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Abstract

It is well known that ”Bit” is the unit in information theory to measure

information volume with Shannon entropy. However, one assumption to

use bit as information unit is that each hypothesis is exclusive with each

other. This assumption is also the basic assumption in probability theory

which means that two events cannot happen synchronously. However, the

assumption is violated such as the ”Entangled state”. A typical example is

Schr?dinger’s cat where a cat may be simultaneously both alive and dead.

At this situation, bit is not suitable to measure the information volume. To

address this issue, a new information unit, called as ”Deng” and abbreviated

as ”D”, is proposed based on Deng entropy. The proposed information unit

may be used in entangle information processing and quantum information

processing
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1. Introduction

Uncertainty is ubiquitous in nature. Several uncertainty theories have

been developed, such as probability theory [1], fuzzy set theory [2], possibil-

ity theory [3], Dempster-Shafer evidence theory [4, 5], generalized evidence

theory [6] and D numbers[7].

Since firstly proposed by Clausius in 1865 for thermodynamics [8],the

study of uncertainty and entropy attracts great interests and various types

of entropies are developed, such as information entropy [9].

This paper is inspired by our previous work [10] and based on the pro-

posed Deng entropy [11]. The main contribution of this work is that a new

information unit is presented. Compared with existing unit ”Bit”, the new

unit ”Deng” is more generalized. We argue that only on the situation that

each hypothesis is exclusive with each other can we use the unit ”Bit”. The

exclusive assumption is the base of probability theory which means that two

events cannot happen synchronously. However, in quantum mechanics, this

assumption is violated. A typical example is Schr?dinger’s cat where the cat

may be simultaneously both alive and dead[12].

The paper is organized as follows. The preliminaries Dempster-Shafer

evidence theory, Shannon entropy and Deng entropy are briefly introduced

in Section 2. Section 3 presents the idea of information unit with Deng

entropy. Some numerical examples are illustrated in Section 4. Finally, this

paper is concluded in Section 5.
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2. Preliminaries

In this section, some preliminaries are briefly introduced.

2.1. Dempster-Shafer evidence theory

Dempster-Shafer theory (short for D-S theory), also called belief function

theory, as introduced by Dempster[4] and then developed by Shafer[5], has

emerged from their works on statistical inference and uncertain reasoning.

Let X be a set of mutually exclusive and collectively exhaustive events,

indicated by

X = {θ1, θ2, · · · , θi, · · · , θ|X|} (1)

where set X is called a frame of discernment. The power set of X is indicated

by 2X , namely

2X = {∅, {θ1}, · · · , {θ|X|}, {θ1, θ2}, · · · , {θ1, θ2, · · · , θi}, · · · , X} (2)

For a frame of discernment X = {θ1, θ2, · · · , θ|X|}, a mass function is a

mapping m from 2X to [0, 1], formally defined by:

m : 2X → [0, 1] (3)

which satisfies the following condition:

m(∅) = 0 and
∑

A∈2X

m(A) = 1 (4)

In D-S theory, a mass function is also called a basic probability assignment

(BPA). Assume there are two BPAs indicated by m1 and m2, the Dempster’s
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rule of combination is used to combine them as follows:

m(A) =











1

1−K

∑

B∩C=A

m1(B)m2(C) , A 6= ∅;

0 , A = ∅.

(5)

with

K =
∑

B∩C=∅

m1(B)m2(C) (6)

Note that the Dempster’s rule of combination is only applicable to such two

BPAs which satisfy the condition K < 1.

D-S theory has more advantages in in handling uncertainty compared

with classical probability theory. When information is adequate, probability

theory is effective to handle that situation. However, when information is

not adequate, probability theory is invalid to such uncertain situation. Here

is an example.

As shown in Figure 1, assume there are two boxes. There are red balls the

left box, and green balls in the right box. The number of balls in each box

is unknown. Now, a person is assigned to pick a boll from these two boxes.

We know that he chooses the the left box with a probability P1 = 0.6, and

chooses the right box with a probability P2 = 0.4. Based on probability

theory, it can be obtained that the probability of picking a red ball is 0.6,

the probability of picking a green ball is 0.4, namely p(R) = 0.6, p(G) = 0.4.

