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Abstract

Kaluza’s 1921 theory of gravity and electromagnetism using a fifth
wrapped-up spatial dimension is inspiration for many modern attempts to
develop new physical theories. Here an alternative approach is presented
that more fully unifies gravity and electromagnetism. Emphasis is placed
on admitting important electromagnetic fields not present in Kaluza’s
original theory without constraints, and on deriving a Lorentz force law.
This is done by identifying 5D momentum with a kinetic charge. By
doing so the usual assumption of Ricci flatness corresponding to sourceless
electromagnetic fields is replaced by the weaker constraint of vanishing 5D
momentum outside of charge models. A weak field limit is also used. An
electromagnetic limit is imposed by assuming a constant scalar field. A
further extended postulate set involving a super-energy divergence law
and a conformal factor is also suggested that allows for a varying scalar
field, within what then becomes a type of geometrical conformal gauge
theory.

1 Introduction

Kaluza’s 1921 theory of gravity and electromagnetism [1][2][3][4] using a fifth
wrapped-up spatial dimension gives a taste of unification of electromagnetism
with gravity in a way that has problems and is often believed to be untenable.
However the underlying aim was particularly promising in terms of explana-
tory power. Modern works hold out hope for higher dimensional theories and
non-abelian gauges [1][25], and the consequent hope for unification with quan-
tum mechanics. Here an alternative approach is implemented that goes back
to a simpler (and in the author’s opinion more practical) root: fully unifying
just gravity and electromagnetism. Certain requirements are evident: a Lorentz
force law [6] must be explained, Maxwell’s laws [6] must be present, the Lorentz
transformation [6] must define inertial frames, general relativity [6] must be a
limit for gravitational physics. The Lorentz force law is the most conceptually
unsatisfying law within classical theory. It may not even be compatible with
n-dimensional Noether theorems [26] - all the more reason to construct it, or
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an approximation, from first principles. Whilst it does come from the Einstein-
Maxwell stress-energy tensor [6], where does that come from? Kaluza’s original
theory only partially answers that and, in addition, problems arise in the cou-
pling of the scalar field with the electromagnetic field. On the other hand the
Lorentz force law is but the relativistic form of Coulomb’s law. Surely it should
be as fundamental geometrically as the inverse square law of gravity? It may
just as equally be approximate in a fully geometrised theory. That is, the usu-
ally presumed stress-energy tensor of electromagnetism need not be exactly the
correct one in curved space-time. It is in this straight forward and relatively
unambitious vein that search for a variant Kaluza theory is undertaken.

The Lorentz force law here requires a constant scalar field, this places con-
straints on admissible solutions. The emphasis is then on eliminating the con-
straint in Kaluza theory that prevents the below defined non-nullish electromag-
netic solutions when the scalar field is constant. This was done twice elsewhere
by the author using torsion, once allowing symmetric components [24], the other
time by imposing complete antisymmetry of torsion [28]. In both cases the re-
sults were not as simple as those presented here.

It is sufficient to show that certain constraints that cause the problem for
the usual Kaluza and Kaluza-Klein theories have here been weakened. The
main constraint is the third field equation in [1], equation (2.0.6) here, and the
first field equation. When the scalar field is constant the third field equation
becomes one of two equations that characterize the null electromagnetic fields.
This equation is as follows, and fields that satisfy this will be called ‘nullish’:

Definition 1.0.1: ‘Nullish’ electromagnetic fields satisfy: FabF
ab = 0. Null

electromagnetic fields have the nullish property plus the following condition,
where the star is the Hodge star operator: Fab(∗F ab) = 0.

Kaluza’s original theory [1] prohibits non-nullish solutions (or even near
non-nullish solutions) for constant scalar field. Nullishness is too tight to admit
important electromagnetic fields, in particular the essential electrostatic fields.
That electrostatic or near-electrostatic fields are non-nullish and therefore a
problem in any theory that omits them can be seen by comparing definition
(1.0.1) with the following well-known fact from special relativity, that is by
considering a special relativistic limit: FabF

ab = 2(B ·B − E · E).
The leading objective here is to find a more natural way to allow for non-

nullish solutions.
In this paper the emphasis is on reimplementing the simplicity of Kaluza’s

original idea: by replacing the 5D Ricci flat condition for electromagnetic fields
without charge sources with the identification of the 5D momentum components
in the 5D Einstein tensor as charge sources. That is, by relaxing the Ricci-flat
‘background’ condition of Kaluza in a way tutored by the explorations under-
taken in [24] and [28] (where background is defined as outside of matter models).
Here, however, torsion will not be used and a simpler construction made, which
then clarifies the physical insight into Kaluza’s theory. A weak field limit is
however used as an additional constraint.
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Kinetic charge will be defined as the 5th-dimensional component of momen-
tum [8] and identified with Maxwellian charge in a non-obvious way. A Lorentz
force law will then follow. As momentum the kinetic charge has a divergence law
via the 5D Einstein tensor. Maxwellian charge also has a vector potential, see
(3.4.1), and thus local conservation, but the kinetic charge and corresponding
divergence law, being covariant, is taken to be the fundamental charge.

The simplicity of the presented model over previous works is a benefit and
is very naturally a development of Kaluza’s original model. It is an alternative
approach also to induced-matter Kaluza theory [1], in that here the cylinder
condition is still maintained.

