of the deformed and the su-
perdeformed bands in various nuclei. Thus we shall show that the
Quantum Group SUq(2) fulfills this requirement - not in any approx-
imate manner, but in an exact manner.
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Is the nucleus amenable to a group theoretical description? What it
means is that, is there an intrinsic underlying symmetry of the nucleus which
may demand a group theory to describe it? What we have in mind is the kind
of description that the SU(3)- flavour model provides for a comprehensive
description of all the hadronic fermions and bosons at low energies. At a little
higher energies, it is the SU(4)-flavour group which describes successfully
the corresponding symmetry. Also the Standard Model group structure of
SU(Nc)⊗SU(2)L⊗U(1)Y successfully describes all the elementary particles
known to us at present,

However the complexity of the nuclear system seems to point that the
answer to the above question may be in the negative. However, one should
not forget that the SU(2) isospin symmetry of the nucleus, by invoking the
Generalized Pauli Exclusion Principle and through a self-consistent Hartree-
Fock calculation, does lead to a consistent understanding of the single particle
character of the nuclear system. Thus it should be construed to mean that the
SU(2) group does provide the proper group to understand the single particle
character of the nucleus [1]. However collectivity is another fundamental
characteristic of the nucleus. But that has to be put in by hand, and lies
outside the purview of the SU(2) model of the nucleus.

The Interacting Boson Model (IBM) was an attempt to seek a group
theoretical basis for the nuclear collective motion [2]. However, with time, a
large number of variants of the IBM have been developed.

Here we shall show that the Quantum Group SUq(2) fulfills the above
requirement of being the proper group to describe the basic and inherent
symmetries of nuclei, both of the single particle and of the collective charac-
ters. And this is shown here not as an approximation, but to hold true in an
exact manner.

The quantum groups [3-7] arise naturally in several areas of physics [8] and
hence is the focus of much ongoing effort. The quantum algebra SUq(2) has
already been applied to nuclear physics [9-12]. But in all these applications
in nuclear physics, the quantum group SUq(2) is used to describe collective
behaviour only as a good approximation. Hence as per these calculations,
this quantum group is not taken as a group to describe the nucleus, but only
provides an approximate description of the nuclear reality. Below we shall
show how this quantum group is actually an exact symmetry of the nucleus.
This is in conflict with what some others have expressed. For example in ref.
[13] they say, ”For deformed nuclei, perhaps it is more appropriate to invoke
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the q-deformations of higher dimensional groups (i.e. higher than SUq(2))”.
We show why this statement is not correct and that indeed SUq(2) itself is
the right group to display the basic symmetry of the nucleus.

The quantum algebra SUq(2) is defined by the generators J+, J−andJ0
which satisfy the commutation relations

[J0, J±] = ±J± (1)

[J+, J−] = [2J0] =
q2J0 − q−2J0

q − q−1
(2)

where the term on the right hand is the q-number [x]. When q = et (with
t real) it becomes[x] = sinh(tx)/sinh(t) and for q = eit (with t real) it is
[x] = sin(tx)/sin(t). As q approaches 1 (or as t goes to 0) the q-numbers
become the standard numbers and the SUq(2) algebra goes to the classical
algebra SU(2). This last point is most important. The quantum algebra
here has built into it the isospin group SU(2) structure. Thus the quantum
group group SUq(2) should be considered as a larger group than the group
SU(2) as it contains it as subset of its parameters in a non-linear manner.
This is somewhat akin to the statement that the SU(2) is a subgroup of the
bigger SU(3) group

As in the usual Lie algebra the irreducible representations D(j) of SUq(2)
are determined by the highest weight states with j=0,1/2,1,... The basis
states |j,m > {−j ≤ m ≤ j} are connected to the highest weight states as
follows

| j,m〉 =

√√√√ [j +m]!

[2j]![j −m]!
(J−)j−m | j, j〉 (3)

where [n]!=[1][2]..[n] and J+|j, j >= 0, < j, j|j, j >= 1. Also J0|j,m >=
m|j,m > and

J± | j,m〉 =
√

[j ±m][j ±m+ 1] | j,m± 1〉 (4)

The Casimir invariant operator is given as

Cq
2 = J−J+ + [J0][J0 + 1] (5)

whose eigenvalue is

Cq
2 | j,m〉 =| [j][j + 1] | j,m〉 (6)
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We wish to use this language for the deformed nuclei. As an extension of
the standard rotor model we formulate a q-rotor model based on the group
SUq(2). It is a system whose Hamiltonian is given as

Hq =
Cq

2

2I
+ E0 (7)

Here I is the moment of inertia and E0 is the band head energy For the
case of q being a phase, for

Ej =
[j][j + 1]

2I
+ E0 (8)

we get

Ej =
Sin(tj)Sin(t(j + 1))

2I ∗ Sin2t
+ E0 (9)

For small t we can Taylor expand the series to look like [10]

Ej = E0 +
[(j0(r))j(j + 1)− tj1(r)(j(j + 1))2 + (2/3)t2j2(r)j(j + 1))

3 − ..]
2I(j0(r))

2

(10)
Now this is of the form

Ej = E0 + A(j(j + 1)) +B(j(j + 1))2 + C(j(j + 1)3 + .. (11)

This is an empirical series used in fitting rotational bands in nuclei.It
is found that A,B,C.. have alternating signs and that B/A is apprx 10−3
This is also similar to the VMI model of nuclear physics [10]. Note that the
VMI model in nuclear physics is entirely a phenomenological model with no
group theoretical basis. Here it turns out that the the quantum group SUq(2)
provides a very good group theoretical justification of the same.