Now, let us change the configuration, as shown in Figure 2. In the left box,

there are still only red balls. But in the right box, there are not only red balls

but also green balls. In accord with above, the exact number of balls in each

box is still unknown, and the ratio of them are completely unknown. This
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Figure 1: A game of picking ball which can be handled by probability theory

person also has 0.6 probability to choose the left box and 0.4 probability

to choose the right box. The question is how possible that a red ball is

picked. Obviously, in this case due to lack of adequate information, p(R)

and p(G) cannot be obtained. Facing the situation of inadequate information,

probability theory is incapable. However, if using D-S theory to analyze this

problem, we can obtain a BPA that m(R) = 0.6 and m(R,G) = 0.4, which

means the probability of red ball being picked is 0.6 and the probability of

red ball or green ball being picked is 0.4. In the framework of D-S theory, the

uncertainty has been expressed more effective. D-S theory has more ability

to express uncertain information than probability theory.

2.2. Existing entropy

Entropy is associated with uncertainty, and it has been a measure of

uncertainty and disorder. The concept of entropy is derived from physics

[8]. In thermodynamics and statistical mechanics, the entropy often refers

5



Figure 2: A game of picking ball where probability theory is unable but D-S theory is able

to handle

to Boltzmann-Gibbs entropy [13]. According to Boltzmann’s H theorem, the

Boltzmann-Gibbs (BG) entropy of an isolated system SBG is obtained in

terms of the probabilities associated the distinct microscopic states available

to the system given the macroscopic constraints, which has the following

form

SBG = −k

W
∑

i=1

pi ln pi (7)

where k is the Boltzmann constant, W is the amount of distinct microscopic

states available to the isolated system, pi is the probability of microscopic

state i satisfying
W
∑

i=1

pi = 1. Equal probabilities, i.e. ∀i, pi = 1/W , is a

particular situation. In that situation, BG entropy has the following form

SBG = k lnW (8)
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In information theory, Shannon entropy [9] is often used to measure the

information volume of a system or a process, and quantify the expected value

of the information contained in a message. Information entropy, denoted as

H , has a similar form with BS entropy

H = −
N
∑

i=1

pi logb pi (9)

where N is the amount of basic states in a state space, pi is the probability of

state i appears satisfying
W
∑

i=1

pi = 1, b is base of logarithm. When b = 2, the

unit of information entropy is bit. If each state equally appears, the quantity

of H has this form

H = log2N (10)

In information theory, quantities of H play a central role as measures of

information, choice and uncertainty. For example, the Shannon entropy of

the game shown in Figure 1 is H = 0.6 × log2 0.6 + 0.4 × log2 0.4 = 0.9710.

But, it is worthy to notice that the uncertainty of this game shown in Figure

2 cannot be calculated by using the Shannon entropy.

According to mentioned above, no matter the BG entropy or the informa-

tion entropy, the quantity of entropy is always associated with the amount

of states in a system. Especially, for the case of equal probabilities, the en-

tropy or the uncertainty of a system is a function of the quantity of states.

Moreover, in that particular case, the entropy is the maximum.
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3. Deng entropy

With the range of uncertainty mentioned above, Deng entropy can be

presented as follows

Ed = −
∑

i

m(Fi) log
m(Fi)

2|Fi| − 1
(11)

where, Fi is a proposition in mass function m, and |Fi| is the cardinality

of Fi. As shown in the above definition, Deng entropy, formally, is similar

with the classical Shannon entropy, but the belief for each proposition Fi is

divided by a term (2|Fi| − 1) which represents the potential number of states

in Fi (of course, the empty set is not included).

Specially, Deng entropy can definitely degenerate to the Shannon entropy

if the belief is only assigned to single elements. Namely,

Ed = −
∑

i

m(θi) log
m(θi)

2|θi| − 1
= −

∑

i

m(θi) logm(θi)

4. The new information unit:D

In the section, a lot of examples are given to show the effectiveness of

Deng entropy.

Example 1. Assume there is a mass function m(a) = 1, the associated
Shannon entropy H and Deng entropy Ed are calculated as follows.

