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1. INTRODUCTION

The relation between p = üu, and
the other pressumed thermodyna-
mic quantities have already been
treated in the literature (Uhlenbeck
1932, London 1938, Einbinder 1948,
Einbinder 1949, Miller 1960, Lands-
berg 1961, Landsberg 1974).

We shall, however, demonstrate
that when P = au, it is possible to
associate temperature with energy
through the relation U = AT where A
is constant along the isentropic
transformation.

An ideal gas therefore satisfies
pV=BT and if B is approximately
constant along an isothermal line,
then the gas behaves like a classi-
cal ideal gas.

The preceeding statements can be
demonstrated through a generaliza-
tion of Carnot's theorem (Abreu
1983) which permits an easy inter-
pretation of the relations arising
from Energy and Entropy. This ge-
neralization makes it possible to
treat in the same way a photon gas
or another Bose-Einstein or Fermi-
Dirac gas, the reasoning that led
Boltzmann to the deduction of Ste-
phan's law having been used in a
similar way. With Ìhis synthesis we
can achieve a great simplicity and
previous tautologies are eliminated.
ln Vlll, and in a more abstract way,
the Íormalism which condenses the
relations previously established is

directly obtained from U=U(S,V).

2. ENTROPY and p=üu

The relation p = cru shows that if
pressure increases, the energy den-
sity increases as well.

This being the case, if the gas
(Abreu t987) follows a trajectory in
the domain of variables p and V co-
ming back to its initial volume, its
pressure will be necessarily higher
than or equal to the initial one
(Abreu 1985, Pau Chang-Lu 1982,
Abreu Faro and Abreu 1987, Abreu
Faro and Abreu 1990). The pres-
sure will be the same if the external
force is always equal to the internal
force. ln this way the gas energy
cannot be only a function oÍ the vo-
lume, as can be seen in relation g = I E

pV/a. We can therefore introduce I J
the entropy S variable saÌisfying the
following conditions:

1. U = U(S,V)
2. U (Sr,Vr)> U(S1,V1)

if Vz=Vr

It is then possible to choose S, t S,
for the situation considered in the
inequality of condition 2. S, is equal
to S., obviously when U (Sr,Vr)
U(S1,V1) if V2= V,. The reversible
transf ormation is the isentropic
transformation.

It is thus shown that equation p = uu
(and the condition of tendency of !
equilibrium which is implicity asso-
ciated with it since the piston for a
given equilibrium pressure of Ìhe 

ììì

gas has a pressure on it higger for ,,'

a compression and lower for an ex-
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pansion) (Abreu Faro and Abreu
1987) contains the condition of irre-
versibility oÍ the 2nd Principle of
Thermodynamics, a strictly axioma-
tic Íormulation being therefore avoi-
ded in establishing the relations bet-
ween energy and entropy.

3. GENERALIZATION OF CAR.
NOT THEOREM

A gas constituted by interactionless
particles exerts a pressure P=su
where a is constant and u is the
energy density (Einbinder 1948).

Let us consider two reservoirs R,

and R, containing the same ideal
gas at pressures p1 and pr. The two
reservoirs R, and R, have, on equili-
brium points, constant physical pro-
perties per unit volume - they are
sufÍiciently large. Also satisÍy the Íol-
lowing conditions: they may be con-
nected by an isentropic transforma-
tion aÍter N, particles oÍ R, have
been absorbed into the inner part of
a cylinder provided with a piston,
and whose volume passes from 0 to
Vr. Once pressure p' has been at-
tained, the volume oÍ the cylinder
goes back to zero upon injection oÍ
Nr particles into pssspyeir Rr (Fig. 1)

The eÍÍiciency oÍ the reversible
cycle which uses the ideal gas, the

above-mentioned cycle, is, n=f - l
l2

where T is the Kelvin Temperature,
as we shall demonstrate, which ge-
neralizes the result already known
Íor the Carnot Cycle and which can
also be obtained from the latter,
(Írom this analysis we can see why
Carnot' analysis is independent of
the caloric conservation hypothesis

because here we have, indeed, a
substance Ílowing between the re-
servoirs (Abreu 1 983)).

Let U stand for the energy of the
gas contained in the vessel provi-
ded with a piston and U" denote the
energy of the gas in the reservoir.

The Energy Conservation Principle
permits us to write that the elemen-
tary work is

dw = dU + du" (1)

Let us assume that the volume pas-

ses from 0 to V' (i=1,2) reversibly in

contact with p.
Since

P;V; = oU'

we have

PiVi= -crUi= Ui+ ÁU"i (2)

We therefore have

AU"'=+(a+ 1)U' (3)

Let us define the efficiency q:

,., =, 
lw | 

,= 
l^u", l- l^u"1 | 

,0,' lÂu"r l iau"r l

or

tl = 1-

Let us consider that both in R, and
R, we have a mixture of two gases.
We shall assume that one oÍ them
constituted by photons, which can
pass alone f rom the reservoir,
(H. Davy calls phoxygen to the mix-
ture of oxygen and light) (Abreu
1ee3(a)).

ln what concerns the particles of the
other gas we consider that such a

transit alone is forbiden.

