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Abstract
There are many proposed partial prime number formulas, however, no

formula can generate all prime numbers. Here we show three formulas
which can obtain the entire prime numbers set from the positive integers,
based on the Möbius function plus the “omega” function, or the Omega
function, or the divisor function.

The history of searching for a prime number formula goes back to the ancient Egyptians.
There have been many proposed partial prime number formulas (e.g., Euler: P(n) =
n2 +n+41), however, no formula can generate all prime numbers. Here we show Pk(n) ≡
n · a$(n) to pick up the prime numbers from the positive integers, which is based on the
prime number definition of P ≡ P · 1 (i.e., a prime number can only be divided by 1 and
itself). Let P, b ∈ Z, for a natural number n ≡ P · b, which is a prime number if b = 1
and a non-prime number if b 6= 1.

�
The Möbius function

The Möbius function is the sum of the primitive n-th roots of unity.[1]

µ(n) =
∑

1≤k≤n
gcd(k,n)=1

e2πik/n (1)

with values

µ(n) =

 (−1)ω(n)

0
if Ω(n) = ω(n)
if Ω(n) > ω(n)

(2)

where ω(n) is the number of distinct prime factors of n, Ω(n) is the number of factors
(with repetition) of n, and n is square-free if and only if Ω(n) = ω(n). Thus µ(1) =
µ(6 = 2 × 3) = 1, µ(2) = µ(3) = µ(5) = −1, µ(4 = 22) = 0, etc. In fact, only when
ω(n) = 1, 3, 5, . . . (an odd prime factor, e.g., Sphenic numbers: products of 3 distinct
primes) make µ(P) = µ(pqr) = µ(pqrst) = (−1)(2k+1) = −1. The variable term of the
Euler identity ei2πk/n is involved in the Möbius function µ(n) sequence

1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1, 0, -1, 0, 1, 1, -1, 0, 0, 1, 0, 0,
-1, -1, -1, 0, 1, 1, 1, 0, -1, 1, 1, ...(OEIS A008683)[2]

where µ(n) = −1 gives the number sequence

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 30, 31, 37, 41, 42, 43, 47, 53, 59, 61, 66, 67,
70, 71, 73, 78, 79, 83, 89, 97, ...(OEIS A030059)[3]
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where 30, 42, 66, 70, 78 are from the sphenic number sequence

30, 42, 66, 70, 78, 102, 105, 110, 114, 130, ...(OEIS A007304)[4]

A set of sphenic numbers J = p× q × r has exactly eight divisors

{1, p, q, r, pq, pr, qr, pqr} (3)

For example {1, 2, 3, 5, 6, 10, 15, 30}, where prime µ(2) = µ(3) = µ(5) = −1 and
sphenic µ(30) = (−1)3 = −1, while semiprime µ(6) = µ(10) = µ(15) = (−1)2 = +1.

Obviously, removing the sphenic number sequence (A007304) from the Möbius se-
quence (A030059) gives the prime number sequence Pk (<100)

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,
83, 89, 97, ...(OEIS A000040)[5]

The “omega” function
The “omega” function ω(n) represents the number of distinct prime factors of n =

Pρ1
1 Pρ2

2 · · ·P
ρk
k (OEIS A001221).[6] Since ω(P) ≡ +1 and µ(P) ≡ −1 = e−iπ, the prime

numbers can be identified as $(n) = µ(n)+ω(n) ≡ 0, which is equal to the Euler identity
eiPkπ + 1 = 0. Fig 1 shows that the prime numbers all have $(n) = µ(n) + ω(n) ≡ 0,
while all other non-prime numbers are $(n) ≥ 1.

Fig. 1: The prime numbers can be identified as $(n) = µ(n) + ω(n) ≡ 0, while other
non-prime numbers are $(n) ≥ 1.

We define

$(n) = µ(n) + ω(n) =

 0
≥ 1

prime numbers
other numbers

(4)

From $(n) ≡ 0 for prime numbers, the entire prime numbers formula is

Pk(n) ≡ n · a$(n) ∈ N (5)

where n = f(m, k) = 2m(2k + 1) = Pα1
1 Pα2

2 · · ·Pαk
k =

ω(n)∏
i=1

Pαi
i = 1, 2, 3... are positive

integers Z, a /∈ N (e.g., an irrational number a = φ = 0.618033 . . . or sufficiently small
a = 1×10−100), so only a0 ≡ 1 makes Pk(n) ≡ n ·a$(n) ∈ N if $(n) = 0, and n ·a$(n) /∈ N
if $(n) 6= 0.
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µ(n) = −1 $ eiPkπ and ω(n) = +1 get the Euler relationship eiPkπ + 1 = 0, where
Pk ⊂ (2k + 1) is an odd number. Therefore, production of prime numbers in the natural
numbers N will occur if and only if $(n) ≡ 0. In this way, the Euler identity regulates
the Prime numbers.

