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Abstract: The problems of squaring the circle or 

“quadrature” and trisection of an acute angle are supposed 
to be impossible to solve because the geometric 

constructibility, i.e. compass-and-straightedge construction, 

of irrational numbers like � is involved, and such numbers 

are not constructible. So, if these two problems were actually 

solved, it would imply that irrational numbers are 

geometrically constructible and this, in turn, that the infinite 

of the decimal digits of such numbers has an end, because it 

is this infinite which inhibits constructibility. A finitely 

infinite number of decimal digits would be the case if the 

infinity was the actual rather than the potential one. Euclid's 

theorem rules out the presence of actual infinity in favor of 

the infinite infinity of the potential infinity. But, space per se 

is finite even if it is expanding all the time, casting 

consequently doubt about the empirical relevance of this 

theorem in so far as the nexus space-actual infinity is 

concerned. Assuming that the quadrature and the trisection 

are space only problems, they should subsequently be 

possible to solve, prompting, in turn, a consideration of the 

real-world relevance of Euclid's theorem and of irrationality 

in connection with time and spacetime and hence, motion 

rather than space alone. The number-computability 

constraint suggests that only logically, i.e. through Euclidean 

geometry, this issue can be dealt with. So long as any number 

is expressible as a polynomial root the issue at hand boils 

down to the geometric constructibility of any root. This 

article is an attempt towards this direction after having 

tackled the problems of quadrature and trisection first by 

themselves through reduction impossible in the form of proof 

by contradiction, and then as two only examples of the 

general problem of polynomial root construction. The 

general conclusion is that an irrational numbers is irrational 

on the real plane, but in the three-dimensional world, it is as 

a vector the image of one at least constructible position 

vector, and through the angle formed between them, 

constructible becomes the “irrational vector” too, as a right-
triangle side.So, the physical, the real-world reflection of the 

impossibility of quadrature and trisection should be sought 

in connection with spacetime, motion, and potential infinity. 
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“As long as algebra and geometry have been separated, 
their progress have been slow and their uses limited; but 

when these two sciences have been united, they have lent 

mutual forces, and have marched together towards 

perfection.” Joseph Louis Lagrange (17γ6-1813, [45, 

Preface]) 
 

1. INTRODUCTION 
 

“Two truths cannot contradict one another.” Galileo 
Galilei (1564-1642, [23, p.186]) 

At any given point in time, the universe is finite. If it ex- 

pands over time, it will be an ever-changing finiteness, but 

still finiteness [6γ]. If it was infinite, the term “expansion” 
would be meaningless. At the other end, if it was not 

expanding, it would not necessarily imply that it is infinite. 

In any case, we take the static finiteness of space as our 

working hypothesis in this book. 

The universe has a beginning and an end, some extreme 

limits, changing perhaps with the passage of time. It 

follows empirically that (i) any number in connection with 

space should have a beginning and an end and should be 

subsequently geometrically constructible, and (ii) any 

number without actualization spatially-wise and hence, in 

constructible number, is either a number which man is 

unable to compute accurately and can only approximate 

[60], or a number pertaining to the time component of the 

universe. But, space-wise, the infinite must be the finite 

one, the actual as opposed to potential infinite. And, the 

Arithmetic which is empirically relevant space-wise 

should be the one of this type of infinite. The greatest 

obstacle to the advancement of such a view of the 

Arithmetic, is the fundamental theorem of Arithmetic by 

Euclid (323-283 B.C., [17]). For us, here, the actual 

infinite is identified with rationality and constructibility 

whereas potential infinity is identified with irrationality. It 

is a thesis which would be heretical if judged from the 

viewpoint of Euclid's theorem. Let us at least challenge 

him as follows:  

Let the natural number N be the product of all prime 

numbers, pi, ݅ = ͳ,ʹ, … , ݊ < ܰ. Let ܰ′ = ܰ + ݈ = ݈ +∏ ଵ , where l can be any positive number but prime. N′cannot be prime either, because its division by any of 

the p’s would leave a remainder equal to l. Actually, N′ 
cannot even be natural number, because by assumption 

there are no other p’s that could form a product producing N'. This in turn, rules out l being a natural number, too; 

not even a fraction of integers, b h⁄ , because then, ܰ′ = ܰ + ݈ = ܰ + ሺܾ ℎ⁄ ሻ ⇒ ℎܰ′ = ℎܰ + ܾ,which contr-

adicts that N′ and by extension its multiple, cN′, cannot be 

natural numbers. Therefore, l must be an irrational 

number. One is thus inclined to conclude that if a number ܰ′ > ܰ has to exist, it will have to be an irrational 

number, and that the largest natural number will be the 

product of all primes if ݈ < ͳ. That is, all what is left to 

have a workable definition of actual infinity as well as of 

potential infinity is to show that ݈ < ͳ obtains only when 

primes are finite in number, because if not, their product 

cannot be defined, which in turns implies that any other 

product is bound to be a partial one and hence consistent 

with ݈ > ͳ. 

Let ݈ = ܾ so that ܰ′ = ܾ + ∏  , where ݅ = ͳ,ʹ, … , ݊ 

and ܾ is either the unit or a composite number. As such, ܰ′ 
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becomes a natural number and may be rewritten as a 

product of primes ݍ, ݆ = ͳ,ʹ, … , ݎ < ݊, which are already 

included in the product, ∏ ଵ : ܰ′ = ∏ ݍ , and ∏  =∏ ݍ ∏ ݍ , ݇ = ݎ + ͳ, ݎ + ʹ, … , ݊. Consequently, ܰ′ = ܾ + ∏  = ܾ + ܰ′ ∏ ��� ⇒ ܰ = ܾ ሺͳ − ∏ ݍ ሻ⁄ , and ܰ′ 
only if ͳ ≥ ∏ ݍ , which is not true and which in turn, 

implies that ܰ′ is not a natural number and that ݈ < ͳ. 

Would we have obtained this result if all primes were not 

there? The answer is negative as follows: ܰ′ = ܾ + ∏ ఓߥ , 

with ߥ being ߤ primes and with ܾ being any natural 

number. Next, let ܰ′ = ∏ ݒ and ∏ ݒ = ܾ ∏ ௪ݑ , i.e. ܾ is 

the product of some of the primes ݒ and the rest of them 

are designated through ݑ. Equating ܰ′’s, yields that ܾ = ܾ ∏ ݑ − ∏ ఓ௪ߥ ⇒ ܾ = ∏ ఓߥ ሺ∏ ݑ − ͳ௪ ሻ⁄ . The numerator 

exceeds the denominator when ∏ ߥ + ͳ >ఓ ∏ ݑ ⇒௪ ܾ +∏ ఓߥ + ͳ > ܾ + ∏ ௪ݑ . Or, noting that, ܾ + ∏ ఓߥ = ܰ′ =ܾ ∏ ௪ݑ , our inequality becomes, ܾ ∏ ݑ +௪ ͳ > ܾ +∏ ݑ ⇒ ∏ ݑ > ሺܾ − ͳሻ ሺܾ − ͳሻ = ͳ⁄௪௪ , which is true, because 

otherwise ܾ would have to be negative. 

Consequently, ܾ = ݈ > ͳ, unless all primes are taken 

into consideration, indeed [14, 53]. Suppose that I did not 

actually do so when I asserted earlier that I did, because 

simply the infinitely infinite of primes prevented me from 

doing so. But, then I should have produced ݈ as a natural 

number, which I did not and hence, I did take all primes 

into account, telling me in turn this, that primes are finitely 

only infinite. This is a conclusion based on a RAI/C 

argument, which in this case may lack the validity of a 

formal proof.  Nevertheless, it is a conclusion that does 

cast doubt as to the particular real-world context in which 

Euclid's theorem holds. It appears that: Actual infinite 

consists of the rational numbers that may be formed on the 

basis of natural numbers whose number is equal to the 

product of all primes, symbolizing it via �. Potential 

infinite consists of the potential infinite of the decimal 

digits that might start being added at the end of a given 

rational endlessly, and by the potential infinite of the 

order/disorder with which decimal digits would keep 

piling up.  

That is, our potential infinity is the outcome of the 

interplay of these two kinds of potential infinity with 

regard to each of the finitely infinite rational numbers, 

over the whole set of rational numbers. There are as many 

such “two-footed” potential infinities as finite rationals. A 

potentially infinite number of irrationals like ܰ′ may come 

out of �. And, by “backward induction”, (i.e. if � > ݕ ≥Ͳ, then � ∈ � and ݕ ∈ � imply � − ݕ ∈ �, where � is the 

set of rational numbers up to �, any other rational up to � 

has its “own” potentially infinite irrationals. The set of 
potential infinities is a finitely infinite one, identical to �, 

simply because it is subject to the superstructure of actual 

infinite. Before relaxing this Russell side of the set- 

theoretic definition [19, 34], through the introduction of 

time considerations, let us extend our conclusions to 

include complex numbers as well.     

Given the fundamental theorem of Algebra, which 

dictates the involvement of the complex numbers in any 

sensible discussion of the Arithmetic, it should be 

remarked that our own perception of the Arithmetic here, 

may be extended to include imaginary numbers too, since 

this is only a matter of multiplication with ߡ = √−ͳ. But, as 

far as complex numbers are concerned, they have to be 

ordered by establishing ordering based not only on the 

magnitude of the real numbers, ܾ and ℎ of a complex 

number, ݖ = ܾ + ℎߡ, but also on ܽ݃ݎሺݖሻ as follows: (a) The 

complex numbers corresponding to the circumference of a 

given "complex circle", circle on the complex plane, are 

all smaller/larger vis a vis the numbers belonging to a 

larger/smaller complex circumference; and (b) The 

numbers on a given complex circumference take on their 

minimum and maximum values as in Fig. 1.1, which 

illustrates the whole “zigzag counting” of numbers that is 
proposed. 

Let ܴ݁ be the real line, ݉ܫ be the imaginary axis, and 

the ݖ’s as follows: ሺ�ሻ ܴ݁ሺݖଵሻ > ܴ݁ሺݖሻ > ܴ݁ሺݖሻ  and ܽ݃ݎሺݖଵሻ = ሻݖሺ݃ݎܽ = ሻݖሺ݃ݎܽ = Ͳ so that ݖଵ > ݖ > ሻݖሻ ܴ݁ሺࢼ. ሺݖ > ܴ݁ሺݖሻ > ܴ݁ሺ଼ݖሻ > ܴ݁ሺݖଽሻ = Ͳandܽ݃ݎሺݖଽሻ ߨ= ʹ⁄ > ሻ଼ݖሺ݃ݎܽ > ሻݖሺ݃ݎܽ > ሻݖሺ݃ݎܽ = Ͳ so that ݖଵ > ଽݖ ଼ݖ< > ݖ > ݖ > ହሻݖሻ ܴ݁ሺࢽ. ሺݖ > ܴ݁ሺݖସሻ = Ͳandܽ݃ݎሺݖସሻ ߨ͵= ʹ⁄ < ହሻݖሺ݃ݎܽ < ହݖ so that ߨʹ > ܾ ,ସ since in generalݖ − ℎߡ > ℎߡ ⇒ ܾ > Ͳ, which is true, and which along with 

the truth of the inequality, ܾ > ܾ − ℎߡ > Ͳ ⇒ Ͳ > ℎߡ yields 

that: ݖଵ > ଽݖ > ଼ݖ > ݖ > ݖ > ହݖ > ସݖ > ଷሻݖሻ Ͳ ܴ݁ሺࢾ. ሺݖ =ܴ݁ሺݖଵሻ > ܴ݁ሺݖଶሻ and ߨ ʹ⁄ < ହሻݖሺ݃ݎܽ < ߨ = ଶሻݖሺ݃ݎܽ  ଵሻݖሺ݃ݎܽ> < ߨ͵ ʹ⁄ , which given the truth of relations, −ܾ + ℎߡ > −ܾ ⇒ ℎߡ > Ͳ,−ܾ > −ܾ − ℎߡ > Ͳ > −ℎߡ,−ℎߡ > ܾ −ℎߡ ⇒ Ͳ > −ܾ, and ܾ − ℎߡ > −ܾ + ℎߡ ⇒ ሺܾ ℎ⁄ ሻ > ߡ = √−ͳ, 

completes the ordering of ݖ’s as follows: ݖଵ > ଽݖ > ଼ݖ ݖ< > ݖ > ହݖ > ସݖ > ଷݖ > ଶݖ > ଵݖ >  .ݖ

The maximum complex number under a given circumfe-

rence, is a purely imaginary number, followed by the 

minimum complex number of the immediately larger 

circumference, which is the same number but with 

negative sign, (minus an infinitesimally small real number 

right before the antipode of the maximum), and so on: 

zigzag counting. Complex numbers become completely 

ordered and the intersection of complex circles with the 

horizontal axis is another way of rendering the real line a 

complete continuum. Real numbers become thus somethi-

ng like the serial numbers of the complex circles; one real 

for each such circle, taking the absolute value of the real.  