ThereÍore for the photons we have

U.
n'=1-ü

As to the properties of the mixÌure
(which will henceforth be distinguis-
hed by a horizontal line) we have

p=p+pi=0u+qïur=crú (7)

(5)
ui

u2

(6)



if we assume that the mixed gas is

an ideal one; if not (7) is valid for an

inÍinitesimal cycle (see lV and Ap-
pendix).

Since p =ç1;,

.-.,-(a+1)Ú,-.,-9' -.,-U,, Ü,'tl=1-ffi,=1 I;=t 
- 
ú,=t- r,, (8)

sinceú,= ui+ uir and 4 = t - loY"' I,

llu"r l

lau", In=,-huJ

with laÚ' l= (a + 1)Ú, + (q + t )Ú', 1i=t ,z;

4. THE ISENTROPIC TRANSFOR-
MATION EQUATION FROM
THE GENERALIZATION OF
CARNOT THEOREM

Let us consider a cycle defined as
previously but assuming that pres-
sures p1 and p, differ by an infinite-
simal quantity dp.

The absolute value of the work is

ldw l= ldp v 
I

where V is the volume at which the
reversible expansion, without con-
tact with the reservoir, is initiated
(Fis. 2).

U, U"- U,
Sincetheefficiencyis n=1 - U2=' U;,

we have

ldw I dpV dU /o\' lau", I ^u", u

It is easy to show from (3) and (9)

show that

ldentity (10) is the isentropic trans-
formation equation.

5. INTRODUCTION OF THE
CONCEPT OF TEMPERA.
TURE FROM THE GENERALI-
ZATION OF CARNOT THEO-
REM. THE CLASSICAL GAS
EOUATION.

As previously seen, the efficiency of

the cycles defined between R, and
R, is

.U1 ,U'1
Ì1 = l- = l-' U2 U'2

where U,, Ur, U', and U', are two
pairs of values of the gas energy
contained in the cylinder when in

connection with R, and R, and
which define Ìwo isentropic transfor-
mation.

U,=U"
Since f ' 

- 
ü, *" can write

g=AT, (1 1)

where A is constant throughout the
isentropic transf ormations.

The efficiency can therefore be gi-
ven by (9) or by

t7

T.
n=1-í (12)

Since p = 0u and U = AT, we have

pV=aAT=BT (13)

Let us assume that both R, and R,
are separated by a wall, transparent
only to photons, the identity (Pear-

son 1984) of the energy density
being therefore associated with the
radiation of both sides oÍ the divi-
ding wall. We have in both parts of
R, (or Rr) a gas mixture of photons

and another ideal gas. We admite
the transparency of the dividing wall
only to photons. Therefore we cqn
have different pressures P, and P,

Íor the gas in the different sides oÍ
the reservoirs.

U+dU(p+dp)

UV" = constant (10)



We have from (8)

U,, U. U.n=1- =1-- =1---' Urt U2 U,
(14)

.t' where U and U are energies oÍ \
particles oÍ a gas al pressures p

and p corresponding to the conditi-
ons of both sides of the dividing wall'"' and such that it is possible to pass,
by causing the volume to vary, from
one condition to the other; that is, if
N, particles Írom R, part are absor-
bed at pressure p, and energy U,, it
is possible, by varying^the volume,
to attain conditions N,, p,, U, corres-

,,,, ponding to the other side of the divi-
ding wall as long as contact with R,
is maintained and thereÍore in the

e presence of R, radiation. An isother-
mal transformation of the N, parti-
cles has thus been defined.

From (28) and (30) we get

u,, u. Ü, r.n=1- =1- =1-^ =1--'u,Iu2u212

,,,, We have then demonstrated that
the efficiency oÍ all the reversible

,,,, tu.hines functioning between R,

and R, is q=1-Utt *her" U,,
U,,

"'' and U, are the values of the photon

l8 gas energy on the extreme points of
an isentropic transformation that
connects the reservoirs.

We can then introduce the quantity
temperature so that

T.n=1--
t.

THE CLASSICAL IDEAL GAS
EQUATION

As we have seen, we have

Ui=A Ti

and

p,V, =61fi1, =Sl,

An isentropic equation is, as
have seen,

(16)

UV" = cte.

g =AT,

we have:

TV" = cte. (17)

Consequently A is a Íunction oÍ
TV"

A = A(TV") (18)

Since TV" varies along an isother-
mal line, so does the A value varies
along an isothermal line. Experi-
mentally it is however found that
there exist temperature and pres-
sure ranges where A is practically
constant and has the same value
several gases thus satisÍy pV = BT
with constant B. (see Appendix).