A further extension of the theory is also provided which allows the scalar
field to vary, but from which a constant scalar field can be derived by using
a conformal transformation. Further, the extension allows for super-energy
conditions to be applied, which could then substitute for more usual ways to deal
with such issues as causality using the energy conditions of general relativity.
This extension is however fundamentally different from the first postulate set
presented here, and similar theories, in that the physics is determined up to
conformal transformation and represents a set of geometries rather than a single
one. This however also makes the extended postulate set more obviously a type
of gauge theory.

2 Conventions

The following conventions are adopted unless otherwise specified.
Five dimensional metrics, tensors and pseudo-tensors and operators are given

the hat symbol. Five dimensional indices, subscripts and superscripts are given
capital Roman letters. Lower case indices can either be 4D or generic for def-
initions depending on context. Index raising is referred to a metric ĝAB if
5-dimensional, and to gab if 4-dimensional. Terms that might repeat dummy
variables or are otherwise in need of clarification use additional brackets. The
domain of partial derivatives carries to the end of a term without need for brack-
ets, so for example we have ∂agdbAc + gdbgac = (∂a(gdbAc)) + (gdbgac). Terms
that might repeat dummy variables or are otherwise in need of clarification use
additional brackets. Square brackets can be used to make dummy variables lo-
cal in scope. Space-time is given signature (−, +, +, +), Kaluza space (−, +,
+, +, +) in keeping with [6]. Under the Wheeler et al [6] nomenclature the sign
conventions used here as a default are [+, +, +]. The first dimension (index
0) is time and the 5th dimension (index 4) is the topologically closed Kaluza
dimension. Time and distance are geometrized throughout such that c = 1.
G is the gravitational constant, which may also be set to 1 unless otherwise
specified. The scalar field component is labelled φ2. The matrix of gcd can
be written as |gcd|. The Einstein summation convention may be used without
special mention. � represents the 4D D’Alembertian [6].

The unique Levi-Civita connection can be specified with: Γcab, and the co-
variant Levi-Civita derivative operator: ∇a. Define:
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Fab = ∂aAb − ∂bAa = ∇aAb −∇bAa
F = dA (2.0.1)

Some familiar defining equations consistent with [1] define the Ricci tensor
and Einstein tensors in terms of the applied connection coefficients along usual
lines:

Rba = ∂cΓ
c
ba − ∂bΓcca + ΓcbaΓddc − ΓcdaΓdbc (2.0.2)

Gab = Rab −
1

2
Rgab = 8πGTab (2.0.3)

We will define α = 1
8πG .

We also make reference to Kaluza’s original field equations [1] in the text:

Gab =
k2φ2

2

{
1

4
gabFcdF

cd − F caFbc
}
− 1

φ
{∇a(∂bφ)− gab�φ} (2.0.4)

∇aFab = −3
∂aφ

φ
Fab (2.0.5)

�φ =
k2φ3

4
FabF

ab (2.0.6)

The following result from [24] and [28] will be rederived (5.3.8) and used
as required: that we must relate G and k to obtain the Lorentz force law in
acceptable terms:

d2xa

dτ ′2
+ Γ̂a(bc)

dxb

dτ ′
dxc

dτ ′
→ (QM/ρ0)F ab

dxb

dτ ′
and k = 2

√
G (2.0.7)

That is, when the Gravitational constant is set to unity, we can set by
convention k = 2 to make the units of this text consistent with other works,
in particular Wald [7]. This sheds some light on the tricky problem of units
in electromagnetism more generally. However, for calculation purposes setting
k = 1 is equally good, merely representing a change of how units are interpreted.
This will also be allowed here.

In this paper some of the working has been omitted as is usual. Some of
workings are however available in [24], for reference, though care must be taken
in translating them to the current context.

Orders of magnitude notation are used. Following [28], to indicate when
terms are of a certain order of magnitude: O(X) will be used. Further, when
rounding has occured by ignoring terms of O(X), ie “O(X) terms discounted”,
this will be denoted \O(X).
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3 Overview Of Alternative Kaluza Theory

3.1 Postulates

The following K1-K4 are the core postulates of the present Kaluza theory.

POSTULATE (K1): Geometry. The geometry, the Kaluza space, under
consideration is a 5D smooth Lorentzian manifold.

POSTULATE (K2): Well-behaved. Kaluza space is assumed globally hy-
perbolic in the sense that there exists at each point 4D spatial cauchy surface
plus time, such that the 4D hypersurface is a simply connected 3D space ex-
tended around a 1D loop. And Kaluza space is oriented and time-oriented.

POSTULATE (K3) Cylinder condition. One spatial dimension is topo-
logically closed and ‘small’, the Kaluza dimension. This is taken to mean that
there are global unit vectors that define this direction, the Kaluza direction.
The partial derivatives of all tensors in this Kaluza direction are taken to be
zero in some coordinate system.

POSTULATE (K4): Geodesic Assumption. That any model of a charged
particle (or for that matter uncharged particle) follows 5D geodesics.

LIMIT POSTULATE (B1): There is a Kaluza atlas, see definition (3.2.1),
possibly only over a region, such that φ2 = 1 at every point. The scalar field re-
sults from the the decomposition of the Kaluza metric into 4D metric, potential
vector and scalar field. It is contained within the metric explicitly in (3.4.1).
Thus B1 is a constraint on the 5D metric. This defines the electromagnetic
limit.