But, this is the only bijection that there can be between 

real and complex numbers. And, certainly, there can be 

none of any of these two sets of numbers with the set of 

the natural numbers given that infinity is the actual one. If 

not, an endless process of complex circle generation is 

 

 
Fig. 1.1: Zigzag Counting of Numbers 
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triggered trying but never managing to catch up with the 

ever-expanding real line. The three-dimensional positioni- 

ng of numbers mentioned in the Abstract, does not change 

this conclusion, since the sphere to which such a 

positioning connotes, is made up by its spherical slices, by 

circles. One side of the cosmos has to be seen as such a 

finite field from the viewpoint of constructibility. In so far 

as at any point in time there is some actual infinity at 

which the real line ends spatially-wise, complex numbers 

ensure the constructibility of all numbers especially when 

the complex or real character of the construction plane, is 

immaterial to the construction: Irrational numbers are 

irrational on the real plane, but in the three-dimensional 

world, they are images of position vectors, which are 

constructible on the complex plane. 

The argument runs as follows: An irrational number is 

irrational and not constructible as a vector on the plane. 

But, in the three-dimensional space, such a vector would 

have one at least “shadow”, which is constructible as a 
vector corresponding to a rational number. And, through 

this “shadow vector” and the angle formed between it and 
the “irrational vector”, drawn both of these vectors as 
hypotenuse-side, respectively, of a right triangle, the 

irrational vector should be constructible by itself as well. 

That is, these vectors are position ones, belonging to a 

spherical section, a “spherical slice” of the three-

dimensional complex space, and in this two-dimensional 

section, the hypotenuse-shadow is a circle radius whose 

projection on the real line corresponds to the irrational 

vector. The complex or real character of the construction 

plane is immaterial to the construction, but the fact is that 

the shadow is one in the complex space. 

In view of the complex numbers, the size of actual 

infinity expands from � ≡ � in the one-dimensional 

space, to the area ߨ�ଶ ≡ � in the complex plane, and to 

the volume Ͷߨ�ଷ ≡ � in the three-dimensional 

complexspace, in which one of the axes is the imaginary 

one; (the corresponding �’s are �, � and �); all, with 

no breach in continuity whatsoever. An irrational number 

of the real line becomes constructible in the two- and 

three-dimensional space and hence, a rational number 

within this context. Consequently, irrationality, the 

potential infinite, has to be seen as the potentially infinite 

ways of vacillating between neighboring rational numbers. 

And, this can be the result only of motion and hence, 

velocity and time. 

Our universe could be a Kurt Friedrich Gödel (1906-

1978), for instance, type of constructible universe [15, 24], 

but with its recursive (and hence, time dependent) formula 

adjusted (becoming a differential equation) in line with 

chaos theory [39], with each constructible number acting 

as a local strange attractor and with the irrationality being 

described as endless oscillation about it and taking on 

values from the neighboring rationals. Like, for instance, 

oscillating about the number 1.41421 with the oscillation 

reaching number 1.35623, and upon return back to 

1.41421, having taken on the value 1.4142135623... Or, 

something like this... This is how more or less the actual 

and the potential infinities could coexist absolved from the 

Russell-Epimenides of Knossos (7th-6th century B.C.) Pa- 

radox [34, 35]. 

Such a perception of the cosmos is important, because 

although a number like ሺͶߨ�ଷ ͵⁄ ሻ + ͳ would not make 

sense within the context of actual infinity even after the 

introduction of the dynamic element, a potentially infinite 

sequence of positive integers may be defined over 

irrational numbers, ݅ݎ, exclusively... One ݅ݎ, two ݅ݎ, ... ሺ߱ + ͳሻ݅ݎ... , forming an ordered field. And, this sequence, 

abstracting from the ݅ݎ, may be used to count all rational 

in the complex plane and composite world numbers. 

Consequently, the sum ሺͶߨ�ଷ ͵⁄ ሻ + ͳ does make sense in 

so far as it may be referring as a serial number to an ݅ݎ, or 

to a rational, which is less than ሺͶߨ�ଷ ͵⁄ ሻ. Of course, all 

these number considerations cognitively, because nature 

knows only number one. At any given point in historic 

time, each and every being and phenomenon in the cosmos 

is unique, fabricating the new unique cosmos of the next 

point in historic time, with a new uniqueness of beings and 

phenomena, and so on. No single being and no single 

phenomenon is ever the same individually, because this is 

the rule, a prerequisite, for perpetuating the totality, which 

subsequently is never the same as well.  

In what follows, some specific bibliographical referenc-

es on the key concepts pervading the discussion and which 

need not be mentioned repeatedly, are: On Infinity: Maor 

[49], Moore [52], Rucker [57], and Zippin [69]. On Series: 

Bromwich [8], Knopp [41], Laugwitz [46], Manning [48], 

and Zygmund [70]. On Numbers and their History: 

Conway and Guy [12], Dickson [16], Guy [28], Ifrah [36], 

and Weil [66]. In Geometric Constructibility: Coxeter 

[13], Hobson [32], Hobson et al. [33], Kazarinoff [40], 

Knopp [42], Knorr [42], and Martin [50]. Of course, the 

whole discussion is permeated by the history on the 

subjects it treats, and some of the sources consulted are: 

On the History of Geometry: Greenberg [26], Hartshorne 

[29], and Wells [67]. On the History of Mathematics: 

Boyer and Merzbach [6], Cajori [9], Gray and Parshall 

[25], Gullberg [27], Jahnke [37], and Jones and Bedient 

[38]. And, particularly, on the History of Ancient Greek 

Mathematics: Christianidis [11], Heath [30] and [31], Netz 

[54], and Thomas [61] and [62].  

Primitive Statements 

Given the definitions of (a) the actual, �, as opposed to 

potential, ∞, infinity as developed earlier, (b) 

apeironomial as being any non-zero coefficient general 

polynomial of degree �, (c) irrational numbers as being 

decimal numbers with infinite non-repeating decimal 

digits, (d) geometric constructibility which is the ability to 

construct physically with a straightedge and a compass 

numbers as lines of a definite, exact rather than 

approximate length, and (e) RAI/C, which if it proves 

constructibility, it will be about lines and angles with a 

beginning and an end; 

And, given the propositions that (f) all rational numbers 

are geometrically constructible and with a unique 

eventually repeating infinite decimal expansion if one's 

denominator involves a prime factor other than 2 or 5, and 

(g) all constructible numbers are algebraic numbers: 

Special Theory 
And, moreover, given (h) the observation that irrational 
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numbers are mainly the sum of some infinite series, that 

the terms of a series may be seen as roots of an 

apeironomial, ܲܣ, and that the series, the sum-product or 

other function of roots, form subsequently an elementary 

symmetric apeironomial, ܲܧ, which is always equal to 

some ܲܣ-coefficient ratio: 

It follows that any irrational number constructible via 

reduction impossible in the form of proof by contradiction 

(RAI/C): (1) is an algebraic number from the minimally 

irreducible polynomial having as a term the infinite series, 

i.e. ܲܧ, instead of the irrational number that the series 

represents, and (2) is a definite, exact rather than 

approximate number, and as such the infinite of the 

number of decimal digits is the actual infinite even if these 

digits are non-recurring. 

General Theory 
Finally, given that as it will be shown later, (i) all 

irrational numbers are constructible via RAI/C in the form 

of ܲܣ-coefficient ratios equaling some ܲܧ of the roots of ܲܣ: Any angle may be constructed as a line segment and 

vice versa: 

It follows that (3) any irrational number is representable 

by the sum of some infinite series, it is an algebraic 

number from the minimally irreducible polynomial having 

as a term this series rather than the corresponding 

irrational number, and (4) the non-repetitiveness of the 

decimal digits of irrational numbers ceases sooner or later 

and the infinite of the number of these digits is the actual 

infinite. 

In what follows, the points made by Special Theory are 

highlighted through the paradigms of the Squaring-

Quadrature of the Circle and of the Trisection of an 

arbitrary acute angle. The General Theory is developed 

afterwards through the advancement of Theory of General 

Geometric Constructibility. 

 

2. THE QUADRATURE 
 

“There is no place that can take away the happiness of a 

man, nor yet his virtue or wisdom. Anaxagoras, indeed, 

wrote on the squaring of the circle while in prison.” 
Plutarch (c.46-120, [61, On Exile]) 

A. A Brief Account of the Problem 
Constructing with a straightedge-ruler and a compass a 

square having area and perimeter equal to those of a given 

circle or vice versa, was deemed to be impossible by 

ancient Greeks: “…Bryson (of Heraclea) declared the 
circle to be greater than all inscribed and less than all 

circumscribed polygons” (Themistius, γ17-c.390, [62]). 

That’s the most that could be done with  a ruler and a 
compass. Many attempts to refute the ancients have been 

made since then, but all have failed [32, 33]. In 1882, 

Ferdinand von Lindemann (1852-1939, [47]) proved that 

the squaring or quadrature of the circle is impossible, 

because ߨ is a transcendental, rather than an algebraic 

number; that is, ߨ is not a solution of any polynomial with 

rational coefficients. Hence, we cannot construct with a 

ruler and a compass a line segment ݔ such that ݔଶ =  ,ଶܴߨ

or setting the radius ܴ of the circle equal to one, the 

number ݔ =  is not constructible. It is quite clear that it ߨ√

is the inconstructibility of transcendence which is 

responsible for the impossibility of the Quadrature. 

Is this thesis true or false? If inadequate computability is 

thought of corroborating some notion of potential infinity, 

this statement is indeed true. From the 3.1605=ߨ of the 

Rhind papyrus in the 17th century B.C. [56] and the 3.1415926535898732=ߨ of astronomer Ghiyath al-Din 

JamshidMas'ud al-Kashi (c.1380-1429) of Samarkand 

around 1430 [5, 18, 55] to the ߨ with the 10000 decimal 

digits in 1958 and the ߨ with the trillion decimal places 

being produced nowadays, there has always been a 

computation problem. Today, the problem is that real 

numbers are computed by finite, terminating algorithms. It 

is these computations that are taken to be the real numbers, 

not the real-real numbers per se. And, this presents 

problems like, for instance, that under the classical 

definition of a sequence, the set of computable numbers is 

not closed in so far as taking the supremum of a bounded 

sequence is concerned [7, 44].  Indeed, “He who can 
properly define and divide is to be considered a god” 
(Plato, 429-347 B.C., [68]). 

Note for example that all numbers, rational and 

irrational, are representable through sums of infinite series. 

One such series is: Ͷ [ͳ − ͳ͵ + ͳͷ − ͳ + ͳͻ − ⋯ ] =  ,ߨ
which implies that we may write: ݔଶ = ሺܴܵଶݔሻ[ͳ +��ଶ] + ݎ ⇒ ଶݔ = ܴܵଶ +  where ܵ is a shorthand notation ,ݎ

for the above series while ݎ is a zero polynomial. Suppose 

that ݎ ≠ Ͳ and that ܴ ≠ ͳ so that ݎ = Ͳ and ݔ = ܴܵ′ for 

some ܴ′ ≠ ܴ. Or, suppose that ݎ ≠ Ͳ and that ܴ = ͳ so 

that ݎ = Ͳ and ݔ′ = ܵ for some ݔ′ ≠  In either case, the .ݔ

fact remains that there is always some line segment ݔor ݔ′, 
call it uniformly ݕ, such that ݕ = ܴ√ܵ, ܴ > Ͳ. And, this is 

enough for us: 

The transcendental number ߨ comes up as the unique 

solution to the polynomial equation: ݔଶ − ܴܵଶݔ = Ͳ ݔ⇒ = ܴ√ܵ and hence, ݔ =  is constructible and the ߨ√

squaring of the circle is possible. The construction of the 

number ݔ =  -is possible as a line segment correspondi ߨ√

ng to an angle of tangent equal to √ߨ the way it is 

elaborated below. From still another point of view, let the 

numbers of series ܵ (inside the brackets above) be 

polynomial roots so that ܵ may be seen as the elementary 

symmetric polynomial ܵ ≡ ݁ଵሺݔଵ, ,ଶݔ … , ఔሻݔ = ∑ ఔଵݔ , ݅ =ͳ,ʹ, … ,  coming out as a coefficient of the following ,ߥ

linear factorization of a monic polynomial in ߤ: ∏ ሺߤ − ሻఔଵݔ = ఔߤ − ݁ଵሺݔଵ, … , +ఔ−ଵߤఔሻݔ ݁ଶሺݔଵ, … , ఔ−ଶߤఔሻݔ − ⋯+ ሺ−ͳሻఔ݁ఔሺݔଵ, … ,  ఔሻݔ

Consequently, ߥ − ͳ, ߥ − ʹ, … would be sensible if the 

infinite of ܵ was the actual infinite, �; otherwise, ∞ −ͳ = ∞ − ʹ = ⋯ 

But, let us take the matter a little bit further. We do 

dismiss the transcendence of ߨ, but do we retain its 

irrationality? We know from Euler that: 
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Ͷߨ  = Ͷ͵ ͷͶ ͅ ͳͳͳʹ ͳ͵ͳʹ ͳͳ ͳͻʹͲ ʹ͵ʹͶ ʹͻʹͺ ͵ͳ͵ʹ … 

The numerator is always a prime number while the 

denominator is always a multiple of four nearest to the 

numerator. Let us ignore our theorem about the finiteness 

of the primes, which was advanced in the Introduction, 

and let us abide by Euclid’s Theorem that prime numbers 

are infinite. If it were not so, ߨ would be a rational 

number. But, what kind of infinity is that of the prime 

numbers? One way to perceive it, is to let a computer 

adding terms to the right of this expression of ߨ Ͷ⁄  ad 

infinitum, independently of man’s presence on this earth. 
Another way is to view the product of fractions as product 

of polynomial roots in which case the product would be 

the elementary symmetric polynomial ݁ఔሺݔଵ, … ,  ఔሻ withݔ

the same caveat about the infinite of ߥ as with regard to ݁ଵ 

in connection with series ܵ. This in turn means that 

infinity is the actual rather than the potential one. 