6. THE PHOTONS ENERGY DEN.
SITY AS A FUNCTION OF
TEMPERATURE.

1

For the photons oQ =;.
J

Taking (10) into account, we have
(Einbinder '1949)

UlsV=const.=1"

or

Uru - ì.'uf

and from (1 1)

u, = [-t4+Ta

Since ut = const. we have T = const.
for R, or R, photons, therefore

ur = oTa (1e)

where

o=À'1A4=const.

Íor all equilibrium points and o is a
universal constant.

7. THE DEFINITION OF THE
IDEAL GAS

WE

The designation of classical ideal
gas (Landsberg 1961) is used for a
gas satisÍying

Since

pV=BT



and

c-
"{= -!=const.,CV

But when g = AT with A being cons-
Ìant, with the definitions of Co and
Cv, (see Appendix) we have

T=const. and pV = BT with constant
B.

Theref ore, when gases satisf y
p=au (Einbinder 1948), a classical
ideal gas is defined by pV = BT with
B constant. ln this way, B class defi-
ned in Landsberg's (Landsberg
1961) article, coincides with A class
defined in the same article for all
gases satisfying p = 6ax.

An ideal gas is defined by pV=uu.
It also satisfies pV = BT. When B
has a small variation, the gas fulfils
the conditions to be considered a
classical ideal gas.
We may have, in short, the following
scheme:

A. ldeal gas pV = au: PV = BT
where B = B(TV")

B. lÍ B = cte. - classical ideal gas.

8. TEMPERATURE DEFINITION
THROUGH THE THERMODYNA.
MICS RELATION and pV=oU.

We are now going to present the
formalism that synthesis the prece-
ding analysis.

As we seen in 2., U = U(V,S).

For an infinitesimal transformation
we have

o, = (#Jtv. (l!),os

lf dS = 0, we have

ou=(ffi,0v

But if (Abreu 1991) dS = 0,

dU=-pdV

since dU = dW and dW = -pdV in a
reversible transÍormation (Abreu
1990, Abreu 1991).

Therefore

/!!r\ _ _^
\asi. '
Let us make (Abreu 1985)

/au \

[-as J"= '

o= #="+
Consequently

We have then

dU = -pdV + TdS, (23)

in a quasi-staÌic transformation
which is not necessarily a reversible
(Abreu 1990, Abreu 1991, Allis
1952, Curzon and LeÍf 1979)

Since p = su

(21)

(21)

(24)

(25)

(26)

dU dV
u =" v

along the line S = const.

From (25) there results

UV"= const.

t9

along S = const.

Now Írom U = U(S,V) and ma-

kins r=Í?yl
\dò/v

(3$"=.({,J. (27)

is obtained.

Since p = sg

/ôo\ /aU\ 1
l___Lt =cIt_t_\as/u \as / v

But since:

-1=cÍl _

(20)

/aT\
-lav/" (28)



Along S = const. we thereÍore veriÍy

TV'' = COtìSt. (2e)

Since UV* = const. is also verified
alongS=const.then

U=AT

CONCLUSIONS

It has been the aim of this article to
show that from equation pV = crU for
an ideal gas, it is possible to esta-
blish the concept of temperature.
For this purpose we have used two
sufficiently large reservoirs where,
on equilibrium points, the physical
properties per unit volume are cons-
tant. Alternatively and in an equiva-
lent way, such a concept can be es-
tablished through p = cxu and the

retation t=(qqrJ" (Abreu 1e85). ro

this end, it is demonstrated that the
efÍiciency of a cycle described by a

gas satisfying p=au is n = r -f, = cte.

where U, and U, are the gas ener-
gies on the extreme oÍ isentropic
transÍormations that connect both
reservoirs or, in a more abstract
way, through the Íormalism emer-
ging from U = U(S,V) since the en-
tropy arises as a consequence oÍ
the irreversibility inerent in p = çxu

(Abreu 1985), and of the equilibrium
implicity assumed (Abreu Faro
1987). Since light satisfies p = au
the efficiency of all cycles is

. Ur, T1n=1- =1--'UnT2
It is demonstrated that equation pV

= BT is satisÍied Íor all ideal gases.
The classical ideal gas is defined
only through the condition B =
const. and not through both condi-
tions pV = BT where B is constant.c^and y===const. (Landsberg

Uy
'l 96'1, Landsberg 1974).

