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Theorem of the Keplerian kinematics
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Abstract As described in the literature the speed of a Keplerian orbiter on
a fixed orbit is always the sum of a uniform rotation speed and a uniform
translation speed, both coplanar. This property is stated here as a theorem
and demonstrated as true. The consequences of this theorem are investigated
among which the Newton’s law of gravitation appears as its derivative with
respect to time, the classical mechanical energy is deduced, the Galileo’s equiv-
alence principle is respected, the conic determination is simplified, as well as
the description of the motion of thrusted orbiters.
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1 Introduction

Although the three laws of Kepler are widely known [1], it exists a special
property of the Keplerian motion for a fixed conic that is too often forgotten :
the speed is simply the addition of a uniform circular and a uniform translation
speeds. This kinematics aspect of the motion, fully referenced in the literature
[2–8], is generally quoted by the means of the hodograph plane representation,
although some authors as R.H. Battin state it in a different way [9]. In all
cases this special property is presented as a consequence of the Newton’s law of
gravitation. From this point of view it appears somehow difficult and complex
to use, although it could be a powerful tool when presented in an other way.

Our aim in this article is to inverse the usual vision of this property by
stating it as a theorem, and then showing its consequences, among which the
Newton’s law of gravitation appears, as a its trivial derivation with respect to
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time, the classical expression of the mechanical energy emerges and the orbit
determination is simplified as well as the velocity of a thrusted orbiter.

In no way at all we will pretend that such a vision of the Keplerian mo-
tion could be a satisfactory gravitation theory that could compete with the
Newton’s or Einstein’s ones. Our purpose is only to perform a pure kinematics
study without any postulate, nor assumption, nor theory.

2 Stating and proving the theorem

2.1 Statement

Let us state the following theorem :

Theorem 1 The speed of a Keplerian orbiter on a fixed orbit is always the
sum of a uniform rotation speed and a uniform translation speed, both coplanar.

At a kinematics point of view such a speed will be written as follows :

v = vR + vT (1)

where vR = ω ∧ r is the uniform rotation speed, with ω being the frequency
of rotation and r being the vector radius from the focus of the orbit to the
orbiter, and vT is the uniform translation speed. It is important to remember
that the indice R does not stand for radial, but for rotation, while the indice
T does not stand for tangential but for translation. Of course the rotation
speed being uniform, and the frequency of rotation being perpendicular to the
speed/radius plane, we must verify :

vR = ‖vR‖ = ‖ω ∧ r‖ = ωr = cste (2)

Derivating this last relationship by the time we get a trivial but important
expression :

ω̇r + ωṙ = 0 (3)

The scalar ω̇ shall correspond to a vector ω̇ which is collinear to the vector ω.
Finally because the translation speed is also uniform we can write

vT = ‖vT ‖ = cste (4)

This being stated, we are now going to give the proof of this theorem.
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2.2 Proof

2.2.1 The angular momentum and its constancy

We define the angular momentum L as follows :

L = r ∧ v (5)

This angular momentum does not refer to the mass as it is only a kinematics
vector. R.H. Battin called it the massless angular momentum [10]. It is trivial
to see that its derivation with respect to time, by including the relation 3, is
null, thus the angular momentum is constant as expected for a central field
motion.

2.2.2 First law of Kepler

The vector multiplication of the rotation speed by the momentum leads to

vR ∧ L = v2R

(
1 +

vR.vT
v2R

)
r (6)

Therefore the scalar version of this expression is

L

vR
=

(
1 +

vT
vR

cos θ

)
r or p = (1 + e cos θ) r (7)

This last equation is the one of a conic where p = L/vR is the semilatus rectum,
e = vT /vR is the eccentricity and θ is the angle between the directions of the
rotation and the translation speed, i.e. the true anomaly. We see that both p
and e are constant and therefore the equation 7 is nothing else but the first
law of Kepler [1].

2.2.3 Second law of Kepler

The second Kepler’s law derives simply from the constancy of the angular
momentum, demonstrated above. As explained by L. Landau and E. Lifchitz
[11], the momentum can also be written as a function of the position and the
derivative of the true anomaly with respect to time :

L = r2θ̇ (8)

From the equation 7 it is trivial to relate the angular frequency of rotation to
the derivative of the true anomaly with respect to time :

θ̇ = ω(1 + e cos θ) (9)
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2.2.4 Third law of Kepler

The third Kepler’s law also derives simply from the constancy of the angular
momentum [1]. Indeed the integration with respect to time of the relation 8 ,
over a complete period T of revolution, gives

LT =

∫ 2π

0

r2 dθ (10)

For the case where the trajectory is an ellipse, the right side of this equation
is worth 2πa b, where a is the major semi axis and b the minor one. Knowing
that a = p/(1 − e2) and b = 1/

√
1− e2, and remembering the definition of

the semilatus rectum p given by the equations 7, it is easy to finally get the
following relation :

L vR = 4π2a3/T 2 (11)

Because L and vR are constants, this last expression is nothing else but the
third law of Kepler stating that the square of the period of revolution is pro-
portional to the cube of the major semi axis [1].