 

 
Fig. 2.1 Convergence to Finiteness 

 

Any notion of actual infinite as signifying the presence 

of some extreme limit, would suffice to sustain the 

assertion that ߨ is rational; rational though not computable 

until now. After all, what is ߨ? It is the ratio of a circle’s 
circumference to its diameter. That is, the ratio of the four 

sides of the square that squares the circle to the diameter 

of the circle. All of these magnitudes have endpoints; they 

are rational quantities and subsequently, ߨis the ratio of 

two rational quantities. ߨis proved to be an irrational 

number, because irrationality is taken to coincide with 

potentially infinite non-repeating decimal expansion. It is 

the potentiality of the example with the computer above, 

which is in disharmony with the physical world spatially-

wise. 

The key question is whether one accepts or not the truth 

of the statement that there is some square which has an 

area equal to the area of some circle. Once one does 

reckon this statement to be true, one puts in jeopardy any 

argument on the impossibility of the Quadrature. Because, 

a square is finite and so should a circle, or the same, ʹߨ, 

be, being thereby equally constructible as a square. And, 

one does have to concede to the truth of this, because take, 

for example, the numbers ܽ = √ሺ͵݅ − ͳሻሺ͵݅ + ͳሻ ͵݅⁄  and 

the ratio of the perimeters of an equilateral triangle and of 

its circumcircle, ʹߨ ͵√͵⁄ . It may be shown that lim→∞ ሺܽଵଶܽଶଶߨʹ … ܽଶ … ሻ = ͵√͵, where ݅ = ͳ,ʹ, … , ∞ 

(Fig. 2.1, Jean-Paul Delahaye, [51]).  

That is, the process of shrinking the circumcircle by 

multiplying its radius with the squares of the ܽ’s, ends by 

producing a circumference equal to the perimeter of the 

equilateral triangle. The sides of two such triangles form a 

hexagon from which an equal-perimeter square may be 

drawn, having perimeter equal to two such circumferences.

In sum, there does exist some square perimeter 

corresponding to ʹߨ. The end of the process of shrinking 

is a physical end, an end within the context of the two-

dimensional space, not an end in the sphere of some 

abstract Platonic forms. The infinite in the lim above is the � rather than the ∞. 

B. Construction of Angle with Gradient Equal to √ߨ 
“Meton: With the straightedge I set to work, To make 

the circle four-cornered.” Aristophanes (444-380 B.C., 

[2]) 

Problem: 
Given line segment ℰ, construct with the use of a 

straightedge and a compass, a right triangle having ℰ as 

one of its catheti and with the angle formed by ℰ and the 

hypotenuse, having trigonometric tangent equal to √ߨ so 

that the other cathetus may be squaring the circle drawn 

with radius equal to ℰ, (or construct another line segment 

having length equal to the product ℰ√ߨ and being 

perpendicular at one of the endpoints of ℰ so that the latter 

may be squaring the circle of radius ℰ). 

Intuitive Observation: 
Drawing a circle of circumference ܮ =  ,ܴߨʹ

(ܴ=radius), both ܮ and ܴ = ܮ ⁄ߨʹ  are according to 

traditional mathematics irrational numbers, because ߨ is 

such a number, and if in general ݕ is a rational number and ݖ is an irrational one, the numbers ݖ + ݖ ,ݕ − ݕ ,ݕ − ݖ ,ݕݖ ,ݖ ⁄ݕ , and ݕ ⁄ݖ , will be irrational as well. And, from our 

earlier discussion follows that the irrational numbers ܮ and ܴ should be as constructible as rational numbers are. 

Methodologically, I could take any number involving ߨ 

for granted such as line segment √ߨ, form the hypotenuse √ʹߨ from the isosceles right triangle of side √ߨ, separate √ʹ from ߨ on the hypotenuse with a compass, and claim 

that the hypotenuse is the side ݔ of the square squaring the 

circle with radius equal to √ʹ: ݔଶ = ଶ(ʹ√)ߨ ⇒ ଶݔ ߨʹ= ⇒ ݔ = ߨʹ√ … But, contrary to common sense [4], 

traditional mathematics do not allow me to consider ߨ to 

be constructible, and so I have to find another, indirect, 

implicit, way through which ߨ will be involved in my 

construction. And, this way is through trigonometry, 

because trigonometric numbers are based on radians of a 

rational multiple of ߨ in bijection with rational number of 

degrees. 

Analysis: Consider Fig. 2.2: 

(i) Let ሺ�ߔ ��⁄ ሻ = tan ��ߔ = √͵ ⇒ ߔ� = ��√͵ and 

hence, according to Pythagorean Theorem, �ߔ ଶߔ�√= + ��ଶ = √͵��ଶ + ��ଶ = ��√Ͷ = ʹ��. Or, if �� ≡ ℰ, then �ߔ = ℰ√͵, �ߔ = �� = ߂� = ߄� ߁�= = ʹℰ and consequently, ��′ = ��′ = ℰ√ʹ. And, 

since ߃� = ��, it follows that ߃� = ℰ and �߃ = ℰ√ʹ, 

concluding thus that line segments ��′ and �߃ are 
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radiuses of a circle with center at point �, (�, ℰ√ʹ), � 

being also the center of the circle ሺ�, ʹℰሻ. Moreover, �ܥ = √ʹሺʹℰሻଶ = ʹℰ√ʹ,  �ܥ = ܥ� − �� = ʹℰ√ʹ −ʹℰ = ʹℰ(√ʹ − ͳ) and ߃� = �� − ߃� = ʹℰ − ℰ√ʹ =ℰ√ʹ(√ʹ − ͳ) = ܥ� √ʹ⁄  so that ߃� + ܥ� = ℰ√ʹ =  .߃�

Point ߃ lies in the middles of �ܥ and triangle △  is an ߂�ߔ

equilateral one. 

(ii) Let next ሺ߄߅ ⁄߅� ሻ = tan ߅�߄ = ߨ√ ⇒ ߄߅ ߄� ,and hence ߨ√߅�= = ଶ߄߅√ + ଶ߅� = ଶ߅�√ + = ଶ߅�ߨ ��√ͳ + ߅� Or, if .ߨ = ߆߅ ≡ ܴ ⇒ ߆� = ܴ√ʹand ߄߅ = ߄� the above magnitudes become ,ߨ√ܴ = ߔ� =�� = ߂� = ߁� = ܴ√ͳ + ߨ = ʹℰ, ��′ = ��′ = ߃� ܥ߃= = ܴ√ͳ + ߨ √ʹ⁄ ܥ� , = ܴ√ʹ√ͳ + ܥ� ,ߨ =ܴ(√ʹ − ͳ)√ͳ + �߃ and ,ߨ = [ܴ(√ʹ − ͳ)√ͳ + [ߨ √ʹ⁄ . 

We also obtain the difference ߅� = ℰ − ܴ and ߕ� ߃߆∥ = ʹ√�߅ = ߔ߉ and �ߕ =  is the ߕ where ,ʹ√߃߆

midpoint of ߉߅ while � is the midpoint of �߉߅ ;ߔ =ܴ√͵, because of the similarity of triangles △ △ and ��ߔ ߅� and given that ,߅�߉ ≡ ܴ. 

(iii) Furthermore, let ℰ√͵ = ߋ߅ ∥ �� so that ሺܶܰ ⁄ܶ߅ ሻ = tan ܶܪܰ = ߨ√ ⇒ ܶܰ = ܯܪ ,and hence ߨ√ܶܪ = ଶܶܪ√ + ଶܶܪߨ = ͳ√ܶܪ + ͵√Consequently, ℰ .ߨ = ͳ√ܶܪ + ߨ ⇒ ܶܪ = ℰ√͵ √ͳ + ⁄ߨ = ܴ√͵ ʹ⁄  and 

 

 
Fig. 2.2. Squaring the Circle 

 

(ܶܰ = (ܴ√͵ ʹ⁄  is a square ܶܥ̃ߕܪ The quadrilateral .ߨ√(

having side equal to ܴ√͵ ʹ⁄ . Moreover, in Fig. 2.2, ܥ̃ܫ = �ܪ = ℰ − ܴ while equalities ܪ� = ܶܪ = ܴ√͵ ʹ⁄  

and ߆ܪ = ߂ܪ = ܴ imply that �߆ = ߆ܪ − �ܪ = ܴ −(ܴ√͵ ʹ⁄ ) = ߂ܪ − ܶܪ = ߂ܶ =  .ܧܲ

(iv) Let finally, the upward extensions of �ܼ and �ߔ 

meet at point ܣ so that ሺ�ܣ ��⁄ ሻ = ሺ�ܣ ℰ⁄ ሻ = ߨ√ ܣ�⇒ = ℰ√͵ and subsequently, �ܣ = √��ଶ + ଶܣ� =√ℰଶ + ℰଶߨ = ℰ√ͳ + ܣܼ obtaining also that ,ߨ = ܣ� −�ܼ = ℰ(√ͳ + ߨ − ʹ) and ܣߔ = ℰ(√ߨ − √͵) = ܣ�  .ߔ�−

Conclusion: The radius of circle (�, ܣ� = ℰ√ͳ +  (ߨ

gives through circle (�, �ܼ = ܴ√ͳ + ߨ = ʹℰ) rise to the 

cathetus ܼܪ = ,�that squares the circle ሺ ߨ√ܴ ߅� = ܴሻ, 

which has radius the other cathetus �߅ = ܴ of the right 

triangle △ ,ܪ) while the radius of the circle ;ܪܼ� ܰܪ =ℰ√͵) gives rise to the cathetus ܶܰ =  that squares ߨ√ܶܪ

the circle (ܪ, ܶܪ = ܴ√͵ ʹ⁄ ), which has radius the other 

cathetus ܶܪ of the right triangle △  It follows that if .ܶܰܪ

one starts with the equilateral triangle △ ,�) in circle ∆�ߔ ܴ√ͳ + =∆ܶ obtain next ,(ߨ  on �∆, form ߃�

afterwards square ܶܥ̃ߕܪ from quadrilateral ��ܶܫ, and 

draw finally, from point ܪ circle (ܪ, ℰ√͵) to meet at 

point ܰ the perpendicular at point ܶ, the result will be ݊ܽݐ ܶܪܰ = △ and similar triangles ߨ√ △ ,ܶܪܰ △ and ,ܪ�ܼ  having solved through the latter triangles the ,��ܣ

stated Problem. 

Construction: 
(a) Given line segment ℰ = ��, draw with center 

endpoint �, circle ሺ�, ʹℰሻ, form equilateral triangle △  ߔ draw from ,߂�߁ in the northeast quadrant ߂�ߔ

perpendicular �ߔ to side �߂, and receive the bisector �ܱ 

of the right angle ߂�߁, where ܱ is the intersection point of 

the bisector with the circumference of circle ሺ�, ʹℰሻ while 

the bisector cuts also �ߔ at point ܧ. {Or, given line 

segment ℰ = ��, draw with center endpoint �, circle ሺ�, ʹℰሻ, inscribe the northeast quadrant ߂�߁ inside square �߂ܥ߁, draw from the midpoint ܧ of the diagonal �ܥ line 

perpendicular to side �߂ of angle ∠߂�߁, which 

perpendicular meets �߂ at point � and cuts the 

circumference of circle ሺ�, ʹℰሻ at point ߔ, and form angle ∠ߔ��.} 

 

 
Fig.2.3.The Contradiction 

 

(b) From the middle ܲ of perpendicular �ߔ, receive 

distance equal to ܲܧ and transfer it on �߂ as line segment ܶ߂, drawing next at ܶ perpendicular which cuts at point ܫ 

the parallel to �߂ drawn from ܲ, forming this the 

parallelogram ��ܶܫ. With center ܯ at the midpoint of 

diagonal ܶܲ of ��ܶܫ, draw on the left of ܶܲ, semi-

circumference of radius ܶܲ ʹ⁄ , draw from ܲ a half-line 

parallel to bisector �ܱ (or to diagonal �ܥ), which half-

line meets the semi-circumference at point � and forms 

with �ܲ angle ∠�ܲ�, draw afterwards from � a parallel to �ܲ, which cuts �߂ at point ܪ, and draw moreover a 

parallel to �߂, which cuts ܶܫ at point ̃ܥ, receiving thus the 

quadrilateral ܶܥ̃ߕܪ. 