Prime numbers already existed in the positive integers, we only needed to find a math
formula (4) to lock-in on those primes within the natural numbers. All prime numbers
can be found by solving the prime identical equation $(n) = µ(n) + ω(n) ≡ 0 in (4).

Using Mathematica, $(n) = µ(n) + ω(n) gives the Prime number identification se-
quence (Fig. 2)

Fig. 2: The $(n) table generated by Mathematica. The Prime numbers under 200 can
be identified by $(n) = 0.

The $(n) sequences are used in Pk(n) ≡ n · 0.001$(n) ∈ N to generate the prime
number sequence, where only $(n) = 0 yields prime numbers while all other non-zero
terms in the above table yields 0 (Fig. 3) which can be easily filtered out (Fig. 4).

Fig. 3: The Prime numbers under 200 can be identified by $(n) = 0 which is generated
by Mathematica.

Fig. 4: Sorted table in Fig. 3, which is the prime number table if the zeros are filtered
out.
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All prime numbers can be found by solving the prime identity equation

$(n) = µ(n) + ω(n) ≡ 0 (6)

However, the prime number formula Pk(n) ≡ n · a$(n) ∈ N is used in Mathematica code
as

Drop[Sort[IntegerPart[Table[k 0.0001^(MoebiusMu[k] + PrimeNu[k]), {k, 1000}]]],
832]

which yields the table of 168 prime numbers (< 1000). The prime number table can be
generated, sorted and filter out of zeros from $(n) = µ(n) + ω(n) ≡ 0 by Mathematica
in Fig. 5.

Fig. 5: The prime number table (< 1000) is generated, sorted and filtered out of zeros
from $(n) = µ(n) + ω(n) ≡ 0 by Mathematica.

�
The Omega function

The Omega function Ω(n) =
ω(n)∑
i=1

αi is the number of prime factors (with repetition) of

n =
ω(n)∏
i=1

Pαi
i .

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1,
5, 2, 2, 2, 4, ... (OEIS A001222)[7]

It has a similar property with the “omega” function as Ω(P) = ω(P) = +1,[8] while
Ω(n) > ω(n) are not for prime numbers. Therefore, it can also be used to define a new
function for the prime number identification

$′(n) = µ(n) + Ω(n) ≡

 0
≥ 1

prime numbers
other numbers

(7)

For generating the table of 168 prime numbers (< 1000) in Fig. 5, Pk(n) ≡ n ·a$′(n) ∈ N
in Mathematica code is

Drop[Sort[IntegerPart[Table[k 0.01^(MoebiusMu[k] + PrimeOmega[k]), {k,
1000} ]]], 832]
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�
The divisor function

Divisor functions σx(n) = ∑
d|n
dx were studied by Ramanujan,[9] where σ1(n) is given

as the sequence

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24,
60, 31, 42, 40, 56, 30, 72, 32, 63, ... (OEIS A000203)[10]

The prime numbers have
s(Pk) = σ1(Pk)−Pk ≡ +1 (8)

where s(n) = σ1(n) − n involves much larger numbers than ω(n). For example, s(5) =
(1 + 5) − 5 = 1, while other non-prime numbers s(n) = σ1(n) − n ≥ 2 (e.g., s(9) =
(1 + 3 + 9)− 9 = 4).

0, 1, 1, 3, 1, 6, 1, 7, 4, 8, 1, 16, 1, 10, 9, 15, 1, 21, 1, 22, 11, 14, 1, 36, 6, 16,
13, 28, 1, 42, 1, 31, 15, 20, 13, 55, ... (OEIS A001065)[11]

Therefore, s(n) can also be used to define a new function for the prime number identifi-
cation (Fig. 6)

$′′(n) = µ(n) + s(n) =

 0
≥ 1

prime numbers
other numbers

(9)

Fig. 6: The $′′(n) = µ(n) + s(n) table generated by Mathematica. The Prime numbers
can be identified by $′′(n) = 0.

For generating the table of 168 prime numbers (< 1000) in Fig. 5, Pk(n) ≡ n·a$′′(n) ∈
N in Mathematica code is

Drop[Sort[IntegerPart[Table[k 0.1^(MoebiusMu[k] + (DivisorSigma[1, k] - k)),
{k, 1000} ]]], 832]

Since 2 is the only even prime number, for the odd primes, Pk(n) ≡ (2n+1) ·a$(2n+1) ∈ N
can be used to reduce the computation time.
�
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