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Introduction

In classical physics, dice-throwing and coin-tossing experiments are deterministic,
in the sense that, a perfect knowledge of initial physical conditions would render an
outcome perfectly predictable — and that, in repeated experiments, statistical
‘randomness’ stems from the degree of ignorance of that physical information.

In diametrical contrast, in the case of quantum physics and quantum random-
ness, the theorems of Kocken and Specker [4], the inequalities of John Bell [3], and
experimental evidence of Alain Aspect [1,2] and others [6,7,8], all indicate, no such
physical information exists.

In response, Tomasz Paterek, et al, offer a ‘non-physical’ explanation by pro-
viding evidence that quantum randomness originates in mathematical information.
In their experiments [5] they demonstrate a link connecting quantum randomness
with logical independence. Specifically, in experiments measuring photon polarisa-
tion, the Paterek research demonstrates statistics, correlating predictable outcomes
with logical dependence, in the system algebra, encoded via Boolean propositions
— and random outcomes with logical independence.

Observation

The substance of the Paterek logical independence lies ultimately with the scalar
product. On the face of it, the system’s algebra is su (2), the algebra of the Pauli op-
erators. But hidden beneath the Boolean encodings is the fact that not every photon
measurement, precisely and faithfully, demands su (2). In a pair of operators rep-
resenting the sequence: state preparation followed by state measurement, when the
pair is encoded complementary (orthogonal), information asserted by their product,
is involutory1 and unitary. But when encoded same (parallel), their product as-
serts involutory information only – and unitarity is redundant. Every measurement
implies the involutary component of the algebra; but the unitary component is im-
plied only in the non-parallel case. For parallel measurement, unitarity may freely The involutory information is logically inde-

pendent of the unitary informationswitch off with no contradiction. This is because any 2 × 2 matrix, whose square is
the identity matrix, can represent this measurement. For the parallel measurement,
the algebra is free to flip out of the su (2) symmetry. This freedom affects the logical
form of the theory, but in standard quantum theory, where unitarity is imposed by
Postulate, this freedom is blocked.
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1 An involutory operator is one whose square is the identity operator. eg. aa = 1.



2 Steve Faulkner

References

1. Alain Aspect, Jean Dalibard, and Gérard Roger, Experimental test of Bell’s inequalities
using time- varying analyzers, Physical Revue Letters 49 (1982), no. 25, 1804–1807.

2. Alain Aspect, Philippe Grangier, and Gérard Roger, Experimental realization of Einstein-
Podolsky-Rosen-Bohm gedankenexperiment: A new violation of Bell’s inequalities, Phys-
ical Review Letters 49 (1982), no. 2, 91–94.

3. John Bell, On the Einstein Podolsky Rosen paradox, Physics 1 (1964), 195–200.
4. S Kochen and E P Specker, The problem of hidden variables in quantum mechanics,

Journal of Mathematics and Mechanics 17 (1967), 59–87.
5. Tomasz Paterek, Johannes Kofler, Robert Prevedel, Peter Klimek, Markus Aspelmeyer,

Anton Zeilinger, and Caslav Brukner, Logical independence and quantum randomness,
New Journal of Physics 12 (2010), no. 013019, 1367–2630.

6. M A Rowe, D Kielpinski, V. Meyer, C A Sackett, W M Itano, C Monroe, and D J
Wineland, Experimental violation of a Bell’s inequality with efficient detection, Nature
409 (2001), 791–794.

7. Thomas Scheidl, Rupert Ursin, Johannes Kofler, Sven Ramelow, Xiao-Song Ma, Thomas
Herbst, Lothar Ratschbacher, Alessandro Fedrizzi, Nathan K Langford, Thomas Jen-
newein, and Anton Zeilinger, Violation of local realism with freedom of choice, Proceedings
of the National Academy of Sciences 107 (2010), 19708–19713.

8. Gregor Weihs, Thomas Jennewein, Christoph Simon, Harald Weinfurter, and An-
ton Zeilinger, Violation of Bell’s inequality under strict Einstein locality conditions,
arXiv:quant-ph/9810080v1 (1998).