(c) With center point ܪ, draw circle ሺܪ,  ሻ, whichߔ�

intersects the upward extension of ܶ̃ܥ (or ܶܫ) at point ܰ so 

that ܰܪ =  forming the ,ܼܪ and finally, receive line segment ,ܰܪ draw from center � radius �ܼ parallel to ,ߔ�

triangle △ △ ,and subsequently ܪ�ܼ  which is the ,��ܣ

sought triangle. 
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Proof (by Contradiction): 
We have to prove three things: First, that the 

quadrilateral ܶܥ̃ߕܪ is a square, next that ݊ܽݐ ܶܪܰ =  ߨ√

and finally, that ܼܪ is perpendicular at ܪ: 

(α) Indeed, by construction, ∠ܲ�̃ܥ = Ͷͷ°, because �ܲ ∥ �ܱሺ∥ ��ሻ. And, since, drawing ܶ�, triangle △ ܶ�ܲ 

is inscribed in circle ሺܯ, ܶܲ ʹ⁄ ሻ, ∠ܶ�ܲ = ͻͲ° and hence, ∠̃ܥ�ܶ = ∠ܶ�ܲ − ܥ̃�ܲ∠ = Ͷͷ°, which implies that ܶ� is 

a diagonal of a square. 

(ȕ1) Let next ݊ܽݐ ܶܪܰ = ߰ ≠ ߔ� ,By construction .ߨ√ = ℰ√͵ and since, the upward extension of ܪ� 

intersects �ߔ at point ߉ and cuts �ܱሺ�ܥሻ at ߆, then by 

the similarity of triangles △ △ and ��ߔ ߉ܪ ,߅�߉ ߆߅ and ͵√߅�= = ߅� Or, if .ʹ√߅� ≡ ܴ, then ߉߅ = ܴ√͵, 

which implies that ܪ� = ܴ√͵ ʹ⁄ , since �ܲ ∥ �ܱሺ∥ ��ሻ 

and �ܲ = ℰ√͵ ʹ⁄  by construction. Consequently, ܶܪ =ܴ√͵ ʹ⁄ , because ܶܥ̃ߕܪ is a square. Therefore, if ߰ ≠ ͵√ܴ)߰ should be equal to ܯܶ ,ߨ√ ʹ⁄ ). 

Consider now the left part of Fig. 2.3, which includes 

square ܶܥ̃ߕܪ, triangle △ △ and the similar triangle ,ܶܪܰ  which obtains through the multiplication of the ,′ܶ′ܪ′ܰ

sides of △  be the angle which is ܶ′ܪܰ∠ Let .ߨ√ by ܶܪܰ

equal to √݊ܽݐ ,ߨ ܶ′ܪܰ = ܰܶ We have .ߨ√ =߰(ܴ√͵ ʹ⁄ ′ܪܶ ,( = (ܴ√͵ ʹ⁄ ܰܶ and ,ߨ√( =  ;ߨ√′ܪܶ

inserting the first two equalities in the last one yields that ߰(ܴ√͵ ʹ⁄ ) = [(ܴ√͵ ʹ⁄ ߨ√[ߨ√( ⇒ ߰ =  which is not ,ߨ

true, because ߨ is a half-circle, and which moreover 

implies that ܶܰ = ͵√ܴ)ߨ ʹ⁄ ), giving rise to five 

contradictions: 

The first is that △ △ version of ߨ√ is a scaled-up by ܶ′ܪܰ  How do we know that the hypotenuse of the .ܶܪܥ̃

smaller triangle coincides with diagonal ̃ܪܥ? We know it, 

because, given that ሺܶܪ′ ⁄ܪܶ ሻ = (ܴ√͵ ʹ⁄ ߨ√( (ܴ√͵ ʹ⁄ )⁄ =  then by the ,ߨ√

similarity of the bigger with the smaller triangle, the same 

proportion √ߨ should hold for the other side ܶܰ of △  And, given the length of ܶܰ, this proportion is .ܶ′ܪܰ

provided by the ratio ܶܰ ⁄ܥ̃ܶ . If ܶܰ = ͵√ܴ)ߨ ʹ⁄ ) as it 

seems to obtain when ߰ = ͵√ܴ) should be equal to ܥ̃ܶ then ,ߨ ʹ⁄ ܥ̃ܶ) to enable subsequently the derivation of ߨ√( ⁄ܪܶ ) =  .ߨ√

This does not contradict only that (ܶ̃ܥ ⁄ܪܶ ) = ͳ by 

construction; it also contradicts our assumption that ݊ܽݐ ܶ′ܪܰ = ܶܪܥ̃∠ because ,ߨ√ = Ͷͷ°. The third 

contradiction is that if ߰ = ܰܶ andߨ = ͵√ܴ)ߨ ʹ⁄ ), then ܶܰ should coincide with ܶܰ′; but, it does not. And, there 

is a fourth contradiction, because if they did coincide, then  ݊ܽݐ ܶ′ܪܰ = ܶ′ܪ′ܰ݊ܽݐ = ܪܰ ,and since ߨ√ ∥  we ,′ܪ′ܰ

would have ߰ = ߰ rather than ߨ√ =  And, there is a .ߨ

fifth contradiction, because if ܶܪܰ݊ܽݐ = ߰ = ܶܪܥ̃݊ܽݐ andߨ = ܶܪܥ̃)݊ܽݐ the angle sum identity for ,ߨ√ ܥ̃ܪܰ݊ܽݐ would yield (ܥ̃ܪܰ+ = ߨ) − (ߨ√ (ͳ + ⁄(ߨ√ߨ . 

Given now that ∠̃ܶܪܥ + ܥ̃ܪܰ∠ + ′ܪܪܰ∠ =  and that ߨ

the sum ሺܶܪܥ̃݊ܽݐ + ܥ̃ܪܰ݊ܽݐ +  ሻ is equal to′ܪܪܰ݊ܽݐ

the product ሺܪܪܰ݊ܽݐܥ̃ܪܰ݊ܽݐܶܪܥ̃݊ܽݐ′ሻ, one obtains 

that ܰܪܪ′ =  .which is false ,ߨ−

Could it be at the other end that ܶܪ′ܰ݊ܽݐ =  We ?ߨ√

understand through similar triangle △ △ and ܶܪ′ܰ  ܶ′′ܪܰ

that the answer is negative. We should have ሺܶܰ′ ⁄ܪܶ ሻ ߨ√= = ሺܶܰ ⁄′′ܪܶ ሻ = ߰(ܴ√͵ ʹ⁄ ) ⁄ݔ ⇒ ݔ = ′′ܪܶ =߰(ܴ√͵ ʹ⁄ ) ⁄ߨ√  and hence, ܪ′′ܪ = (ܴ√͵ ʹ⁄ ) −[߰(ܴ√͵ ʹ⁄ ) ⁄ߨ√ ] = (ܴ√͵ ʹ⁄ ߨ√)]( − ߰) ⁄ߨ√ ], which 

given that (ܶܰ ⁄ܥ̃ܶ ) = ܥ̃ܶ yields that ,ߨ√ =  ,ܪ′′ܪ

contradicting that ܶ̃ܥ = ܴ√͵ ʹ⁄ , because ܴ√͵ ʹ⁄ =(ܴ√͵ ʹ⁄ ߨ√)]( − ߰) ⁄ߨ√ ] ⇒ ߨ√ = ߨ√ − ߰ ⇒ ߰ = Ͳ. 

Note that the same result would obtain even if we accepted 

that √ߨ ≠ (ܶܰ ⁄ܥ̃ܶ ) = ߰ since, we should also have that ሺܶܪ′′ ⁄ܪ′′ܪ ሻ = ߰ as well. 

The general conclusion is that square ܶܥ̃ߕܪ along with 

the use of proportions do establish that ܶܪܰ݊ܽݐ =  and ߨ√

consequently, that ℰ√͵ is equal to the square root of the 

sum [(ܴ√͵ ʹ⁄ )ଶ + [(ܴ√͵ ʹ⁄  ଶ] from which it follows[ߨ√(

that ܴ√ͳ + ߨ = ʹℰ. 

(ȕβ) But, do we really need ܶܥ̃ߕܪ to prove that ܶܪܰ݊ܽݐ =  Let us disregard it for a moment, and let ?ߨ√

us experiment not only with a different hypotenuse or 

different horizontal triangle side, but by altering both of 

them the way the right-hand part of Fig. 2.3 illustrates. 

Suppose that the triangle with the “real √ߨ” is △ ܸܷܰ 

rather than △ ܷܸܰ݊ܽݐ with ,ܶܪܰ = ܦܮܸ݊ܽݐ = ܷܸ ,ߨ√ = ܴ√͵ ʹ⁄  − because this is the length we should have 
according to the Analysis in order to have √ߨ, too − and ܸܰ = ܪܰ = ℰ√͵ on ܰܮ = ℰ√͵√ߨ so that ܶܮ is some 

multiple ߣ of ܴ√͵ ʹ⁄ = ܶܦ = ܸܷ.  

From the differences ܦܮ = ܶܮ − ܶܪ = ܶܮ − ܸܷ =(ܴ√͵ ʹ⁄ )ሺߣ − ͳሻand ܸܮ = ܰܮ − ܸܰ = ℰ√͵(√ߨ − ͳ), 

and from the similarity of triangles △ △ and ܦܮܸ  we ,ܶܮܰ

obtain the proportions: ℰ√͵√ߣߨ(ܴ√͵ ʹ⁄ ) = ℰ√͵(√ߨ − ͳ)(ܴ√͵ ʹ⁄ )ሺߣ − ͳሻ 

from which it follows that: √͵√ߣߨ = ߨ√ − ͳߣ − ͳ ⇒ ߨ√ʹ)ଶߣ − ͳ) − ߨʹߣ + ߨ = Ͳ 

which equation in ߣ yields the solutions ߣ = ߣ and ߨ√ = ߨ√ ߨ√ʹ) − ͳ)⁄ . The latter solution is rejected 

because it implies that ܶܮ = (ܴ√͵ ʹ⁄ ߨ√]( ߨ√ʹ) − ͳ)⁄ ] 
and hence, that ܦܮ = ܶܮ − ܶܦ = (ܴ√͵ ʹ⁄ ) {[ √�(ଶ√�−ଵ)] −ͳ}, with the right-hand side becoming, −(ܴ√͵ ʹ⁄ )[(ͳ + (ߨ√ ߨ√ʹ) − ͳ)⁄ ] < Ͳ. Consequently, 

multiple ߣ = ܷܸܰ∠ reflects the angle ߨ√ =  the ,ܦܮܸ∠

tangent of which has been assumed to be √ߨ. It follows 

that ܷܰ = (ܴ√͵ ʹ⁄ ܷܸ given that ߨ√( = ܴ√͵ ʹ⁄ , and 

therefore, ܶܰ = (ܴ√͵ ʹ⁄ ܰܶ which if rewritten as ,ߨ( = [(ܴ√͵ ʹ⁄ ܶܪܰ݊ܽݐ is consistent with ,ߨ√[ߨ√( ܶܪ and ߨ√= = ܴ√͵ ʹ⁄ , contrary to what we have assumed. 
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But, more important is the observation that if ܶܰ =[(ܴ√͵ ʹ⁄ △ triangle ,ߨ√[ߨ√( △ of the sides of another triangle, similar to ߨ√ should be the multiple ܶܮܰ  with ,ܶܮܰ

sides equal to ܴ√͵ ʹ⁄  and (ܴ√͵ ʹ⁄ ͵√ܴ) and a hypotenuse ℰ√͵, having the angle facing the side equal to ,ߨ√( ʹ⁄  This is a quite .ߨ√  tangent equal to ,ߨ√(

interesting result, because it suggests that even if the 

Construction was wrong, it would lead to the correction of 

the error by simply drawing a parallel to ܰܮ so that √ߨ 

may be obtained. 