L1 below constitutes a weak field limit that will be applied by way of ap-
proximation for the classical limit of behaviour. The deviation from the 5D-
Minkowski metric is given by a tensor ĥAB . This tensor belongs to a set of
small tensors we label O(h). Whilst this uses a notation similar to orders of
magnitude, and is indeed analogous, the meaning here is a little different. This
is the weak field approximation of general relativity using a more flexible nota-
tion. Partial derivatives, to whatever order, of metric terms in a particular set
O(x) will be in that same set at the weak field limit. In principle we are doing
nothing more than following the weak field limit procedure [6] of general relativ-
ity. In the weak field approximation of general relativity, terms that consist of
two O(h) terms multiplied together get discounted and are treated as vanishing
at the limit. We might use the notation O(h2) to signify such terms. There is
the weak field approximation given by discounting O(h2) terms. But we might
also have a less aggressive limit given by, say, discounting O(h3) terms, and so
on. We can talk about weak field limits (plural) that discount O(hn) terms for
n > 1 based on the same underlying construction. The weak field is in some
sense a choice of scale that gives meaning to the smallness of the cylinder con-
dition. The weak field condition and the cylinder condition together correspond
to the existence of a classical scale in the theory.
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LIMIT POSTULATE (L1): The metric can be written as follows in terms

of the 5D Minkowski tensor and ĥ ∈ O(h): ĝAB = µ̂AB + ĥAB .

3.2 The Cylinder Condition And Charts

The cylinder condition by construction allows for an atlas of charts wherein the
Kaluza dimension is approximately presented by the fourth index. The atlases
that are compliant with this may be constructed by restricting them accordingly.
This means that the cylinder condition can be represented by a subatlas of the
maximal atlas. The set of local coordinate transformations that are compliant
with this atlas (called a Kaluza atlas) is non-maximal by construction. A further
reduction in how the atlas might be interpreted is also implied by setting c=1,
and constant G. The existence of a single unit for space and time can be
assumed, and this must be scaled in unison for all dimensions. Consistently with
cgs units we can choose either centimetres or seconds. This would leave velocities
(and other geometrically unitless quantities) unchanged in absolute magnitude.
This doesn’t prevent reflection of an axis however, and indeed reflection of the
Kaluza dimension is here equivalent to a (kinetic) charge inversion. However,
given orientability and an orientation we can remove even this ambiguity. We
can further reduce a Kaluza atlas by removing boosts in the Kaluza dimension.
Space-time is taken to be a subframe within a 5D frame within a Kaluza subatlas
of a region wherein uncharged matter can be given a rest frame via a 4D Lorentz
transformation. Boosting uncharged matter along the Kaluza axis will give it
kinetic charge. The Kaluza atlas represents the 4D view that kinetic charge
is 4D covariant. Rotations into the Kaluza axis can likewise be omitted. This
results in additional constraints on the connection coefficients associated with
charts of this subatlas, and enables certain geometrical objects to be more easily
interpreted in space-time. The use of this subatlas does not prevent the theory
being generally covariant, but simplifies the way in which we look at the Kaluza
space through a 4D physical limit.

Definition 3.2.1: AKaluza atlas is:
(i) A subatlas (possibly just over a region) of the maximal atlas of Kaluza

space where boosts and rotations into the Kaluza dimension (as defined by the
cylinder condition K3) are explicitly omitted.

(ii) All partial derivatives in the Kaluza direction are vanishing.
(iii) Inversion in the Kaluza direction and rescalings can also be omitted so

as to establish units and orientation.
(iv) For each point on the Kaluza atlas a chart exists with normal coordinates

where index 4 is the Kaluza dimension.

3.3 Kinetic Charge

Kinetic charge is defined as the 5D momentum component in terms of the 5D
Kaluza rest mass of a hypothesised particle: ie (i) its rest mass in the 5D Lorentz
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manifold (mk0) and (ii) its proper Kaluza velocity (dx4/dτ
∗) with respect to

a frame in the maximal atlas that follows the particle. And equally it can be
defined in terms of (i) the relativistic rest mass (m0), relative to a projected
frame where the particle is stationary in space-time, but where non-charged
particles are stationary in the Kaluza dimension, and in terms of (ii) coordinate
Kaluza velocity (dx4/dt0):

Prov. Definition 3.3.1: kinetic charge: Q∗ = mk0dx4/dτ
∗ = m0dx4/dt0

This provisional definition (refined below) makes sense because mass can be
written in fundamental units (i.e. in distance and time). And the velocities in
question defined relative to particular frames. It is not a generally covariant
definition but it is nevertheless mathematically meaningful. This kinetic charge
can be treated in 4D space-time (and the Kaluza atlas) as a scalar: the first
equation above is covariant with respect to the Kaluza atlas. It can be general-
ized to a 4-vector, and it is also conserved as shown. In general relativity at the
special relativistic Minkowski limit the conservation of momenergy can be given
in terms of the stress-energy tensor as follows [9], j 6= 0. This is approximately
true at a weak field limit and can be applied equally to Kaluza theory. We have
a description of conservation of momentum in the 5th dimension.

