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A binomial substitution and expansion demonstrates generally, Fermat's
Last Theorem, stated as: No three positive integers X, Y, and Z can satisfy
the equation Zn = Xn + Y n for any integer value of n greater than two.

By letting b = Y − X and substituting Y = (X + b) into the right side of
the expression, we �nd

Xn + Y n = Xn + (X + b)n

Expanding1 the binomial substitution for Y n, the two Xn terms combine (add),
doubling the �rst coe�cient:
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where the resulting coe�cients are expressed by(n
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)
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)
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This expanded and combined binomial for X and Y is incommensurate with
any and all binomial pairs of integers that may be obtained from any integer
root of any Zn because for Zn = (X + b)n the coe�cients2 are(n

k

)
=

n!

k!(n− k)!

∵
Zn = (X + b)n 6= Xn + (X + b)n = Xn + Y n

for positive integers for Z, X, Y, n for n>2.

1Equivalently Xn + Y n = Xn +
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2Assigning Z = (X + b) after having assigned Y = (X + b) may be confounding but
having rearranged the Xn + Y n terms into a polynomial in X and b, it serves to point out
the coe�cients are incommensurate with any binomial expansion of any Z regardless of the
binomial variables assigned.[
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We have expressed Xn+Y n as a binomial expansion of degree n and demon-
strate it is incommensurate with any binomial expansion of any Zn to the same
degree for n > 2. Q.E.D.

For n=2, substituting the binomial Y = X+b into the equation Z2 = X2+Y 2

we obtain Z2 = X2 + (X + b)2 which can be rearranged to:

Z2 −X2 = (X + b)2 , factoring

(Z −X)(Z +X) = (X + b)(X + b)

Alternatively, expand and rearrange :

Z2 − b2 = 2X2 + 2Xb , factoring

(Z − b)(Z + b) = 2X(X + b)

for which there are in�nitely many solutions (the Pythagorean Theorem). 3
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3Both forms of the equation Z2 = X2 + (X + b)2 (after either subtracting b2 or X2

from each side of the expression and factoring) can be written as ratios useful for heuristically
�nding primitive Pythagorean triples. (see for example Richard Courant and Herbert Robbins
(1941). What is Mathematics?: An Elementary Approach to Ideas and Methods. London:
Oxford University Press. ISBN 0-19-502517-2. pgs 40-42 (Ian Stewart revision (1995)
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