(Ȗ) We must finally show that ܼܪ is perpendicular at ܪon �߂. If it was at ܪ ≠ ܶܪܰ݊ܽݐ then ,ܪ =  which ,ߨ√

contradicts that ܶܪܰ݊ܽݐ =  .coincide ܪ and ܪ unless ߨ√

Also, if the upward extension of ܪ� did not intersect the 

circumference of circle ሺ�, ʹℰሻ at ܼ but at ܼ, we should 

have ߅�ܼ݊ܽݐ =  ,and hence, ܼ and ܼ should coincide ߨ√

given moreover that by construction, �ܼ ∥  The :ܰܪ

parallels ensure the verticality. If not anything else, ܼܪ = √�ܼଶ − ଶ, which is equal to the square root of [(ܴ√ͳܪ� + ଶ(ߨ − ܴଶ], implying that ܼܪ =  which is ,ߨ√ܴ

true and therefore, ܼܪ ⊥  It follows that the sought .߂�

triangle is △ ZΩΗ, with its hypotenuse ΩZ being the side 

of the square squaring the circle with radius equal to side ΩH…Quod Erat Demonstrandum… 
 

3. THE TRISECTION 
 

“Mighty is geometry; joined with art, resistless.” 
Euripides (485-406 B.C., [68, p. 474, 17]) 

A. Preamble 
The Trisection of an arbitrary acute angle by means of a 

straightedge and a compass was deemed by the ancient 

Greeks to be impossible. In Book IV of his “Mathematical 
Collections”, Pappus of Alexandria (c. β90-c. 350) writes: 

“…geometers of the past who sought by planes to solve 

the … problem of the trisection of an angle, which is by its 
nature a solid problem, were unable to succeed. For they 

were as yet unfamiliar with the conic sections and were 

baffled for that reason. But later with the help of the 

conics they trisected the angle using the following 

'vergings' for the solution...” [6β] 
In 1837, Pierre Laurent Wantzel (1814-1848, [65]) 

“proved” the impossibility formally. From the triple-angle 

formulas of Trigonometry, we know for angle ω that that; ݊ܽݐଷ߱ − ଶ߱݊ܽݐ߱͵݊ܽݐ͵ − ߱݊ܽݐ͵ + ߱͵݊ܽݐ = Ͳ.     ሺͳሻ 

This, equation is supposed to be an irreducible 

polynomial equation, and cubic roots are not geometrically 

constructible. But, it is not an equation: Given any cubic 

equation, ܽଷݔଷ + ܽଶݔଶ + ܽଵݔ + ܽ = Ͳ, one of the 

conditions to have three equal roots is, ܽଶଶ − ͵ܽଷܽଵ = Ͳ, 

which gives, ͻሺ݊ܽݐଶ͵߱ + ͳሻ = Ͳ ⇒ ߱͵ଶ݊ܽݐ = −ͳ. 

Neither this result, which we will have the opportunity to 

see it again in subsection 3.3, nor the result that ݔ  implied by the requirement to have three roots ߱͵݊ܽݐ=

equal, ݔ = − ܽଶ ͵ܽଷ⁄ = ߱͵݊ܽݐ͵ ͵⁄ =  .is sensible  ,߱͵݊ܽݐ

Because, simply, triple-angle formulas are identities 

regarding measure, keeping measures balanced like 

income-expenditure accounts. Expression (1) is an 

identity, a tautology like an accounting identity equating 

assets with liabilities with no Popperian information 

content whatsoever. Action may be taken once the 

relationship between the structure of assets and the 

structure of liabilities is revealed; once equations are 

formed. And, constructibility means action as will be 

explained in subsection 3.3. 

But, for now, one should note that we are dealing with 

trigonometric numbers, which are irrational numbers 

based on rational multiples of a circle or of ߨ. Expressing 

angle ߱ in terms of ߨ, ߱ = ߨ ⁄ݖ , one obtains from the 

infinite product formulas that: ߱݊݅ݏ = ሺߨ ⁄ݖ ሻ ∏ {ͳ − [ሺߨ ⁄ݖ ሻଶ ⁄ଶ݅ଶߨ ]}∞=ଵ= ሺߨ ⁄ݖ ሻ ∏ [ͳ − ሺͳ ⁄ଶ݅ଶݖ ሻ]∞=ଵ . 
Consequently, the Trisection might be viewed as a 

variant of the Quadrature the way we developed it earlier. 

Yet, based on the proposed utilization method of RAI/C, a 

much simpler Trisection is given below right away. 

B. Construction of Trisector of Acute Angle 

Problem:Trisect a given acute angle ߱, with the aid of 

a straightedge and a compass. 

Analysis:Suppose that we have trisected angle ∠߆�� = ߱ in Fig. 3.1, which also contains the following 

elements: Bisector �ܶ forms with half-line �ܤ, angle ∠ܶ�ܤ = � + ሺ߱ ʹ⁄ ሻ = Ͷͷ°. Also, ߱ଵ = ߱ସ = ሺ߱ ͵⁄ ሻand ߱ଶ = ߱ଷ = ሺ߱ ⁄ ሻ. The right triangle △  which is ,߁�ܫ

formed having hypotenuse the line segment �ܫ of trisector �ܱ, is an isosceles triangle 

 

 
Fig.3.1. Construction of Trisector 

 

as is triangle △ ߁� so that ܤ�ܶ = ܫ߁ = � ,ܤ߁ + ߬ = ͻͲ°, � = ߰ = ߬ + ߭ + ߞ ,߯ = ߢ = ߬ = ሺ߱ ⁄ ሻ. Given now that ߙ = ߡ = � ≡ ܾ, ʹܾ + ߱ = ͻͲ°, ߮ + ሺ߱ ʹ⁄ ሻ = ͻͲ°, ߰ + ሺ߱ ⁄ ሻ = ͻͲ°, and ߰ = ߮ + ሺ߱ ͵⁄ ሻ, routine 

calculations of triangle angles yield also the following list 

of angles: ߚ = Ͷͷ° − ሺ߱ ⁄ ሻ, ߛ = ͻͲ° − ܾ = Ͷͷ° +ሺ߱ ʹ⁄ ሻ = ܾ + ߜ ,߱ = ͻͲ° + ܾ + ሺ߱ ⁄ ሻ, ߟ = Ͷͷ° +ሺ߱ ͵⁄ ሻ, ߠ = ܾ + ሺ߱ ʹ⁄ ሻ = Ͷͷ°, ߣ = Ͷͷ° + ሺ߱ ⁄ ሻ, ߤ = ߥ = ߮ + ሺ߱ ͵⁄ ሻ, ߩ = ߱ ͵⁄ ݐ , = ͻͲ° − ሺ߱ ⁄ ሻ = ߮ +ሺ߱ ͵⁄ ሻ = ݉ ,ݏ + ݊ = ܾ + ߱, ߭ + ߯ = ͻͲ° − ሺ߱ ͵⁄ ሻ, and ߦ = Ͷͷ° + ሺ߱ ⁄ ሻ = ͻͲ° + ܾ + ሺ߱ ͵⁄ ሻ. 
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That is, according to this analysis, trisection imposes 

that �ܱ =  Nevertheless, the Analysis does not .ܫ�

determine angles ݉, ݊, ߭, and ߯. It appears through the 

sum ݉ + ݊ = ߙ + ߱ that ݉ = ߱and ݊ = ߙ ≡ ܾ, and this 

is what will be assumed below. 

Construction of Trisector�ܱ ሺ�ܫሻ:Given acute angle ∠߆�� = ߱ to trisect, draw bisector �ܶ and form next 

based on it, angle � + ሺ߱ ʹ⁄ ሻ = Ͷͷ° and the isosceles right 

triangles △ △ ,�ܣ߆ △ and ,ܤ�ܶ  From point �, draw .߂�ܶ

a line parallel to �߆ and meeting the downward extension 

of ܶ߂ at point ߁. The hypotenuse �ܫ of the isosceles 

triangle △  ,߁� formed having side equal to ܫ߁�

constitutes a segment of the sought trisector �ܱ of ∠߆�� = ߱. 

Proof (by Contradiction):In Fig. 3.1, we have by 

construction, �߁ = ܫ߁ = � ,ܤ߁ + ߬ = ͻͲ°, � = ߰ = ߬ +߭ + ߞ ,߯ = ߢ = ߬ = ߱ଶ, ߙ = ߡ = � ≡ ܾ, ʹܾ + ߱ = ͻͲ°, ߮ + ሺ߱ ʹ⁄ ሻ = ߮ + ߱ଵ + ߱ଶ = ͻͲ°, ߮ + ߱ଵ = ߰, and ߰ + ߱ଶ = ͻͲ°, where the distinction between ߱ଵand ߱ଶ 

has been based on the construction of �ܫ. Given these 

relationships, simple calculations of triangle angles yield 

all of the angles mentioned in the Analysis, with ߱ଵand ߱ଶ 

being now in the place of ߱ ͵⁄  and ߱ ⁄ , respectively. I 

have to show that ߤ = ߥ = ߮ + ߱ଵ = ߮ + ߱ଶ +ሺ߱ଵ ʹ⁄ ሻ ⇒ ߱ଵ = ʹ߱ଶ. Suppose that this equality does not 

hold and that �ܱ ≠  ,Suppose that some other chord .ܫ�

not �ܱ, is equal to �ܫ. But, then, ߩ ≠ ߱ଶ + ሺ߱ଵ ʹ⁄ ሻ, 

which would be absurd if that other chord was the one 

connected with the trisectorQuod Erat Demonstrandum… 

C. The Trigonometry of Constructibility It does not 

take only a cubic trigonometric equation to have a 

trisection equation. From FranciscusVieta’s (1540-1603) 

recurrence formulas, we have tanሺν + ͳሻω =ሺtanνω + tanωሻ ሺͳ − tanνωtanωሻ⁄ , or letting tanሺν +ͳሻω ≡ α and tanω = x, and using the recurrence formula 

for tanνω, ߙ − ߙݔ ߥሺ݊ܽݐ − ͳሻ߱ + ͳݔ − ߥሺ݊ܽݐݔ − ͳሻ߱ − ߥሺ݊ܽݐ − ͳሻ߱ + ͳݔ − ߥሺ݊ܽݐݔ − ͳሻ߱ − ݔ = Ͳ, 
and using again the recurrence formula for ݊ܽݐሺߥ −ͳሻ߱, ߙ − ߙݔ ��ሺఔ−ଶሻ�+௫ଵ−௫��ሺఔ−ଶሻ� + ͳݔ − ��ሺఔ−ଶሻ�+௫ଵ−௫��ሺఔ−ଶሻ� ݔ − ��ሺఔ−ଶሻ�+௫ଵ−௫��ሺఔ−ଶሻ� + ͳݔ − ��ሺఔ−ଶሻ�+௫ଵ−௫��ሺఔ−ଶሻ� ݔ − ݔ = Ͳ, 

or letting ݊ܽݐሺߥ − ʹሻ߱ ≡ ଷݔ  ,and after some operations ,ݕ − ͵ ߙ − ͳݕ + ݕߙ ଶݔ − ݔ͵ + ߙ − ͳݕ + ݕߙ = Ͳ.    ሺʹሻ 

This cubic equation is neither an equation for ߥ-section, 

because one should have ݔఔ rather than ݔଷ, nor an 

equation for the trisection of an angle equal to ͵߱, 

because then ሺߙ − ሻݕ ሺͳ + ሻݕߙ = ߙ ⇒ ଶߙሺݕ + ͳሻ = Ͳ⁄  

and hence, that either ݕ = Ͳ or ߙଶ = −ͳ, which are both 

absurd results. And, even more so absurd would be to let ሺߙ − ሻݕ ሺͳ + ሻݕߙ ≡ ⁄ܣ  so that to make (2) look like a 

“genuine” trisection equation: ݔଷ − ଶݔܣ͵ − ݔ͵ + ܣ = Ͳ. 

In general, any trigonometric polynomial equation can 

be anything but an equation unless we “lock” it both sides: ݔ as well as ߥ. Just use the recurrence formula for ݊ܽݐሺߥ − ʹሻ߱ above to get a fourth-degree equation. A 

trigonometric polynomial equation is in essence the result 

of a system of equations determined by the recurrence, and 

which equations in so far as the trisection is concerned, are 

two: Just insert ߥ = ʹ in ሺߙ − ሻݕ ሺͳ + ሻݕߙ =⁄ ߥሺ݊ܽݐ] +ͳሻ߱ − ߥሺ݊ܽݐ − ͳሻ߱]/[ͳ − ߥሺ݊ܽݐ + ͳሻ߱݊ܽݐሺߥ − ͳሻ߱] to 

get:  ݊ܽݐ͵߱ − ͳ߱݊ܽݐ − ߱݊ܽݐ߱͵݊ܽݐ = ߙ − ͳݔ −  ,ݔߙ
which when inserted in (2), gives the quartic equation: ݔߙସ + Ͷݔଷ − ݔߙଶ − Ͷݔ + ߙ = Ͳ.     ሺ͵ሻ 

This precisely solvable equation is the equation of 

trisection. We are not looking for ߱given ͵߱. We are 

trying to find a way to construct ߱ given the measures of 

both ߱and ͵߱. And, (3) says that the only way to do it is 

to bisect both angles in an embedded bisection fashion, i.e. 

through the bisection of ͵߱ and of the middle ߱. And, 

indeed, this is how we managed trisection in the previous 

subsection. A trisection equation should be addressing the 

issue of the constructibility of the trisector whereas the 

cubic equations coming out of the triple-angle formulas 

are equations of the measure of ߱. The latter would suffice 

if one fixed the ͵߱ which is geometrically trisectable by 

one's trisection method. 