H = 1× log 1 = 0B

Ed = 1× log
1

21 − 1
= 0D

It means that in the first situation, the information volume is 0 Bit (B) while
in the second situation, the information volume is 0 Deng (D)

8



Example 2. Given a frame of discernment X = {a, b, c}, for a mass func-
tion m(a) = m(b) = m(c) = 1/3, the information volume based on Shannon
entropy H and Deng entropy Ed are as follows

H = −
1

3
× log

1

3
−

1

3
× log

1

3
−

1

3
× log

1

3
= 1.5850B

Ed = −
1

3
× log

1/3

21 − 1
−

1

3
× log

1/3

21 − 1
−

1

3
× log

1/3

21 − 1
= 1.5850D

Clearly, Example 1 and 2 have shown that the results of Shannon entropy

and Deng entropy are identical. At this situation, each hypothesis is exclusive

with each other. The unit Deng (D) is degenerated as Bit (B).

Example 3. Let’s consider Figure 1 and Figure 2. The information volume
can be calculated as follows

−0.6× log 0.6− 0.4× log 0.4 = 0.9710B

−0.6× log
0.6

21 − 1
− 0.4× log

0.4

22 − 1
= 1.6049D

Example 4. Given a frame of discernment X = {a, b, c}, for a mass func-
tion m(a, b, c) = 1, the information volume is calculated as follows

−1 × log
1

23 − 1
= 2.8074D

For another mass function m(a) = m(b) = m(c) = m(a, b) = m(a, c) =
m(b, c) = m(a, b, c) = 1/7, the information volume is calculated as follows

−1

7
× log 1/7

21−1
− 1

7
× log 1/7

21−1
− 1

7
× log 1/7

21−1

−1

7
× log 1/7

22−1
− 1

7
× log 1/7

22−1
− 1

7
× log 1/7

22−1
− 1

7
× log 1/7

23−1

= 3.8877D

The following example is used in [10].
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Example 5. In this section, we will show the irrationality of the requirement
of range through an illustrative example. Let us consider an example as
follows. Suppose there are 32 students participating in a course examination.
After the examination finished, a student won the first place. In order to
know who is the first one, we go to ask their course teacher. But the teacher
doesn’t want to directly tell us. Instead, she just answers “Yes” or “No” to
our questions. The problem is how many times do we need ask at most in
order to know who IS the first ONE?

Assume the times is t, it is easy to answer the problem through calculating
the information volume by using information entropy

t = log2 32 = 5 (12)

For example, the first student’s number, denoted as x, is assumed to be
No.2. The top 1 student No.2 can be found through five times asking at most.
That means the information volume is 5 B.

Now, let’s consider another situation. Assume we have been told that
there are students tied for first. In this case, how many times do we need ask
at most to know who ARE the first ONES?

In this case, obviously
t ≥ log2 32 (13)

According to Deng entropy, the information volume is as follows

Ed =
1

232−1
× log2(

1

232−1
/(21 − 1)) + 1

232−1
× log2(

1

232−1
/(21 − 1)) + · · ·

+ 1

232−1
× log2(

1

232−1
/(232 − 1))

≈ 48D
(14)

One thing should be pointed that, in [10], our conclusion is that we need

32 times to determine the top 1 student(s). However, it is not correct since

that, according to the result above, we need 48 times to obtain the result. The

difference of these two values is the information volume caused by Entangled

state.
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5. Conclusion

For the aleatoric uncertain information expressed by PDF, information

entropy proposed by Shannon [9] is a good measure. However, with respect

to other uncertain information including epistemic, irreducible, reducible and

inferential uncertainty, classical information entropy is invalid. The ”bit” can

be used to measure information volume with Shannon entropy. When the

assumption is violated such as the ”Entangled state”, the bit is not suitable

to measure the information volume. To address this issue, a new information

unit, called as ”Deng” and abbreviated as ”D”, is proposed based on Deng

entropy. Unit Deng is the generalization of unit bit, while the former is

based on Deng entropy and the latter is based on Shannon entropy. The

proposed information unit may be used in entangle information processing

and quantum information processing.
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