A Proof of the ABC Conjecture

Zhang Tianshu

Zhanjiang city, Guangdong province, China

Email: chinazhangtianshu@126.com

Introduction: The ABC conjecture was proposed by Joseph Oesterle in 1988 and David Masser in 1985. The conjecture states that for any infinitesimal quantity $\varepsilon > 0$, there exists a constant $C_{\varepsilon} > 0$, such that for any three relatively prime integers a, b and c satisfying a + b = c, the

 $\max(|a|, |b|, |c|) \le C_{\epsilon} \prod p^{1+\epsilon}$

inequality

holds water, where p/abc indicates

that the product is over prime p which divide the product abc. This is an

unsolved problem hitherto although somebody published papers on the

internet claiming proved it.

Abstract

We first get rid of three kinds from A+B=C according to their respective odevity and gcf (A, B, C) =1. After that, expound relations between C and raf (ABC) by the symmetric law of odd numbers. Finally we have proven $C \le C_{\epsilon} [raf (ABC)]^{1+\epsilon}$ in which case A+B=C, where gcf (A, B, C) =1.

AMS subject classification: 11A99, 11D99, 00A05.

Keywords: ABC conjecture, A+B=C, gcf (A, B, C) =1, Symmetric law of odd numbers, Sequence of natural numbers, $C \le C_{\varepsilon} [raf(ABC)]^{1+\varepsilon}$.

Values of A, B and C in set A+B=C

For positive integers A, B and C, let raf (A, B, C) denotes the product of all distinct prime factors of A, B and C, e.g. if $A=11^2\times13$, $B=3^3$ and $C=2\times13\times61$, then raf (A, B, C) = $2\times3\times11\times13\times61$ =52338. In addition, let gcf (A, B, C) denotes greatest common factor of A, B and C.

The ABC conjecture states that given any real number $\varepsilon > 0$, there exists a constant $C_{\varepsilon} > 0$ such that for every triple of positive integers A, B and C satisfying A+B=C, and gcf (A, B, C) =1, then we have $C \le C_{\varepsilon}$ [raf (ABC)] ^{1+ ε}. Let us first get rid of three kinds from A+B=C according to their respective odevity and gcf (A, B, C) =1, as listed below.

- **1.** If A, B and C all are positive odd numbers, then A+B is an even number, yet C is an odd number, evidently there is only A+B \neq C according to an odd number \neq an even number.
- **2.** If any two in A, B and C are positive even numbers, and another is a positive odd number, then when A+B is an even number, C is an odd number, yet when A+B is an odd number, C is an even number, so there is only $A+B\neq C$ according to an odd number \neq an even number.
- **3.** If A, B and C all are positive even numbers, then they have at least a common prime factor 2, manifestly this and the given prerequisite of gcf (A, B, C) =1 are inconsistent, so A, B and C can not be three positive even numbers together.

Therefore we can only continue to have a kind of A+B=C, namely A, B and

C are two positive odd numbers and one positive even number. So let following two equalities add together to replace A+B=C in which case A, B and C are two positive odd numbers and one positive even number.

- **1.** A+B= 2^{X} S, where A, B and S are three relatively prime positive odd numbers, and X is a positive integer.
- **2.** A+2^YV=C, where A, V and C are three relatively prime positive odd numbers, and Y is a positive integer.

Consequently the proof for ABC conjecture, by now, it is exactly to prove the existence of following two inequalities.

- (1). $2^X S \le C_{\epsilon}$ [raf (A, B, $2^X S$)] $^{1+\epsilon}$ in which case A+B= $2^X S$, where A, B and S are three relatively prime positive odd numbers, and X is a positive integer.
- (2). $C \le C_{\epsilon}$ [raf (A, 2^YV, C)] ^{1+ ϵ} in which case A+2^YV =C, where A, V and C are three relatively prime positive odd numbers, and Y is a positive integer.

Circumstances Relating to the Proof

Let us divide all positive odd numbers into two kinds of A and B, namely the form of A is 1+4n, and the form of B is 3+4n, where n is a positive integer or 0. From small to large odd numbers of A and of B are arranged as follows.

A: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69...1+4n ...