To confirm this, note that the recurrent formula for ߥ = ʹ and ݖ ≡ ݔ gives ,߱ʹ݊ܽݐ = ሺߙ − ሻݖ ሺͳ + ⁄ሻݖߙ , 

which when inserted in the place of ݔ in the equation ݔଷ − ଶݔߙ͵ − ݔ͵ + ߙ = Ͳ coming out of the triple-angle 

formula, yields the cubic equation in ݊ܽݐʹ߱: ሺʹ + ସߙ − ଷݖଶሻߙ͵ + ሺͳߙ͵ + ଶݖଶሻߙ͵ + ͵ሺͳ + −ݖସሻߙ ሺͳߙʹ + ଶሻߙ = Ͳ, 
or by noting that ݖ ≡ ߱ʹ݊ܽݐ = ߱݊ܽݐʹ ሺͳ − ଶ߱ሻ݊ܽݐ ≡ ݔʹ ሺͳ − ⁄⁄ଶሻݔ , the 

following sixth-degree equation in ߱݊ܽݐ obtains: ʹߙሺͳ + ݔଶሻߙ + ͵ሺͳ + ହݔସሻߙ − ͳʹߙଷݔସ+ ʹሺͳ − ߙଶ − ଷݔସሻߙ + ͳʹߙଷݔଶ+ ͵ሺͳ + ݔସሻߙ − ሺͳߙʹ + ଶሻߙ = Ͳ, 
regarding the bisection of the three ߱’s. It is an equation 
about constructability and not about measure. 

 

4. POLYNOMIALS 
 

“There is more danger of numerical sequences 
continued indefinitely than of trees growing up to heaven. 

Each will some time reach its greatest height.” Friedrich 
Ludwig GottlobFrege (1848-1925, [22, p. 204]) 

A. The Abel-Ruffini Theorem 
In 1798, Paolo Ruffini (1765-1822) published a book 

[58], starting its introductory section as follows:  “The 
algebraic solution of general equations of degree greater 

than four is always impossible. Behold a very important 

theorem which I believe I am able to assert (if I do not 

err): to present the proof of it is the main reason for 

publishing this volume. The immortal Lagrange, with his 

sublime reflections, has provided the basis of my proof.” 
In 1824, and after Ruffini [59] too, Niels Hendrik Abel 

(1802-1829) was opening his Memoir on algebraic 

equations, proving the impossibility of a solution of the 

general equation of the fifth degree as follows: “The 
mathematicians have been very much absorbed with 
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finding the general solution of algebraic equations, and 

several of them have tried to prove the impossibility of it. 

However, if I am not mistaken, they have not as yet 

succeeded. I therefore dare hope that the mathematicians 

will receive this memoir with good will, for its purpose is 

to fill this gap in the theory of algebraic equations.” And, 
in 18β6, his work on the impossibility of a “quintic 
formula” appeared in “Crelles's Journal” officially [1]. In 
1846, in another journal, in the eleventh volume of the 

Journal de Mathématiques Pures et Appliquées, the  

“OEuvres Mathématiques d'Évariste Galois” appeared (pp. 
381-444), confirming the Abel-Ruffini impossibility 

theorem and marking the development of the so-called 

Galois (1811-1832) theory on the relations among the 

roots of polynomials. In my opinion, the following 

considerations should also be taken into account as I 

consider the subject of polynomials and series to be the 

bridge between Geometry and Arithmetic, the key behind 

the physical link of Arithmetic and hence, of paramount 

importance. 

B. A General Theory of Geometric Constructibility 
Any general polynomial, ܽఔݔఔ + ܽఔ−ଵݔఔ−ଵ + ܽఔ−ଶݔఔ−ଶ + ⋯ + ܽଵݔ + ܽ = Ͳ ఔݔ ⇒ + ܽఔ−ଵܽఔ ఔ−ଵݔ + ܽఔ−ଶܽఔ ఔ−ଶݔ + ⋯ + ܽଵܽఔ ݔ + ܽܽఔ = Ͳ, 

may be rewritten by virtue of Vieta’s formulas regarding 

the relations between polynomial roots [66], ݔ, ݅ =ͳ,ʹ, … ,  and polynomial coefficients, ܽ plus ܽ, as ,ߥ

follows: ݔఔ − ݁ଵሺݔଵ, … , ఔ−ଵݔఔሻݔ + ݁ଶሺݔଵ, … , ఔ−ଶݔఔሻݔ − ⋯+ ሺ−ͳሻఔ݁ఔሺݔଵ, … , ఔሻݔ = Ͳ, 
where݁ሺݔଵ, … ,  ఔሻ are elementary symmetric polynomialsݔ

as follows: 

 ݁ଵሺݔଵ, … , ఔሻݔ = ∑ ఔ=ଵݔ = − ܽఔ−ଵܽఔ , 
 ݁ଶሺݔଵ, … , ఔሻݔ = ∑ ଵ<<<ఔݔݔ = ∑ ఔ−ଵ=ଵݔ ቆ∑ ఔ=+ଵݔ ቇ= ܽఔ−ଶܽఔ , 
 ݁ଷሺݔଵ, … , ఔሻݔ = ∑ ଵ<<<<ఔݔݔ =ݔ ∑ ఔ−ଶ=ଵݔ [∑ ఔ−ଵ=+ଵݔ ቆ∑ ఔ=+ଵݔ ቇ]= − ܽఔ−ଷܽఔ , … … … … … … … 

 ݁ఔሺݔଵ, … , ఔሻݔ = ∏ ఔ=ଵݔ = ሺ−ͳሻఔ ܽܽఔ , 
 

given that ݁ሺݔଵ, … , ఔሻݔ = ͳ, anyway. It follows that any ݁ and thereby, sum-product relation among polynomial 

roots may be represented geometrically by the 

trigonometric tangent of the acute angles formed by the 

cathetiܽ, ݅ = ͳ,ʹ, … , ߥ − ͳ, and ܽఔ with the hypotenuse in 

a right triangle: ܽ ܽఔ⁄ = ߠ݊ܽݐ , ݅ = ͳ,ʹ, … , ߥ − ͳ. 

The ratio of any two line segments viewed as ratio of 

catheti and thereby, any acute angle ߠ, reflect actual 

infinity, some elementary symmetric polynomial, some 

relationship among the roots of some polynomial, either 

on the real or on the complex plane depending on whether 

the ܽ’s can be complex numbers, too. Moreover, 
identifying ݔwith ߱݊ܽݐ , yields: 

 ݁ = ͳ = ߠ݊ܽݐ =  ,°Ͷͷ݊ܽݐ
 ݁ଵ = ∑ ݔ = ∑ ߱݊ܽݐ = ܽఔ−ଵܽఔ = ଵߠ݊ܽݐ , 
 ݁ଶ = ∑ <ݔݔ = ∑ <߱݊ܽݐ ݊ܽݐ ߱ = ܽఔ−ଶܽఔ =  ,ଶߠ݊ܽݐ
 ݁ଷ = ∑ <<ݔݔݔ = ∑ <<߱݊ܽݐ ݊ܽݐ ߱߱݊ܽݐ = ܽఔ−ଷܽఔ=  ,ଷߠ݊ܽݐ
 … … … … … … … 

 ݁ఔ = ∏ ݔ = ∏ ߱݊ܽݐ = ܽܽఔ = ఔߠ݊ܽݐ . 
 

Consequently, letting ߥ be some infinitely large number so 

that ݅ might as well be tending to ߥ ≈ ∞, 

 ݁ଵ = lim→ఔ≈∞ ∑ ݔ = lim→ఔ≈∞ ∑ ߱݊ܽݐ = ܽఔ−ଵܽఔ =  ,ଵߠ݊ܽݐ
 ݁ଶ = lim,→ఔ≈∞ ∑ <ݔݔ = lim,→ఔ≈∞ ∑ ݊ܽݐ߱݊ܽݐ ߱< = ܽఔ−ଶܽఔ=  ,ଶߠ݊ܽݐ
 … … … … … … … 

 ݁ఔ = lim→ఔ≈∞ ∏ ݔ = lim→ఔ≈∞ ∏ ߱݊ܽݐ = ܽܽఔ = ఔߠ݊ܽݐ . 
 

The ratios of cathetiܽ and acute angles ߠ are the limits 

of some infinite sums and products of roots of 

apeironomials, of polynomials in which ߥ ≈ ∞. There are 

no non-convergent series in finite space however infinite it 

may be. Is there such an actual infinity? There is in as 

much as it is true that Vieta's polynomial (as opposed to 

recursive) formulas are readily susceptible to geometrical 

interpretation: The size of ߥ  affects the number and values 

of ratios and angles but never their geometrical hypostasis, 

their spatial underpinnings. 

Any literally line segment and angle in the universe is 

geometrically constructible, but the discussion of the 

subject in hand would be incomplete if we did not address 

the matter of the constructability of ߱’s from ܽ’s or ߠ’s, 
which are readily available. Towards this end, let, for 

simplicity, ߱ = ݅߱, ݅ = ͳ,ʹ, … ,  One might use then .ߥ

Vieta’s recursive formula for ݊ܽݐሺ݅߱ሻ to obtain a 

“pseudo-trigonometric polynomial” in terms of ߱݊ܽݐ 

through preferably ݁ଵ = ∑ ሺ݅߱ሻ݊ܽݐ =  to minimize ߠ݊ܽݐ

the complexity of the operations. Consider, for example, 

the quadratic equation ܽଶݔଶ + ܽଵݔ + ܽ = Ͳ, with 
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 ݁ଵ = ଵ߱݊ܽݐ + ଶ߱݊ܽݐ = ߱݊ܽݐ + ߱݊ܽݐʹ] ሺͳ − ⁄ଶ߱ሻ݊ܽݐ ] = −ሺܽଵ ܽଶ⁄ ሻ 

from which it follows that ܽଶ݊ܽݐଷ߱ + ܽଵ݊ܽݐଶ߱ −͵ܽଶ߱݊ܽݐ − ܽଵ = Ͳ. If instead of −ሺܽଵ ܽଶ⁄ ሻ we hd used ߠ݊ܽݐ, our cubic equation in ߱݊ܽݐ would have been: ݊ܽݐଷ߱ + ଶ߱݊ܽݐߠ݊ܽݐ − ߱݊ܽݐ͵ + ߠ݊ܽݐ = Ͳ. In any case, 

we have a polynomial in ߱݊ܽݐ, which in general is, ߚଷݔଷ + ଶݔଶߚ − ݔଵߚ − ߚ = Ͳ ⇒ ଶݔ = ݔଵߚ + ݔଷߚߚ +  ,ଶߚ
or even more generally, ݔఔ−ଵ = ݔఔ−ଶߚఔ−ଷሺݔ + ݔఔߚఔ−ଷሻߚ + ఔ−ଵߚ + ݔఔ−ସߚఔ−ହሺݔ + ݔఔߚఔ−ହሻߚ + ఔ−ଵߚ + ⋯+ ݔଵߚ + ݔఔߚߚ + ఔ−ଵߚ ,   ሺͳሻ 

where ݔ ≡  and with the negative signs assumed for ,߱݊ܽݐ

convenience. But, note that the last term on the right of the 

latter equation, equation (1), is the same as the right-hand 

term from the cubic equation, on which therefore we shall 

focus given that all we need to determine ߱݊ܽݐ is only one 

term. 

 

 
Fig.4.1. Construction of Cubic Equation Roots 

 

Fig. 4.1 depicts ݔ, starting from the right triangle △ �ܲ� and drawing the other triangles based on the 

values of the ܽ’s. In the right triangle △ ܫܥ̃ ,we have ,ܫ�ܥ̃ = ሺߚଷ ⁄ଵߚ ሻሺߚଵݔ + ଶܫ� ,ଷሻ and consequentlyߚ = ଶܫܥ̃  ଶ, or�ܥ̃+

ଶܫ�  = ଶ(ଵߚଷߚ) ሺߚଵݔ + ଷሻଶߚ + ሺߚଵݔ + ଷሻଶߚ ⇒ 

ܫ�  = ଵଶߚ√ݔ + ଷଶߚ + ଵߚଷߚ ଵଶߚ√ + ଷଶߚ = ܣ� +  .ܫܣ
 

That is, ܫܣ = ܱܶ. If line segments ܱܶ and ܱ� are 

collinear, ݔ will be equal to ߚଵ ⁄ଷߚ , given that ∠ܱ̃ܶܥ =ͻͲ°. They are collinear by construction, but suppose that 

they are not. Suppose that we started the construction of 

Figure 4.1 from triangle △  and drew the rest of it on ܥܱ̃�

the assumption that ݔ = ଵߚ ⁄ଷߚ . Suppose that the extension 

of ܱܶ needed to form the isosceles triangle whose base is ܶܫ, meets side �ܫ at point �′ rather than at �. But, �′ܫ ≠ ܥ̃′�ܫ݊ܽݐ andܫ� ≠ ଷߚ ⁄ଵߚ , contrary to what we have 

calculated in order to have the isosceles triangle. Hence, ݔ = ଵߚ ⁄ଷߚ , indeed; and, in general, ݔଵ = ଵߚ ⁄ఔߚ , which is 

obtained through the last term on the right of (1). Just 

replace in Fig. 4.1, ߚଷby ߚఔ; both are given constants, 

anyway. 

Do we have another version of the Rational Roots 

Theorem? No, by no means, since we are talking about 

trigonometric numbers, having accepted methodologically 

their irrationality, and by discovering later that they are 

not irrational at all. And, if this is not enough to persuade 

the skeptics,  our results emerge, methodologically again, 

only after the roots having been found, because otherwise 

no elementary polynomial may be defined and no 

analogous result may be obtained the way we do obtain it, 

here. And, if neither this was enough, note that ݔ may be 

specified in an alternative way, implying ߚఔଶ =  ଵ, asߚߚ

follows. 