∂T̂ 00

∂t
+
∂T̂ i0

∂xi
= 0 ,

∂T̂ 0j

∂t
+
∂T̂ ij

∂xi
= 0 and

∂T̂ 04

∂t
+
∂T̂ i4

∂xi
= 0 (3.3.2)

We also have i=4 vanishing by the cylinder condition. Thus the conservation
of kinetic charge becomes (when generalized to different space-time frames)
the property of a 4-vector current, which we know to be locally conserved:
∂0T̂

04 + ∂1T̂
14 + ∂2T̂

24 + ∂3T̂
34 = 0.

To make sense of this in 5D we need to change the provisional definition
above and make it density-based (imagine a ring rather than a particle). The
alternative definition can be made in terms of the mass density ρ0, coupled with
the Kaluza dimension’s size or Kaluza length λ. In this way we do not presup-
pose that the rest mass we observe in space-time is necessarily the m0 above:
what happens for example to the apparent rest mass in 4D if the Kaluza dis-
tance changes and the density compressed or rarefacted? m0 makes most sense
as a definition of rest mass in 4D when this does not happen. Generalization
demands the following definition, replacing m0 with a density:

Definition 3.3.3: 5D kinetic charge: Q∗ = λρk0dx4/dτ
∗ = λρ0dx4/dt0

This leads to a density-slice definition of 4D density-based kinetic charge as
follows (noting that it is not 4D-divergence free in the event that λ changes):

Definition 3.3.4: 4D kinetic charge density: Q∗∗ = ρk0dx4/dτ
∗ = ρ0dx4/dt0

Kinetic charge current density is the 4-vector, induced from 5D Kaluza space
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as follows (using the Kaluza atlas to ensure it is well-defined as a 4-vector):

J∗∗a = −αĜa4 (3.3.5)

And a measure of the total current can be give as:

J∗a = −αλĜa4 (3.3.6)

Using Wheeler et al [6] p.131, and the appropriate space-time (or Kaluza
atlas) frame, we have:

Q∗ = J∗a (1, 0, 0, 0)a (3.3.7)

So we have a scalar, then a vector representation of relativisitic invariant
charge current, and finally a 2-tensor unification with conserved mass-energy
via the Einstein tensor. It follows that the vanishing of the divergence of kinetic
charge in 4D is only approximate, in 5D it is exact.

Definition 3.3.8: Kinetic charge current is defined to be the 4-vector J∗a =
−αλĜa4, with respect to the Kaluza atlas that represents this total charge cur-
rent in 4D. Note the divergence of the Einstein tensor:

∇̂AĜAB = 0 and ∇̂AĜA4 = 0 ≈ ∇̂aĜa4

3.4 Two Types Of Geometrized Charge

Components used in [1] will be used here as the Kaluza metric. The vector po-
tential and electromagnetic fields formed via the metric are sourced in Maxwell
charge QM . Maxwell’s law are automatically satisfied, using (2.0.1) to define
F with respect to the potential: dF=0 follows from dd = 0. d*F= 4π*J can
be set by construction. d*J=0. Aa is to be identified with the electromagnetic
potential, φ2 is to be a scalar field, and gab the metric of 4D space-time:

Definition 3.4.1: The 5D Kaluza metric.

ĝAB =

[
gab + k2φ2AaAb kφ2Aa

kφ2Ab φ2

]
and ĝAB =

[
gab −kAa
−kAb 1

φ2 + k2AiA
i

]
(3.4.1)

This gives nullish solutions under the original Kaluza theory (cylinder condi-

tion, Rab = 0) and constant scalar field, such that Gab = −k
2

2 FacF
c
b . Compare

this with [7] where we have Gab = 2FacF
c
b in geometrized units for ostensibly

the same fields. The units need to be agreed between the two schemes. We
would need to set either k = 2 or k = −2 for compatibility of results and formu-
las. And this is particularly important as we wish to derive the Lorentz force
law with the same units as [7]. N.B. the sign change introduced by [1], which is
confusing. This makes no fundamental difference, but must be noted.

The geometrized units, Wald [7] p470-471, define units of mass in terms of
fundamental units. This leads to an expression for kinetic charge in terms of
Kaluza momentum when k = 2 and G = 1. G and k are not independent
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however. If we fix one, the other is fixed too: A consequence of requiring the
Lorentz force law written in familiar form and compatibility with the units
used in [7]. The relation between G and k is given in equation (5.3.8) via the
derivation of the Lorentz force law. Simple compatibility with Wald [7] results
where k = 2 and G = 1. The sign of k is also fixed by (5.1.4). The result of
dimensional analysis gives kinetic charge, Q∗, in terms of a total 5D momentum
component P4 and its corresponding density P ∗4 :

Q∗ =
c√
G
λP ∗4 =

c√
G
P4 (3.4.2)

4 The Field Equations

It is necessary to show that the three field equations that derive from Kaluza
compaction do not unduly restrict the possible range of electromagnetic solu-
tions possible. Here the effort is less than in [24] and [28], the results following
simply by looking at each field equation in turn. It would of course be expected
that such loosening of Kaluza’s theory would also involve the loss of the Lorentz
force law as derived in the torsion theories of [24] and [28]. This concern will be
shown to be unfounded. A Lorentz force law derivation is also provided here.
L1 is thus shown to be a sufficient constraint to replace the Ricci flat condition.