The authors of ref. [10] have used the above expansion eqn.(10) as a series
in powers of j(j+1) as a good approximation of the quantum group SUq(2)
to study deformation and superdeformation in nuclei. They got pretty good
fits and that prompted them to go to higher quantum group as they said,
”The study of the quantum algebra SUq(3) and its use for the description of
the rotational spectra is therefore of interest and it is under investigation.”
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So they clearly thought that the quantum group SUq(2) was not big enough
to describe the nuclear collective effects in a satisfactory manner. They
perhaps thought the freedom of more free parameters in a larger group may
turn out to be better. But note that this logic is not always correct. The
SU(3) description of the u-, d- and s-quarks does not improve by going to
the bigger SU(4) group!

Perhaps also the above attitude was due to the fact the energy spectrum
of SUq(2) as given in eqn. (9) is non-linear. To simplify it they linearized it
by taking the Taylor series and getting the approximate expression as given
in eqn. (10). Thus no fundamentality is being displayed here.

But let us take the SUq(2) prediction more seriously. The above non-
linear expression eqn. (9) is unique and an exact prediction of SUq(2) as
to what the deformed and superdeformed bands in nucleus should be - no
approximation and this should be exactly true. If this SUq(2) were the proper
group theoretical structure of the nucleus and which consistently takes care
of the non-linearity inherent in the collective motions in the nucleus, then
this should hold good for the nucleus in an exact manner and not as any
approximation.

With the above attitude we did the fittings of the same nuclei as given
in ref. [10], but now with the exact non-linear expression for deformed and
superdeformed nuclei. We give in Table 1 our prediction versus theirs [10]
for 194Hg(2). The goodness of the fit is determined by the root-mean-square
deviation:

σ = [1/NΣ[
Ej(cal)− Ej(exp)

2

Ej(exp)
]

1/2

(12)

Note that our calculation with exact prediction of the SUq(2) group has
a far superior fit as per the root-mean-square deviation. Hence we take this
as a confirmation of the goodness of the group SUq(2) itself as displaying the
proper symmetry structure of the nucleus. Hence in as much as collectivity
is being mapped properly and correctly by the non-linear quantum group
SUq(2) and as SU(2) is the proper substructure of it, this should be taken as
the proper group to describe the intrinsic symmetry structure of the nucleus.

Below we give more calculations confirming the veracity of the above
statement. Starting with the discovery [14] of discrete line superdeformed
band in 152-Dy, much work has been done to study superdeformed bands in
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nuclei [15,16].
We find that our method ( by using the exact expression eqn. (9) ) is a

marked improvement over the previous attempts in any fits of the superde-
formed bands. So much so that we can make predictions for the spin of the
superdeformed bands in nuclei. The spins for the nuclei in the region A=150
are hard to predict because of the high values. However our predictions are
always better than those of the others [9,10]

However note that for higher j the above series, eqn. (10), does not
converge fast enough and hence if we use it to fit superdeformed band with
high j the fits are likely to be of poor quality. What we have done is to
use the above philosophy that we have the exact nonlinear expression for
Ej, eqn. (9) and this we can justifiably use for any j (howsoever high). We
therefore use the exact expression of Ej ( which has two parameters I and
t) to fit the deformed and superdeformed bands in nuclei. As expected we
find that we immediately make fits of superior quality than done earlier. For
example for 192-Hg (2164 kev) we obtain a fit where the Standard Deviation
is 3.53 kev compared to the earlier fit [12] of Standard Deviation 8.26 kev.
This is general conclusion that always the fits that we get are superior to
the one obtained by the Taylor series expansion method. Here as a sample
we show how our fits are for a pair of identical superdeformed bands in two
neighbouring nuclei as displayed in Table 2.

Here we also address ourselves to the important and open problem of the
spin determination of superdeformed bands in nuclei. Experimentally what
one determines are the transition energies Ej = Ej − Ej−2.This superde-
formed band cascade is least square fit to our nonlinear expression for Ej.
How good an agreement one gets with the experimental numbers depends
upon the assigned level spin. We vary the lowest spin J0 and find that for a
particular value of it the fit is much superior compared to when we change
it by one unit or more.