Consider, for instance, an equation of 4th degree: 

ସݔସߚ  + ଷݔଷߚ − ଶݔଶߚ − ݔଵߚ − ߚ = Ͳ ⇒ =ଷݔ ݔଶߚሺݔ + ݔସߚଵሻߚ + ଷߚ + ݔସߚߚ +  .ଷߚ
 

Since, ܱܵ = ሺߚ ⁄ସߚ ሻሺߚ +  ସሻ in Fig. 4.2, the hypotenuseߚ

ଶܱ߆  = ܱܵଶ + ଶ߆ܵ = ଶ(ସߚߚ) ሺߚ + ସሻଶߚ + ሺߚ + ସሻଶߚ ⇒ 

ܱ߆  = ଶߚ√ + ସଶߚ + ସߚߚ ଶߚ√ + ସଶߚ = ߃߆ +  .ܱܧ
 

That is, ܱܧ = △ are collinear, forming the right triangle (ߓ߆ and) ߁߆ and ܪ߆ If line segments .ܪ߆  we ,ܪܧ߁

should have ሺߚସ ⁄ߚ ሻሺͳ ⁄ݔ ሻ = ͳ ⇒ ݔ = ସߚ ⁄ߚ , which 

follows also from having EH∥SΘ both cut by ΗΓ. Suppose 
that these line segments are not collinear and that the 

leftward extension of ΘΥ meets HO at H' rather than at H 
so that EH stops being parallel to ΘS. Note thatalthough △ΓEH stops being a right triangle too, the angle with 
vertex Θ, continues being a right angle. 

 

 
Fig.4.2. Construction of Quartic Equation Roots 
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Consequently, an assumption about ܪ′ ≠  would be ܪ

inconsistent with ܱܧ =  After all, collinearity is the .ܪ߆

case by construction, since ܪ is the point at which the 

leftward extension of ߓ߆ meets the parallel from ܧto ܵ߆; 

and ܪ has been connected then with ܱ. It follows that ݔ = ସߚ ⁄ߚ , and in general, ݔ = ఔߚ ⁄ߚ . And, as soon as ݔ = ଵߚ ⁄ఔߚ  is also true, it follows that ߚఔଶ =  .ଵߚߚ

Consequently, by the right triangle altitude theorem, ߚఔ 

is the length of the altitude, ܮ߉ of a right triangle, △  ,ߊ߉ܭ

separating the hypotenuse, ܯܭ, in the two parts ܮܭ =  ଵߚ

and ܮܯ = ݔ , and with the solution forߚ =  given ߱݊ܽݐ

either by the angle ∠ܮ߉ܭ = ߱ or by the angle ∠߉ܯܮ = ߱ 

as depicted by Fig. 4.3. This value of ݔ may be one only 

out of ߥ roots, but ݔ is connected with an acute angle, ߱, 

and only the angle which corresponds to the positive 

quadrant, i.e. ∠ܮ߉ܭ or ∠߉ܯܮ, is sensible as a solution. In 

a few words, if ܲ is a ߥth degree univariate polynomial in ݔ and the roots of ܲ = Ͳ are sought, and if ݔ is replaced by 

the trigonometric tangent of some angle ߱, the problem of 

finding the roots is reduced to finding the solution of ܲ = Ͳ via the two-dimensional problem of constructing 

the geometric mean of the constant term and ߚଵ, ߚఔ  ఔଶ, equal to theߚ ,ଵ, or of constructing a square areaߚߚ√=

area of a given rectangle, parallelogram or triangle, having 

length sides ߚ and ߚଵ: We do not even need ߚఔ or for that 

matter, any other coefficient beyond these two to solve a 

univariate polynomial equation.  

Moreover, recall that ߚ ⁄ఔߚ  has been identified in 

general with ߠ݊ܽݐ so that in our example, ߚଵ ⁄ଷߚ =  ߠ݊ܽݐ

or that angle ߠ is given by the other two acute angles, ∠ܯܭ߉ = △ of the right triangle ,ܮ߉ܯ∠ ߱ :ܯ߉ܭ + ߠ =ͻͲ°. Also, as soon as ݁ଵ = ߠ݊ܽݐ = ܽఔ−ଵ ܽఔ⁄ , it follows 

that ߚ ⁄ఔߚ = ܽఔ−ଵ ܽఔ⁄ , which in the context of △  ,ܯ߉ܭ

implies in turn that ߚ = ܽఔ−ଵ and ߚఔ = ܽఔ . The 

remaining of the roots of the original apeironomial 

 

 
Fig.4.3. Roots as Geometric Means 

 

equation may be identified through the use of Vieta's 

recursive formula. And, of course, the same approach may 

be followed in connection with any other formula giving 

rise to a series. 

The grand point is that considerations such as these 

connote a theory of general geometric constructibility, 

which rejects the notion of irrationality spatially-wise. The 

involvement of imaginary numbers following the 

fundamental theorem of algebra does not change this 

conclusion since the instruments of constructibility are the 

compass and the unmarked ruler, equally applicable to 

either the real or the complex plane. As a matter of fact 

neither the Quadrature nor the Trisection advanced earlier 

is confined to the real plane. The problem of the 

Quadrature, for example, could be restated as follows: 

Given a real number (line segment) ܴ, find a complex 

number (position vector) ݖ = ܴ + ߡ ,ߡݔ = √−ͳ, such that ݊ܽݐ� = � where ,ߨ√ = ሻݖሺ݃ݎܽ = ݔሺ݊ܽݐܿݎܽ ܴ⁄ ሻ. Or, in 

polar coordinates: Given a real number ܴ, find a complex 

number ݖ such that ݉ݖ݀ = ݎ = √ܴଶ + ߡݎ ଶ andݔ ቀ݊ܽݐ� √ͳ + ⁄�ଶ݊ܽݐ ቁ + ݎ ቆͳ √ͳ + ⁄�ʹ݊ܽݐ ቇ �ݏሺܿݎ= + ሻ�݊݅ݏߡ = ߨ√)ߡ]ݎ √ͳ + ⁄ߨ ) + (ͳ √ͳ + ⁄ߨ )]. 
Indeed, the construction of solutions in terms of right  

triangle angles directs one to the geometric depiction of 

derivatives in discrete form. That is, we construct the 

answer to the question: Which is the value of the 

derivative, solving... To understand what precisely is 

solved, note that the unknown derivatives may be viewed 

as those of the characteristic equation of a linear 

homogeneous differential equation as follows: ݂ఔ + ܽఔ−ଵܽఔ ݂ఔ−ଵ + ܽఔ−ଶܽఔ ݂ఔ−ଶ + ⋯ + ܽܽఔ ݂ = Ͳ = ݁௫� ఔݔ) + ܽఔ−ଵܽఔ ఔ−ଵݔ + ܽఔ−ଶܽఔ ఔ−ଶݔ + ⋯ + ܽଵܽఔ ݔ + ܽܽఔ). 
Consequently, our constructions give the values of the 

derivatives that solve the differential equation whose 

characteristic equation is the polynomial equation which is 

given to be sold; and so do elementary symmetric 

polynomials. 

C. More on Constructibility 
Is there any irrational that cannot be constructed? In so 

far as space is concerned, the answer is negative, because 

tangent runs from zero to infinity while secant runs from 

one to infinity: All irrational numbers are there; even 

infinity by itself is there. Infinity, the cosmos, is 

constructible, and this is why it has to be the actual, the 

proper infinity. We have one more proof that spatial 

infinity has to be the actual one. Spatially-wise, there is no 

such thing as irrationality, because simply a never ending 

non-repeating decimal part of a decimal number could not 

be constructible: When and where our line segment would 

end? Irrationality should be attributed to computation 

inadequacies and/or non-spatial considerations like time as 

a physical phenomenon. The difficulty of constructing 

irrationals lies in the difficulty of determining which 

exactly rationals (α’s) give rise to them. This is the reason 

in the first place the Quadrature above has been so 

cumbersome. 

One might object to the constructibility of numbers like √ʹ or π [20, 21]. Consider, for instance, √ʹ, which had 

prompted much skepticism on the part of Pythagoreans. If 

its construction was not possible as a hypotenuse of an 

isosceles right triangle of unit legs, triangle inscribable 

into semi-circumference, the proposition that an angle 

inscribed in a semicircle is a right angle, would not hold. 

This proposition and hence, the axiom of parallel lines 

would be violated. It would be impossible to construct the 

unit per se as the hypotenuse of another isosceles right 

triangle of legs equal to ͳ √ʹ⁄ . And, the construction of 
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this leg-side in turn, as the hypotenuse of still another 

isosceles right triangle of legs equal to ͳ √Ͷ⁄ , and so on, 

since none of these sides-hypotenuses could constitute 

circle diameter.  

What would ensure that such triangles are right triangles 

once the axiom of parallel lines is rejected? One might 

replace this axiom by setting some magnitude equal to the 

unit and prompting subsequently the emergence of number √ʹ, too. But, how, construction-wise, if one did not also 

postulate some axiom analogous to that of parallel lines? 

The fact, yes fact, that √ʹ is constructible, that it has a 

beginning and an end, stems if not anything else from the 

fact also that constructible are numbers greater that √ʹ = ͳ.ͶͳͶʹͳ …, numbers like 1.5. As soon as √ʹ < ͳ.ͷ, 

if their construction started from a single point, the 

construction representing √ʹ should have an end before 

the end of the construction representing 1.5. And, hence, 

the number of the decimal digits capturing √ʹ should have 

an end as well, even if the axiom of parallel lines was 

disregarded, and we defined instead some magnitude to be 

our unit. After all, the notion of Dedekind cut per se relies 

on general number constructibility: Cut of the real line in 

two distinct half-lines. If it were not so, where would the 

cut capturing an irrational number be placed? Unless 

irrationality captures the cut per se, the abrupt disruption 

of continuity when time is introduced in the discussion. 

But, in so far as space alone is concerned, we have to 

distinguish between infinite but countable decimal digits 

and infinite uncountable digits accompanying the integer 

of a decimal number. Toward this end, consider the 

sequence of sides-hypotenuses, ͳ √ʹ⁄ , ͳ √ʹ⁄ √ʹ,…, ͳ √ʹκ⁄ , where κ is an integer. This sequence tends to zero. 

How could one start constructing the unit out of zero? The 

key to the answer is the word “tends”; zero should be out 
of reach, never reached, because only then, out of 

something, not out of nothing, one might start constructing 

the unit. Decimal digits keep coming one after the other, 

impossible practically to calculate their number, but they 

have to stop at the gate of zero. Otherwise, the unit would 

not be constructible. 

Or, consider the example of the number π. The infinite 

division of polygon sides must have an end if the points 

comprising a circle circumference and not thin air, a 

complete vacuum, is to be produced. Consequently, the 

decimal digits of π must have an end. In general, given 

constructability per se, and the constructibility of a number 

greater than another number with infinite decimal digits, it 

follows logically that the latter number should be 

constructible as well. Decimal digits must have an end; 

they are infinite but countably so. The ad infinitum 

counting must come to a halt to allow the construction of a 

number which is smaller than a greater known to be 

constructible number. All numbers with infinite decimals 

are countably infinite, because there is always a greater 

number known to be constructible. There are no 

uncountably infinite decimals. 

What we have, in other words, is infinity in the 

Aristotelian sense of actual as opposed to potential 

infinity. Any in general irrational number is one with an 

actualization in nature and hence, with a number of 

decimal digits in line with the Aristotelian notion of actual 

infinity; with decimals that sooner or later become 

repeating. It all comes down to the fifth axiom of Euclid: 

“That, if a straight line falling on two straight lines make 
the interior angles on the same side less than two right 

angles, the two straight lines, if produced indefinitely, 

meet on that side on which are the angles less than the two 

right angles.” The first four are: “Let the following be 
postulated'”: 1. ”To draw a straight line from any point to 

any point.” β.”To produce [extend] a finite straight line 
continuously in a straight line.” γ.”To describe a circle 

with any centre and distance [radius].” 4.”That all right  
angles are equal to one another.” [1γ, γ0, γ1] 

Consider Fig. 4.4. If the two lines ϵ and η could not 

meet at point Α, no circle ሺO, OA = OBሻ could be drawn, 

because no line ΑΓ could be drawn too, in violation of 

axiom 3, which refers to any circle of any radius. As a 

matter of fact, no circle at all could be drawn, because one 

must always be able to draw from a point like A a line like ϵ, intersecting a radius like OB. But, also, axiom 4 would 

be violated, because angles a and b would have to be right 

angles, and a ≠ b. Axiom 5 follows from and completes 

axioms 3 and 4 in fully describing the plane, the two-

dimensional space, following axioms 1 and 2, which fully 

describe the one-dimensional space. More precisely, 

axiom 5 ensures continuity in the two-dimensional space 

the same way axiom 2 ensures continuity in the one-

dimensional space. If lines like ϵ could not meet the 

horizontal axis, no circle at all could be drawn; there 

would be no two-dimensional space, contrary to what 

axioms 3 and 4 postulate. 