4.1 The First Field Equation, k = 1

Looking at the Ricci tensor gives:

R̂ab = ∂cΓ̂
c
ba − ∂bΓ̂cca +

1

2
∂b(A

dFad) + Γ̂cbaΓ̂DDc − Γ̂CDaΓ̂DbC (4.1.1)

In the original Kaluza theory, where the electromagnetic fields are identified
with a Ricci flat Kaluza vacuum (ie R̂ab = 0), the Ricci flatness leads to a
constraint helping to impose nullish solutions when there is no scalar field. This
is the analagous equation to (2.0.4). Without sources the remaining significant
term is a nullish solution:

Rab = Rab − R̂ab

= −1

2
Ab∂cF

c
a −

1

2
Aa∂cF

c
b +

1

2
FacF

c
b

−1

2
(AbF

c
a +AaF

c
b )Γddc +

1

2
ΓcdaAbF

d
c +

1

2
AaF

c
b Γdbc

+
1

4
(AdF

c
a +AaF

c
d )(AbF

d
c +AcF

d
b ) +

1

4
AdFadA

cFbc (4.1.2)

In [24] and [28] redefining the theory by using torsion in the definition suf-
ficiently weakened this constraint. Here we take an alternative (and arguably
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far simpler approach) of instead imposing only sourceless kinetic charge. This
has little bearing on R̂ab and so comparable field equations to either the orig-
inal Kaluza theory or other variants is simply not possible. There just isn’t a
constraint to elaborate.

4.2 The Second Field Equation

Derivation of the second field equation gives:

R̂a4 =
1

2
∂cF

c
a +

1

2
F caΓddc +

1

4
F caA

dFcd −
1

2
(Γcda +

1

2
(AdF

c
a +AaF

c
d ))F dc

Looking at this at an \O(h2) L1 weak field limit (re-inserting general k):

R̂a4 →
k

2
∂cF

c
a (4.2.1)

This couldn’t be a clearer conception of Maxwell charge. This coincides with
the Einstein tensor at the same limit, thus providing an alternative conception
of the conservation of Maxwell charge locally (cf 5.1.1 and 5.1.2):

Ĝa4 → R̂a4 →
k

2
∂cF

c
a (4.2.2)

Unlike the previous works of [24] and [28] there are no further considerations.

This suggests the identification of Maxwell and kinetic charges at the L1
limit. A completed identification (with lowered indices) will be provided in the
sequel.

4.3 The Third Field Equation, k = 1

This section shows how the present theory releases the constraint of the third
field equation (2.0.6), thus allowing non-nullish solutions. As already mentioned
the constraint that the Ricci tensor be zero leads to no non-nullish solutions in
the original Kaluza theory if the scalar field is also constant (ie under postulate
B1). This is caused by setting R̂44 = 0 in that theory and observing the
terms. The result is that (when the scalar field is constant) 0 = FcdF

cd in the
original Kaluza theory. The traditional theory sets the following to vanishing
by postulate:

R̂44 = ∂C Γ̂C44 − ∂4Γ̂CC4 + Γ̂C44Γ̂DDC − Γ̂CD4Γ̂D4C = −Γ̂cd4Γ̂d4c = −1

4
F cdF

d
c (4.3.1)

This theory however loosens this constraint so that the Ricci tensor need not
be vanishing. As a result the theory admits non-nullish solutions analogously
to [24] and [28].
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5 The Lorentz Force Law

5.1 Kinetic And Maxwell Charge

Toth [8] outlines a derivation (perhaps not uniquely) of a Lorentz-like force
for static scalar field in the original Kaluza theory for a charge that is the
momentum term in the fifth dimension. Here we make use of K4 to investigate
this further and set the result on a firmer footing. To investigate the relationship
between kinetic charge and Maxwell charge we need the \O(h2) weak field limit
defined by L1 (cf equation 4.2.2). Discounting O(h2) terms:

Ĝa4 = R̂a4 − 1

2
ĝa4R̂ = R̂a4 − 1

2
(−Aa)R̂ → R̂a4

R̂a4 = ∂C Γ̂C4a − ∂4Γ̂C a
C + Γ̂CbaΓ̂DDC − Γ̂C a

D Γ̂DbC

Ĝa4 → R̂a4 = ∂cΓ̂
c4a (5.1.1)

Putting k back in, and then using (3.3.8), we get:

R̂a4 → 1

2
∂ckF

ac (5.1.2)

J∗a → −
αk

2
λ∂cF

c
a (5.1.3)

So kinetic and Maxwell charges are related by a simple formula. The right
hand side being the Maxwell charge current (see p.81 of [6]), and has the correct
sign to identify a positive kinetic charge Q∗ with a positive Maxwell charge
source 4πQM , whenever αk > 0. In the appropriate space-time frame, and
Kaluza atlas frame, using (3.3.7), and approaching the \O(h2) limit given by
L1:

4πQM → +
2

αkλ
Q∗ (5.1.4)

This correlates the two definitions of charge at the required limit and differs
from [24] only due to the use of densities in the definition - allowing for the
possibility of varying Kaluza length. Nevertheless we use throughout the same
notation as [24], noting that mX ≡ pXλ.