A great simplicity is, in this way,
achieved and tautologies (Miller
1960, Landsberg 1961, Pearson

1984, Fermi 1936, Buchdahl '1973,

Home 1977, Ehrlich 1981, Thomsen
1983) are avoided, a generalization
of Carnot theorem having been re-
sorted to, which, together with the
Energy Conservation Principle, cle-
arly shows the non-essential cha-
racter oÍ the First Principle of Ther-
modynamics (Abreu 1990, Abreu
1991, Abreu 1993(b), Abreu 1994).
This being so one can understood
and reinterpret the historical way of
inlroducing the physical ideas of
thermodynamics with a new pers-
pective emerging Írom the generali-
zation of Lord Kelvin postulate:
A transformation whose only Íinal
result is to transform internal energy
into Work is impossible (Abreu
1991).

REFERENCES

Abreu Faro, M.de and Abreu, R. de, A
One-Dimensional Model of lrreversibility,
Centro de Electrodinâmica, internal re-
port, l.S.T. (1987).

Abreu Faro and Abreu, Comunicação à
Classe de Ciências, XXXI, Lisboa (1990).

Abreu, R. de, Contribution to the eluci-
dation oÍ some Íundamental problems
associated with the first and second
principles of thermodynamics - relativis-
tic transÍormations p. 43, Thesis, lnsti-
tuto Superior Técnico, Lisbon, 1983.

Abreu, R. de, Técnica 1,43 (1990),

Abreu, R.de, Técnica 1 and 2, 100
(1 e85).

Abreu, R. de, Técnica 1,50 (1987).

Abreu, R. de, Técnica 2, 33 (1991).

Abreu, R. de, lnternat. Conf. On Phys.
Ed. "Light and lnformation", Abstracts
2.5, Univ. do Minho, (1993(a)).

Abreu, R.de, Técnica 1, 15, 35, 65, 69
(1ee3(b)).

Abreu, R.de, Técnica 1, 53 (1994).

Allis and Herlin, Thermodynamics and
Statistical Mechanics, (Mac Graw-Hill,
1952) pp. 168-170.

Barrow, G.M., J. Chem. Educ., 65, 122
(1 e88).

Buchdahl, H.A. Am. J. Phys., 41, 1209
(1 e73).

E. Fermi, E. Thermodynamics (Dover Pu-
blications, lNC., New York, 1936) p. 62.

Ehrlich, P. Am. J. Phys., 49, 622,
(1 e81 ).

(30)

20



Einbinder, H. Phys. Rev.74,803 (1948).

Einbinder, H. Phys. Rev.74,805 (1948).

Einbinder, H. Phys. Rev. 76,410 (1949).

Home, D. Am. J. Phys., 45, 12 (1977).

Landsberg, P.T. Am. J. Phys. 29, 695
(1e61).

Landsberg, P.T. Proc. of the lnt. Rese-
arch Symp. on Stat. Phys. with Special
Sessions on Topics Related to Bose
statistic, calcutta (1974).

London, F. Phys. Rev. 54, 947 (1938).

Miller, D.G. and Dennis, W. Am. J.
Phys. 28, 796 (1960).

Pau-Chang Lu, Am. J. Phys. 50, 247
(1 e82).

Pearson, J.M. Am. J. Phys. 52, 262,
(1 e84).

Thomsen, J.S. Am. J. Phys., 51 , 462,
(1 e83).

Uhlenbeck, G.E. and Uehling, E.A.
Phys. Rev. 39, 1014 (1932).

APPENDIX

DeÍinition and computation of i
FromH=U+pV
we have

H=U+aU=(o+1)U

Since p = 6su.

Therefore

(4u')'='"." (u#)'

or

(S)r= t".t t cv . only for an classical

idearsas we have (#;ffi;.,
Since

Then, an isentropic equation is

pVl= cte.

Consider a mixture of an classical ideal
gas + photons

The i mixture can be calculated
Írom

H =ú +BV

=U+Un+NKT+faTaV
J

H = NKT 1+ 4 aToV23

and from the internal energy in

ü=9NKT+aTov
2

Therefore'! Íor the mixture is

t-

NK!+ 4 a4T3V23
(A)

NK:+ 4 aT3V

The mixtures value of Í varies Írom 1.33
(photon 1) to 1.66 (classical monoatonic y).

Since TV0-1)=constant we can define
the isentropic equation by an interactive
method. This being so, with generality,
when a classical ideal gas is compres-
sed_ reversibly !' change, satisÍying tl
1y(Y- t)6snr1rnt and (A). The mixture, oÍ ''
course satisÍies the equation

pV=0-i)u

p v = (Í- 1)(: NKr * arv)r

with

le \
B = (Í- 1)[i NKr + aïVJ

ThereÍore Íor a gas without interactions,
B value change because the gas is not
a classical or (and) because the photon
gas can not be neglected.

pV=BT

DeÍining

we have

."=(3ï),

/aHl

. [ar/ 
"'= J@r'

\ar/ 
"

y=(a+1)