 

 
Fig.4.4.The Euclidean Axiom 

 

This is the reason Euclid formulated axiom 5 the way he 

did and not as a Playfair or other similar axiom; the 

wording was chosen carefully in serving the purpose of 

this axiom. But, axiom 5 does much more than completely 

defining along with axioms 3 and 4 the plane. It puts an 

end to infinity: this “produced indefinitely” has an end, be 
it one next to the origin of axes, ܱ, or to zillions miles 

away from it, the end being point ܣ, the intersection point, 

because intersection takes place in the infinity, after 

indefinite extension of � and ߟ. If space ended before the 

intersection, neither axiom 4 nor axiom 5 would hold; and 

if space ended after ܣ, the extension of  � and ߟ would 

have not been indefinite, because intersection at ܣ occurs 

after such an extension. 

The finiteness of the infinity is in the core of geometry, 

and this is the reason it underlines non-Euclidean 

geometries as well. These geometries replace the 
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JohnPlayfair (1748-1819)-axiom side of axiom 5, but 

retain the actual infinity side, and this is the reason they 

continue being geometries, i.e. studies of space, each 

viewing it analytically from its own standpoint given that 

space in reality is only one. For example, from the 

viewpoint of geometric constructibility, space has to be the 

composite one advanced herein and in accordance with 

axiom 5. Any other axiomatic theoretical construction 

dismissing axiom 5 altogether, simply is not geometry. 

When Aristotle (384-γββ B.C. [γ, ch. 6]) said: “For 
generally the infinite has this mode of existence: one thing 

is always being taken after another, and each thing that is 

taken is always finite, but always different”, he said it 
literally: He did not say that the cosmos is limitless but 

that the limits are in continuous change, and trying to 

catch up with them is futile. This position is very 

important analytically, because it implies that statically 

viewed, the cosmos is susceptible to scientific inquiry 

including the dynamics inside its borders... 
 

5. CONCLUSION 
 

“The essence of mathematics lies precisely in its 
freedom.” Georg Cantor (1845-1918, [10, p.12])  

At a given point in historic time, the Cosmos might be 

viewed statically, and hence, as a finite spatial entity 

separate from motion-cum-time considerations 

whatsoever. Because, if statically the Cosmos was not 

finite, in what the dynamics introduced by historic time 

would lie if not in qualifying at least finiteness? 

Consequently, if numbers are to be empirically relevant 

space-wise, their multitude and decimal expansion should 

be finite, too. Especially so with regard to space as such, 

because simply the only empirical content numbers may 

be deriving in such a space would be that from serving the 

construction of space. All numbers are rational numbers 

given also that all what the passage of historical time 

might signify, would be replicated stationarity, expanded 

borders of the universe, but still borders, limits, (if 

expansion does take place). Within this space-only 

context, the irrationality of the irrational numbers is 

relevant rationality, the relevance depending on which 

moment is chosen to define finiteness, to define the 

borders of the universe, the end of the accumulation of 

decimal digits.  

From the viewpoint of the Arithmetic, if any number, ݊, 

is a number to which some infinite series, ܵ = ∑ ∞=ߩ , 

converges, and, if a partial sum of the terms of ܵ consists 

of roots of some general polynomial equation in ݔ, ∑ ܽݔ�= : Then, by Vieta's formulas, this sum, ∑ �=ଵߩ , 

may be identified with the elementary symmetric 

polynomial, ݁ଵ, equaling the coefficient ratio, ܽ�−ଵ ܽ�⁄ . It 

also follows that ݊ = ܽ�−ଵ ܽ�⁄  is the sum of ܵ, and that 

any in general number, real or complex, may be 

characterized likewise.  

But, then again, the remaining of the terms of ܵ should 

have to be seen as polynomial equation roots as well. By 

doing so, however, all roots, all terms of ܵ should have to 

be seen in connection with a single polynomial of length 

equal to the “length” of ܵ, which length cannot be broken 

down to form “partial ܭ-length polynomials'”. If such a 
breakdown were allowed, say from 0 to ܭ, from ܭ + ͳ to ʹܭ, and so on, it would follow that ݊ = ܽ�−ଵ ܽ�⁄ =ܽଶ�−ଵ ܽଶ�⁄ …, imposing a certain structure on ߙ’s, and 
there is no a priori reason to assume so.  

Now, given (i) this, (ii) that behind any number ݊ there 

is some infinite series ܵ converging to ݊, (iii) that behind 

any ܵ there is some polynomial equation, having as roots 

the terms of ܵ, (iv) that as such, ܵ is also an elementary 

symmetric polynomial, ݁ଵ, (v) that ݁ଵ equals the ratio of 

the last but one to the last polynomial coefficient, and (vi) 

that this ratio may be identified geometrically with the 

trigonometric tangent of an acute angle of a right triangle: 

It follows that the length of the polynomial behind an ܵ 

and hence, the infinite of the horizon of ܵ, should be the 

actual infinity, i.e. a polynomial of finitely infinite degree, 

or apeironomial, giving rise to a finitely infinite series. 

There can be no infinitely infinite ݁’s and an infinitely 
infinite captured by an acute angle! Consequently, 

geometrically, in space, all decimal expansions are 

terminating, all series are convergent, all numbers are 

rational, and all numbers are constructible the way the 

problem of the Quadrature was solved.  

Indeed, an infinite series might be viewed alternatively 

as a Brook Taylor (1685-1731) series approximation and 

as a solution to a differential equation of finite order near 

some ordinary or singular point. An infinite series in space 

is always an approximation of the finite, converging to it. 

But, what kind of space is that? To answer this question, 

note, for example, that empirically, √ʹ is a two-

dimensional figure, the hypotenuse of a right triangle of 

unit-length catheti, with vertical projection onto the 

horizontal axis, on the one-dimensional real line, equal to 

one, and with its “circular” only projection (as circle 
radius rotating clockwise until it cuts the real axis) being a 

Richard Dedekind (1831-1916) cut. All “irrational”' 
numbers have exactly this property. They are Dedekind 

cuts only as circular projections from the two- to the one-

dimensional space. A Dedekind cut is a one-dimensional 

notion. A cut on an axis does not correspond to a hole on a 

plane. Otherwise, space would be full of such holes given 

that the bulk of real numbers are irrational. 

Yet, this is one only of the two scales in explaining 

geometrical, spatial, rationality. It is not enough, because 

note that on the real plane, √ʹ would arise from ݕ =√ͳ + ݔ ,ݔ = ͳ,ʹ, … The number √ʹ on the axes continues 

being √ʹ on the plane. In the complex plane, however, our 

hypotenuse would be the position vector ݖ = ͳ + ͳߡ ,ߡ = √−ͳ. Now, this is exactly what the two-dimensional 

constructions of real-line irrationals are, namely position 

vectors on the complex plane, with their circular only 

projections on the real axis being Dedekind cuts. Roughly 

put, irrational are the numbers, which are constructible as 

complex numbers but non-constructible as reals given that 

mostly rationals from the reals are constructible. 

And, all complex numbers are constructible, including 

those with irrational (in real line terms) real and/or 

imaginary parts, because, once for example ݖ = ͳ + ͳߡ is 
constructed, its circular projection onto the imaginary axis 
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is ߡ√ʹ and hence, ݓ = ͳ +  ,may be constructed too ʹ√ߡ

with Dedekind cut the irrational √͵ = √ͳ + ߦ .ଶߦ ≡ √ʹ. 

Moreover, equally constructible are all those complex 

numbers which are consistent as points with a given 

circumference like those for the projection to √ʹ or √͵ on 

the real line; all these complex numbers, a  great many of 

them with irrational both real and imaginary parts, have 

the same circular projection. To each real number, ߥ, 

rational or not, correspond so many complex numbers as 

points on the circumference, ʹߥߨ complex numbers, 

cutting the real line at that particular real number in the 

complex plane. So, when one manages to construct an 

irrational number, one does so, on the complex plane.  

They say that there is at least one number between any 

two consecutive real numbers; there are ʹߥߨ, actually, but 

complex numbers and no more than ʹߥߨ, because a circle 

circumference locks at where it starts. And, there is not 

any other number between any two consecutive complex 

numbers, because simply discontinuities are inconsistent 

with constructibility. There can always be on the complex 

plane at least one  position vector, ݒ = ܴ +  ܴ with ,ݔߡ

being real line rational number and with circular 

projection corresponding to a real line irrational number, 

and such that ݔ =  may be constructed given ܴ and ߱݊ܽݐܴ

given the trigonometric tangent of the angle ߱ formed by 

the modulus of ݒ with the given ܴ: Construct ݔ =  ,߱݊ܽݐܴ

with general solution method as in Section 2 regarding the 

example of ߱݊ܽݐ = ߱ of which the) ߨ√ = ߨݔ ʹܽ⁄   of the 

quadratrix of Hippias ofElia (c.460-c.390 BC), with ܽ 

being the side of Hippias' square, or the ߱’s of the various 
spirals, or ...,  are special cases). 

Construction-wise, the real or complex character of the 

plane is immaterial, because the instruments of 

construction are the unmarked ruler and the compass. But, 

arithmetically, our cosmos, its spatial component, consists 

of one real plane where only rational numbers are 

constructible, and of a third imaginary axis-dimension, 

making possible the construction of what on the real plane 

would be irrational numbers, in which case, irrationals are 

also rationals in this complex, composite, or even better, 

constructible cosmos:  The general conclusion is that an 

irrational numbers is irrational on the real plane, but in the 

three-dimensional world, it is as a vector the image of one 

at least constructible position vector, and through the angle 

formed between them, constructible becomes the 

“irrational vector” too, as a right-triangle side. At any 

given point in historic time, it is that collection of such 

numbers to which the process of forming “bigger” and 
“bigger” proper subsets of them would end, in a 

Dedekind-Bernard Bolzano (1781-1848) fashion. 

This, in sum, appears to me to be the Arithmetic behind 

the way the problem of the Quadrature was solved, namely 

via trigonometric tangents. It cannot be explained 

otherwise why this problem has been solved, and why the 

angle has been trisected, just when both of these tasks 

have been proved to be impossible. Responsible for the 

impossibility must have been the persistence on potential 

infinity on all domains and the inappropriate development 

of the notion of actual infinity. Actual is the static, and 

potential is the dynamic, both in a world in which complex 

numbers are as fundamental in knowing this world as real 

numbers are. Put differently, once a two at least 

dimensional world is recognized, it will inevitably lead to 

the constitution of a third imaginary axis, because such is 

the world of Geometry, of nature spatially-wise, where 

there can be no irrationality of numbers. And, when 

calendar, historic time is introduced into this picture, it 

will only replicate it, it will not prompt any dynamics, 

unless time is taken to mean something more than clock-

ticking, however elaborate concepts like reference frames 

may be making this ticking. 

Indeed, “genuinely” irrational numbers, endless non-

repeating decimal expansions, non-convergent infinite 

series, do have to exist in cosmos, and hence, they can 

only be attributed to the presence of time. How, exactly, 

given that the influence of the passage of historic time is 

identified with the ever changing finiteness of space? To 

answer this question, time has to be introduced into a static 

space and hence, geometrically, by considering motion in 

it through the straightedge and the compass. By doing so, 

we really fill in our empty so far space with “stuff” to 
which the assumed motion may be referring, and another 

concept of time different from the concept of historic time 

emerges analytically, simply, because it is a quantity 

found to be described by irrational numbers, while historic 

time and space are described by rational numbers.  

From the viewpoint of methodology: What complicates 

the countability of numbers is the recurrence or not and 

the finite or infinite of the decimal digits of decimal 

numbers. The only criterion to decide about both of them 

is the physical relevance of numbers in connection with 

motion in space and time given that space is what it is. 

And, the only way to examine this relevance is through 

Geometry as the most accurate representation of the 

properties of space. When a mass is set in motion, the 

accompanying change of physical time in space takes 

place linearly, and Euclidean Geometry applies to it. But, 

motion of matter in space is non-linear, and non-Euclidean 

Geometry bears on it. Genuine irrationality derives 

empirical content neither from space alone nor from time 

alone, but from this precisely interaction between the 

rectilinear and the curvilinear, which physically is brought 

about by motion. 

Hence, the notion of potential infinity which is 

advanced herein, is the potential infinite emanating out of 

each of the finitely infinite rational numbers by the 

potential infinite of the decimal digits that might start 

being added at the end of a given rational endlessly, and 

by the potential infinite of the order/disorder with which 

decimal digits would keep piling up. That is our potential 

infinity is the outcome of the interplay of these two kinds 

of potential infinity with regard to each of the finitely 

infinite rational numbers, over the whole set of rational 

numbers. There are as many potential infinities as finite 

rationals. The set of potential infinities is a finitely infinite 

one, simply because it is subject to the superstructure of 

actual infinite. The actual may be compromised with the 

potential, relaxing this Bertrand Russell (1872-1970) side 

of their set-theoretic relationship, by noting that this 
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relationship holds at a given point in historic time and 

hence, should be attributed to age time. 
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