5.2 A Lorentz-Like Force Law

Christoffel symbols will now be used to investigate the geodesic equation. We
will here initially use k = 1, a general k can be added in later. The working
can apply also when there is torsion, though such a generalisation is not needed
here.

Γ̂c(4b) = 1
2φ

2F cb − 1
2g
cdAbδdφ

2 (5.2.1)

Γ̂c44 = 1
2 ĝ

cD(δ4ĝ4D + δ4ĝ4D − δDĝ44) = - 1
2g

cdδdφ
2 (5.2.2)
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Γ̂c(ab) = Γc(ab)+ 1
2g
cd(δa(φ2AdAb)+δb(φ

2AaAd)−δd(φ2AaAb))−Ac(δaφ2Ab+

δbφ
2Aa) (5.2.3)

So, for any coordinate system within the maximal atlas:

0 = d2xa

dτ2 + Γ̂a(BC)
dxB

dτ
dxC

dτ

= d2xa

dτ2 +Γ̂a(bc)
dxb

dτ
dxc

dτ +(φ2F ab −gadAbδdφ2)dx
b

dτ
dx4

dτ −
1
2g

adδdφ
2 dx4

dτ
dx4

dτ (5.2.4)

Taking the charge-to-mass ratio to be:

Q′/mk0 =
dx4

dτ
(5.2.5)

We derive a Lorentz-like force law, putting k back in:

d2xa

dτ2
+ Γ̂a(bc)

dxb

dτ

dxc

dτ
= −(Q′/mk0)F ab

dxb

dτ
(5.2.6)

= −k(Q′/mk0)(φ2F ab − gadAbδdφ2)
dxb

dτ
− 1

2
gadδdφ

2 dx
4

dτ

dx4

dτ
(5.2.7)

5.3 Constant Kinetic Charge And The Lorentz Force Law

Having derived a Lorentz-like force law we look also at the momentum of the
charge in the Kaluza dimension. We look at this acceleration as with the Lorentz
force law. We have (k = 1):

0 =
d2x4

dτ2
+ Γ̂4

(BC)

dxB

dτ

dxC

dτ

=
d2x4

dτ2
+ Γ̂4

(bc)

dxb

dτ

dxc

dτ
+ 2Γ̂4

(4c)

dx4

dτ

dxc

dτ
+

1

2
Adδdφ

2 dx
4

dτ

dx4

dτ
(5.3.1)

The two equations (5.3.1),(5.2.7) under B1 become (for all k):

d2xa

dτ2
+ Γ̂a(bc)

dxb

dτ

dxc

dτ
= −k(Q′/mk0)F ab

dxb

dτ
(5.3.2)

d2x4

dτ2
+ Γ̂4

(bc)

dxb

dτ

dxc

dτ
= −k2(Q′/mk0)AcF

c
b

dxb

dτ
(5.3.3)

(5.3.3) shows that deviations from geodesic behaviour around the closed
Kaluza loops are small, which seems consistent with the conservation of charge
and the integrity of a charged particle.

Multiplying both sides of (5.3.2) by dτ
dτ ′

dτ
dτ ′ , where τ ′ is an alternative affine

coordinate frame, gives:

d2xa

dτ ′2
+ Γ̂a(bc)

dxb

dτ ′
dxc

dτ ′
= −k dτ

dτ ′
(Q′/mk0)F ab

dxb

dτ ′
(5.3.4)
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Given Q∗ = Q′ dτdτ∗ and therefore mk0

m0
Q∗ = Q′ dτdt0 by definition, we can set

the frame such that τ ′ = t0 via the projected 4D space-time frame of the charge.
And the Lorentz force is derived:

d2xa

dτ ′2
+ Γ̂a(bc)

dxb

dτ ′
dxc

dτ ′
= −k(Q∗/m0)F ab

dxb

dτ ′
(5.3.5)

In order to ensure the correct Lorentz force law using the conventions of Wald
[7] p69, this can be rewritten as follows, using the antisymmetry of F ab = −F ab:

= k(Q∗/m0)F ab
dxb

dτ ′
(5.3.6)

Using (5.1.4) - only here does the calculation vary from [24] - as its L1 weak
field limit is approached, this can be rewritten again in terms of the Maxwell
charge:

→ k(
αk

2
(4πQMλ)/m0)F ab

dxb

dτ ′
(5.3.7)

The result is that we must relate G and k to obtain the Lorentz force law
in acceptable terms:

d2xa

dτ ′2
+ Γ̂a(bc)

dxb

dτ ′
dxc

dτ ′
→ (QM/ρ0)F ab

dxb

dτ ′
and k = 2

√
G (5.3.8)

This shows that the Lorentz force law proper can be derived given (5.1.4)
and the required limit ([B1] and [L1]). This of course suggests that in this
variant of the theory the universality of Lorentz force law is dependent on the
constancy, or approximate constancy, or local constancy, of the Kaluza length.
This is in contrast to the analysis in [24] which did not make this apparent.