3 Consequences

3.1 Newton’s law of gravitation

An interesting point is to derive the equation 1 with respect to time in order
to get the acceleration γ of a Keplerian orbiter. We get γ = ω̇∧r+ω∧v, and
including the equation 3 we can write γ = −(ω/r2)∧ [r∧ (r∧ v)], and finally

γ = −LvR
r3

r (12)

This is the expression of the Newton’s gravitational acceleration if

LvR = GM (13)

where G is the constant of gravitation and M is the attracting mass. We can
also notice that the equation 13 is consistent with the expression 11 of the
third Kepler’s law when compared to the one of the literature [1].

As we see here the kinematics does agree with the mathematical structure
of the Newton’s acceleration, but this last is not any more a prior to the
existence of the velocity, as described by the theorem 1. It only becomes a
trivial consequence, the centripetal acceleration due to the rotation speed. The
Newton’s postulate proposing that GM should be the numerator of expression
12 can not be reached, nor discussed, by the kinematics that describe it rather
as LvR, both factors being however constant.
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3.2 Galileo’s equivalence principle

Galileo has shown in the early 17th century that the motion in a gravitational
field is mass independent. This is quite consistent with the kinematics structure
of the Keplerian motion as the equation 1 is also mass independent. A body
falling, for instance from the top of the tower of Pisa, must follow the equation
1. If the starting speed of the body is null, we have vT = −vR , which means
e = 1 in equation (7), and therefore the body will fall on a parabola which
focus is at the center of gravity of the two implied bodies, the falling object
and the Earth, so nearly at the center of the Earth. Of course at such a
distance from the Earth’s center, and locally from the top of the tower to the
ground, the parabolic trajectory could be confused with a straight line at a
first approximation.

3.3 Mechanical energy

If we develop the square of the equation 1, and include the result 7, it is trivial
to define the massless mechanical energy EM as follows :

EM =
1

2
v2 − LvR

r
=

1

2
v2R(e2 − 1) (14)

This expression is interesting because it describes the classical mechanical
energy (divided by the mass of the orbiter) made of the addition of the usual
kinetic and potential parts. It also shows, with its right member, that this
energy is a constant for a fixed conic. Therefore the kinematics does agree
with the classical physics of the gravitation [1], as far as, once again, the
relation 13 is true.

3.4 Conic determination

A very interesting property of the theorem 1 is to give straight forward all
the characteristics of a conic when knowing only the position and the speed
of an orbiter at a single and unique time, provided that we know the value of
the attracting mass M . Indeed if we know r and v at a single time t, we can
trivially calculate the angular momentum L, and thus get directly the rotation
velocity vR by the means of the equation 13. Now the direction of the rotation
speed must be perpendicular to the vector radius, then we can calculate the
vector vR. At this point it is also trivial to calculate the translation speed
from equation 1 with vT = v − vR. We can then calculate the eccentricity,
the semilatus rectum, and the true anomaly by the means of the equation 7,
i.e. e = vT /vR, p = L/vR and θ = arccos[(1/e)(p/r − 1)]. We then get all the
characteristics needed to draw the complete conic of the orbiter. Note by the
way that the translation speed will always be collinear to the minor axis of
the conic, this is obvious when looking at the equation 7.



6 Herve Le Cornec

3.5 Accelerating an orbiter with a mechanical thrust

If an orbiter has a null translation speed, it will only possess the uniform
rotation velocity that is well described in the literature [1], i.e. v = vR =√
GM/r, which is consistent with the equations 7 and 13, and the eccentricity

of the conic is of course null. This velocity is due to the gravitation and we
can not get rid of it, as far as the attracting mass exists. Let us now apply a
very tiny thrust during a very short time, in a specific direction. Obviously we
add a new non null speed to the rotation one, and that respects the theorem
1. Therefore the eccentricity of the conic can not be null any more (see the
definition of the eccentricity in equation 7) and consequently the orbiter can
not stay on its initial circular orbit, whatever the direction of vT , thus of the
thrust, is. This result is consistent with what is described in the literature
when either a tangential or a radial thrust is applied to an orbiter [12,13].
Actually the orbiter will enter a conic, an ellipse if the thrust is small, which
minor axis is collinear to vT .

Generalizing this, we know that the the acceleration equation for any
thrusted trajectory of an orbiter is [14–16] :

γ = −GM
r3

r +
F

m
(15)

where F is the thrusting force applied to the orbiter, and m its mass. Straight
forward, with the help of equation 12, and integrating this expression with
respect to time, we get :

v = vR +

∫ t

t0

F

m
dt (16)

While vR is the usual rotation speed due to the gravitation, the integral in
the right hand of this equation is of course nothing else but vT , and we find
back the equation 1.