Next we study the difficult problem of the spin determination of superde-
formed bands in the region A ∼ 150. The problem has to do with the fact
that in these nuclei J0 is high ∼ 30. The tabulation of the superdeformed
bands in various nuclei has been published [17]. Tentative assignment for J0
based on collective experimental information have been made there [17] for
various bands. But as they state in these determinations ”An 1h-2h uncer-
tainty is expected” [17]. So to say these estimates are not final but too much
variations are not expected. However in literature we note that on the basis
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of some theoretical predictions there are large variations. For example in ref.
[12] they obtain J0=36.5 for Tb151(yrast) - to be compared to 25.5 of [17];
J0=38 for Gd150 (excited:770kev) - to be compared to 31 of [17]; J0=29 for
Gd148 (701kev) - to be compared to 24 of [17].

How do our predictions come out for these nuclei? We list them in Table
3. For comparison we list the predictions from [17] also. Note that our
predictions are closer to those of [17] and hence are ”much better’ than those
say, of [12].

So all this confirms that the goodness of the use of the exact SUq(2)
prediction of eqn. (9), supports the fact that this indeed is the justified can-
didate to be the proper group accounting for the intrinsic symmetry structure
of the nucleus.

Without getting into irrelevant details, let us understand that the essen-
tial and intrinsic characteristics, that define the many-body character of the
nucleus are two fold: firstly, it has single particle structure and secondly, it
has collective structure. The group which properly accounts for these con-
flicting aspects of the nucleus ( but which indeed is its intrinsic symmetry
structure ), as shown here, is the non-linear quantum group SUq(2). It de-
scribes all collective aspects of the nucleus and in a certain linear limit leads
to the standard Lie group SU(2) which describes the single particle character
of the nucleus.
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J Expt[Mev] Bonatsos et.al. Our fit
10 0.201 0.201 0.200
12 0.444 0.443 0.442
14 0.727 0.726 0.724
16 1.052 1.049 1.047
18 1.415 1.413 1.410
20 1.818 1.815 1.812
22 2.259 2.257 2.253
24 2.737 2.735 2.731
26 3.252 3.251 3.247
28 3.802 3.803 3.798
30 4.387 4.389 4.385
32 5.007 5.009 5.006
34 5.659 5.662 5.659
36 6.344 6.347 6.345
38 7.062 7.061 7.061
40 7.809 7.805 7.807

Table 1: Experimental and theoretical data for superdeformed bands in
194Hg(2) as given in Ref.[10] and compared with our own result obtained
with exact expression eqn. (9). σ=2.092 kev, t=0.0107 and 1/2I=532 kev
for Bonatsos et. al. [10] and σ=1.051 kev, t=0.011 and 1/2I=530 kev for our
result Note J = J0 + 2.
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152Dy
151Tb

J Expt[kev] Our fit J Expt[kev] Our fit
26 602.2 598.46
28 647.2 645.4 27.5 647.0 640.31
30 692.2 692.34 29.5 692.0 687.69
32 737.5 739.27 31.5 738.0 735.06
34 783.5 786.21 33.5 783.0 782.42
36 829.2 883.15 35.5 828.0 892.76
38 876.1 880.09 37.5 876.0 877.09
40 923.1 927.03 39.5 992.0 921.41
42 970.0 973.96 41.5 970.0 971.72
44 1017.0 1020.9 43.5 1016.0 1019.0
46 1064.8 1067.84 43.5 1963.0 1066.28
48 1112.7 1114.78 47.5 1112.0 1113.53
50 1160.8 1161.72 49.5 1158.0 1160.77
52 1208.7 1208.65 51.5 1207.0 1207.99
54 1256.6 1255.59 53.5 1256.0 1255.19
56 1304.7 1302.53 55.5 1305.0 1302.37
58 1353.0 1349.47 57.5 1353.0 1349.53
60 1401.7 1396.41
62 1449.4 1443.34

Table 2: Fitting of identical bands in the neighbouring nuclei 152Dy and
151Tb∗. σ is the rms deviation as defined in the text. For 152Dyσ =3.3x10−3,
t=1x10−5 and 1/2I=587. For 151Tb∗ σ=3.67x10−3, t=9.9x10−4 and
1/2I=593. Note J = J0 + 2.
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Nucleus Data Table [17] Our Prediction Others[11,12]
152Dy(602.2) 22 24 25
151Tb(647.0) 24.5 25.5 27.5
151Tb(728.0) 25.5 29.5 36.5
150Gd(770.0) 28 31 38
150Tb(598.0) 21 21 23
149Gd(859.9) 37.5 31.5 34.5
146Gd(826.0) 30 28 34
147Gd(779.1) 27.5 26.5 31.5
147Gd(663.9) 22.5 23.5 27.5
148Gd(701.0) 24 24 29

Table 3: Predictions for the spin J0 of the SD bands for nuclei in the region
A ∼ 150
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