6 Limits and Extensions

A simple observation suffices to demonstrate the relativistic limit for geodesics:

Γ̂cab − Γcab is order O(h2)

At the Newtonian classical limit we also need the approximate constancy of
the Kaluza length to ensure an experimentally valid Lorentz Force law. This
follows from the geodesic deviation equation and the fact that the Riemannian
tensor is O(h), which is defined to be small, meaning << 1, at the classical limit.
The vector u at the classical limit has, by construction, components of order
O(1). Thus the changes in vector n̂ = (0, 0, 0, 0, 1) that might represent a change
in the Kaluza length, are proportionately O(h) small relative to when n̂ has unit
length. This scales down for arbitrarily small Kaluza lengths: deviations at the
classical scale always being O(h) times smaller in significance than the reference
vector. That is, there is no significant change in Kaluza length until a much
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larger scale is reached - meaning when net metric variations cease to be O(h)
small or equally when or if L1 ceases to apply. The geodesic deviation equation
[6] is as follows:

∇̂u∇̂un̂+ R̂iemann(..., u, n̂, u) = 0 (6.0.1)

Further, in general relativity, there are energy conditions and/or positiv-
ity requirements on mass/energy. There is also the issue of causality. Few of
these issues are unambiguously dealt with in general relativity in that there
is no correct or definitive energy condition, but rather a number of choices.
And sometimes negative mass/energy is even considered, so even positivity of
mass/energy is not quite as secure as it might usually be assumed. Further,
quantum mechanics shows that causality can only be a macroscopic result (thus
causality in physics may be subtly different even macroscopically than often
assumed). And then there are such adjustments as are made from time to time,
such as inflation or the cosmological constant. Stability of Kaluza solutions has
also historically been a problem for Kaluza-type theories. These issues are all
bound up one with the other to some extent. For example we could change
the energy condition used so as to allow for a cosmological constant, or under
certain conditions we might derive positivity from dominant energy.

In [24] the idea that the super-energy tensor of the Riemann tensor (ie the
generalised Bel tensor) [17][18] could be conserved (or at least of vanishing di-
vergence) in a Kaluza-type theory with torsion was posed. But the arbitrariness
of the choice of connection (ie whether with or without torsion) made any single
formulation somewhat arbitrary. This became a recurrent issue in [28]. The
same approach can be taken here without that ambiguity due to their being
only one connection. The super-energy tensor of the Riemannian tensor could
be hypothesized to be conserved with respect to the only covariant derivative
in sight - the usual Levi-Civita connection. This local conservation or diver-
gence law would suggest that the Riemannian curvature developed causally, as
described in [16]. This alone gives some sort of partial causality also for the
metric in that the metric must develop consistently with the curvature. But in
addition a super-energy condition provides a large number of constraints that
constrain the metric locally. Further, the proofs used elsewhere [10] to argue for
instability of Kaluza theories fail to apply due to the use of super-energy instead
of energy conditions. The use of super-energy conditions is therefore promising.
The essential insight is that the squared terms featured in Bel and Bel-Robinson
super-energy tensors, if locally conserved by a divergence law, should prohibit
the collapse of the Kaluza dimension due to the fact that the squared terms
in these tensors would get expensive to conserve with higher curvatures. This
is quite different from other Kaluza theories that rely on more linear functions
of curvature like the mass-energy of the Einstein tensor. The Bel tensor is
provisionally chosen here as more suitable than the Bel-Robinson tensor in the
presence of mass, though this is an issue, possibly empirical, demanding further
investigation. Both are natural as an extension of Ricci flatness, though further
alternatives or variants may also exist.
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The general idea of trying to use a super-energy tensor as an alternative in
some sense to stress-energy in general relativity has a long history and need not
be summarized here. See [17] for extensive references. It is natural to try to
apply it to Kaluza theories.

The covariant divergence of the (generalised) Bel tensor (see [17] for defini-
tion and uniqueness) is not in general vanishing although it is always vanishing in
the case of Einstein manifolds, and a similar result holds for the Bel-Robinson
tensor. But Einstein manifolds are not in themselves rich enough to provide
matter models. In [17] a formula for the vanishing of the divergence of the Bel
tensor is given in terms of the Riemann and Ricci curvatures. A sufficient con-
dition is that the Riemann tensor is harmonic, which is equivalent to the Ricci
tensor being a Codazzi tensor [30][31][32]. This is particularly interesting as it
makes the Riemann curvature a Yang-Mills potential. This condition also pro-
vides for a wider range of solutions that are not Einstein [29]. Further degrees of
freedom come from the interpretation in 4 dimensions (in that the Ricci curva-
tures of the 4D space-time can be richer than the associated Kaluza space), and
still further degrees of freedom for the construction of ‘proper’ matter models
(meaning integral to the metric rather than merely super-imposed) come from
the extended postulate set (given below) via the scalar field and the conformal
transformation thereof. Nevertheless proper matter models are essentially exact
solutions and may be difficult to construct.

As mentioned already the weak field limit is in a sense a choice of scale
related also to the cylinder condition. Here we go further with the concept of
scale, and suggest some additional postulates that lead to an explanation for
the constant scalar field. The idea is that the scalar field is constant due to a
conformal transformation of the metric. That is, if we start with an arbitrary
Kaluza space obeying all the postulates previously presented except B1 then
such a geometry has only one member of its conformal class where the scalar
field can be reduced to identity. The identification is not 1-1 as re-extracting the
original does not follow from knowledge of the conformally derived copy. But
up to conformal invariance we may do this. ‘Up to conformal invariance’ means
that any member of the conformal class may equally be usable as a model, just
that the one which sets the scalar field constant is the simplest.