A very interesting question here is can we produce an acceleration with
a mechanical thrust that would have the mathematical structure of a gravi-
tational acceleration, i.e. γT = k/r2, where k is a constant. This means that
vT should also be a rotation speed instead of a translation one. In this case
we would be able to accelerate the orbiter by keeping it on the same circular
orbit with a total acceleration γ = (GM+k)/r2 (see equation 15). Everything
would happen as if the attracting mass would have increased, and of course
some astronauts inside the orbiter would not feel any acceleration, as they
would be still in free fall, in the same way as if the thrust would not exist, but
they would be falling faster, i.e. orbiting faster. However as far as we know,
no one has ever described this theoretical possibility in the literature, neither
it has been experimentally performed, whatever the type of engine used. Until
this has been achieved we should then conclude that a mechanical acceleration
is not equivalent to a gravitational acceleration. The gravitation provides the
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rotation while the mechanical acceleration provide the translation. If the di-
rection of the thrust changes with the time, vT will consequently change, and
thus the characteristics of the conic. We then typically get a patched conic
structure for the trajectory.

4 Conclusion

The aim of this article was to state a very well known property of the Keplerian
motion, fully described in the literature, not any more as a consequence of
the Newton’s law of gravitation, but as a standalone kinematics theorem.
With this new perspective we show that the three laws of Kepler are satisfied,
as well as the Newton’s gravitational acceleration, the Galileo’s principle of
equivalence and the structure of the classical mechanical energy. Furthermore
the simplicity of the theorem enables to determine easily, in a new fashion, the
characteristics of any Keplerian conic and to simplify a bit more the problem
of thrusting a space orbiter.

Of course such a theorem can not pretend to be an alternate gravitational
theory, competing with those of Newton and Einstein. At the contrary of these
lasts we are stating no postulate, nor assumption, nor theory, but just studying
the pure kinematics, so the geometry, and that is all. In these conditions we
observe that the simple kinematics can not answer to the most fundamental
questions as why such a geometric property, the equation 1, can arise from
natures. Obviously what we called here the attracting mass must have a key
role but the only kinematics is unable to determine which one, and even less
why.

Therefore the theorem of the Keplerian kinematics presented here is mainly
intended to simplify the calculations concerning the orbital mechanics, even
if it could be used as a side help to the theorists who are working on the
foundations of the gravitation.

Acknowledgements I wish to thank professor David B. Spencer, form the Department of
Aerospace Engineering, at Penn State University, who’s attention and encouragements were
key factors for writing this article.

References

[1] L.Landau, E. Lifchitz, Mechanics, Ed. Mir, Moscow, 1966, 15
[2] Orbit information derived from its hodograph, J. B. Eades, Tech. Rep. TM X-63301,

NASA (1968)
[3] W. R. Hamilton, The hodograph, or a new method of expressing in symbolic language

the Newtonian law of attraction, Proc. R. Ir. Acad. III , 344353 (1845).
[4] H. Abelson, A. diSessa and L. Rudolph, Velocity space and the geometry of planetary

orbits, Am. J. Phys. 43 , 579-589 (1975).
[5] A. Gonzalez-Villanueva, H. N. Nunez-Yepez, and A. L. Salas-Brito, In veolcity space the

Kepler orbits are circular, Eur. J. Phys. 17 , 168-171 (1996).



8 Herve Le Cornec

[6] T. A. Apostolatos, Hodograph: A useful geometrical tool for solving some difficult prob-
lems in dynamics, Am. J. Phys. 71 , 261-266 (2003).

[7] E. I. Butikov, The velocity hodograph for an arbitrary keplerian motion, Eur. J. Phys.
21 (2000) 1-10

[8] D. Derbes, Reinventing the wheel: Hodographic solutions to the Kepler problems, Am.
J. Phys. 69 , 481-489 (2001).

[9] R. H. Battin, An Introduction to the Mathematics and Methods of Astrodynamics,
Revised Edition, American Institute of Aeronautics and Astronautics, Inc., Reston, 1999,
3.5, 126

[10] R. H. Battin, An Introduction to the Mathematics and Methods of Astrodynamics,
Revised Edition, American Institute of Aeronautics and Astronautics, Inc., Reston, 1999,
3.3, 115

[11] L.Landau, E. Lifchitz, Mechanics, Ed. Mir, Moscow, 1966, 9
[12] Karel F. Wakker, Fundamentals of astrodynamics, Institutional Repository Library,

Delft University of Technology, 2015, 211-217
[13] Pramod S. Joag, An Introduction to Vectors, Vector Operators and Vector Analysis,

Cambridge University Press, 2016, 12.4.3, 473
[14] R. H. Battin, An Introduction to the Mathematics and Methods of Astrodynamics,

Revised Edition, American Institute of Aeronautics and Astronautics, Inc., Reston, 1999,
11.7, 550

[15] Karel F. Wakker, Fundamentals of astrodynamics, Institutional Repository Library,
Delft University of Technology, 2015, 555

[16] B. Bonnar et al, Geometric optimal control of elliptic Keplerian orbits, Discrete and
continuous dynamical systems B, 2005, vol 5, No 4, 930