The postulates are then a fairly simple extension of the previous ones:

K1, K2, K3, K4, L1, M1 (vanishing covariant divergence of the chosen super-
energy tensor, for the present purposes the generalised Bel tensor [17]), M2
(that the physics is defined by a subset of a conformal class such that the subset
satisfies all the other postulates). Call such a set of manifolds ‘the super-energy
class’.

The super-energy class can be reconstructed in full from its corresponding
Kaluza space of constant scalar field. And this Kaluza space is in turn uniquely
defined by the super-energy class, though generally the constant scalar field
Kaluza space will not be in the super-energy class. Thus the super-energy
class can define the physics which we would more normally associate with a
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Kaluza space of the previous sections. The super-energy class defines a gauge
redundancy.

And that’s all that’s needed to create a further theory with explanatory
power over the scalar field issue of the first postulate set. Its preliminary pre-
sentation here gives better context to the first postulate set, though of course
it needs further development.

7 Conclusion

Kaluza’s 1921 theory of gravity and electromagnetism using a fifth wrapped-
up spatial dimension is inspiration for many modern attempts to develop new
physical theories. Here an alternative Kaluza theory is presented - or rather a
set of postulates K1, K2, K3, K4, L1, B1 that define that theory, and also an
extension of that theory is presented that is more speculative but goes further
in explanatory power with postulates: K1, K2, K3, K4, L1, M1, M2. That is,
two related but different sets of postulates are considered.

The Kaluza dimension (in the direction of which partial derivatives are
treated as vanishing) is identified with a cylinder condition as in Kaluza’s orig-
inal theory. The difference here is that electromagnetic fields outside of charge
sources are not identified with Ricci flat 5D Kaluza space, but a more general
condition that identifies 5D momentum with kinetic charge sources. When the
scalar field is set constant (and well-behaved assumptions are made about the
paths of charged particles), and a weak field limit defined, then an improved uni-
fication of gravity and electromagnetism results. Improved because the Lorentz
force law is derived from first principles, and because a more complete range
of electromagnetic fields (i.e. the non-nullish solutions) become possible with-
out making arbitrary assumptions or making too many demands on the scalar
field, and without the coupling of the scalar field with the electromagnetic field.
Vanishing background Ricci curvature was also not needed as the Lorentz force
law was derived independently of any stress-energy tensor. The constancy of
the scalar field was here assumed in order to obtain the electromagnetic limit.
The theory was in effect derived from the need to allow more naturally for cer-
tain solutions (including electrostatic fields) and to derive the Lorentz force law
simultaneously; and by searching for the simplest way to do so.

The physicality of the theory is that Kaluza’s original 1921 theory is too re-
strictive and that the fault is not in the cylinder condition but the Ricci flat as-
sumption. What is here shown to be effective is the identification of Maxwellian
charge and 5D momentum. In effect replacing the Ricci flat assumption with
vanishing 5D momentum - referred to here as kinetic charge - leads to the same
results but with a larger set of solutions, provided a weak field limit is also
imposed. Since 5D momentum is identified with Maxwell charge, at a suitable
limit, the physicality of defining sourceless solutions by its vanishing is intuitive.
Previous attempts to do the same thing by the current author had used torsion
and are more complex. Torsion, so it turns out, is not necessary if the Ricci flat
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assumption can be weakened in other ways. The simple expedient of replacing
the Ricci flatness assumption with a sourceless assumption was undertaken here.

Stability is a recurring objection to Kaluza theories, and causality is a fur-
ther issue. However devices such as variant energy conditions, or super-energy
conditions, could be used. Here a second set of postulates is suggested based on
the generalised Bel super-energy tensor and a conformal transformation. The
first postulate set and second are related via conformal transformations, thus
the extended set is built firmly on the first as a foundation. This potentially
explains how the scalar field can be treated as constant, and sheds some light
on causality, and potentially avoids problems of stability. The result is a set of
geometries related by what is essentially a gauge transformation in what could
be described as a geometrised conformal gauge theory. Exactly how this might
be taken further is the object of further study. This second postulate set is
presented as an example of how Kaluza theory can be developed further - the
ultimate arbiter necessarily being empirical evidence.

Interestingly the super-energy condition is related to harmonic curvature,
and therefore Yang-Mills theory.

Why go to the effort to unify electromagnetism and gravitation and to make
electromagnetism fully geometric? Because experimental differences could be
detectable given sufficient technology on the one hand, and, on the other, sim-
ply because such an attempt at unification might be right or lead in the right
direction [22][23]. It may widen the search. This is not so much a controversial
idea as merely a laborious one, and the current research has been rather cir-
cuitous. This new attempt is however so inspired, and some merit lies in the
fact that the results are promising. But why do it this way when other methods
may also be available? As with induced-matter theory [1] the idea is to be as
geometrical and explanatory as possible, but the approach here is arguably more
natural by virtue of requiring the Kaluza dimension to be necessarily small and
compact, as in the old Kaluza-Klein theory. This remains a natural constraint,
the most natural way so far found to unify electromagnetism and gravity.

With thanks to Viktor Toth, Philip Lishman, Maggie Norris, and to Ilaria.
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