B: 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63, 67...3+4n ...

We list also from small to great natural numbers, well then you would discover that Permutations of seriate natural numbers show up a certain law.

1, 2^1 , 3, 2^2 , 5, $2^1 \times 3$, 7, 2^3 , 9, $2^1 \times 5$, 11, $2^2 \times 3$, 13, $2^1 \times 7$, 15, 2^4 , 17, $2^1 \times 9$, 19, $2^2 \times 5$, 21, $2^1 \times 11$, 23, $2^3 \times 3$, 25, $2^1 \times 13$, 27, $2^2 \times 7$, 29, $2^1 \times 15$, 31, 2^5 , 33, $2^1 \times 17$, 35, $2^2 \times 9$, 37, $2^1 \times 19$, 39, $2^3 \times 5$, 41, $2^1 \times 21$, 43, $2^2 \times 11$, 45, $2^1 \times 23$, 47, $2^4 \times 3$, 49, $2^1 \times 25$, 51, $2^2 \times 13$, 53, $2^1 \times 27$, 55, $2^3 \times 7$, 57, $2^1 \times 29$, 59, $2^2 \times 15$, 61, $2^1 \times 31$, 63, 2^6 , 65, $2^1 \times 33$, 67, $2^2 \times 17$, 69, $2^1 \times 35$, 71, $2^3 \times 9$, 73, $2^1 \times 37$, 75, $2^2 \times 19$, 77, $2^1 \times 39$, 79, $2^4 \times 5$, 81, $2^1 \times 41$, 83, $2^2 \times 21$, 85, $2^1 \times 43$, 87, $2^3 \times 11$, 89, $2^1 \times 45$, 91, $2^2 \times 23$, 93, $2^1 \times 47$, 95, $2^5 \times 3$, 97, $2^1 \times 49$, 99, $2^2 \times 25$, 101, $2^1 \times 51$, 103 ... \rightarrow

Evidently even numbers contain prime factor 2, yet others are odd numbers in the sequence of natural numbers above-listed.

After each of odd numbers in the sequence of natural numbers is replaced by self-belongingness, the sequence of natural numbers is changed into the following forms.

A, 2^{1} , B, 2^{2} , A, 2^{1} ×3, B, 2^{3} , A, 2^{1} ×5, B, 2^{2} ×3, A, 2^{1} ×7, B, 2^{4} , A, 2^{1} ×9, B, 2^{2} ×5

A, 2^{1} ×11, B, 2^{3} ×3, A, 2^{1} ×13, B, 2^{2} ×7, A, 2^{1} ×15, B, 2^{5} , A, 2^{1} ×17, B, 2^{2} ×9, A 2^{1} ×19, B, 2^{3} ×5, A, 2^{1} ×21, B, 2^{2} ×11, A, 2^{1} ×23, B, 2^{4} ×3, A, 2^{1} ×25, B, 2^{2} ×13, A 2^{1} ×27, B, 2^{3} ×7, A, 2^{1} ×29, B, 2^{2} ×15, A, 2^{1} ×31, B, 2^{6} , A, 2^{1} ×33, B, 2^{2} ×17, A 2^{1} ×35, B, 2^{3} ×9, A, 2^{1} ×37, B, 2^{2} ×19, A, 2^{1} ×39, B, 2^{4} ×5, A, 2^{1} ×41, B, 2^{2} ×21, A 2^{1} ×43, B, 2^{3} ×11, A, 2^{1} ×45, B, 2^{2} ×23, A, 2^{1} ×47, B, 2^{5} ×3, A, 2^{1} ×49, B, 2^{2} ×25, A, 2^{1} ×51, B ... \rightarrow

Thus it can be seen, leave from any given even number >2, there are finitely many cycles of (B, A) leftwards until (B=3, A=1), and there are infinitely many cycles of (A, B) rightwards.

If we regard an even number on the sequence of natural numbers as a symmetric center of odd numbers, then two odd numbers of every bilateral symmetry are A and B always, and a sum of bilateral symmetric A and B is surely the double of the even number. For example, odd numbers 23(B) and 25(A), 21(A) and 27(B), 19(B) and 29(A) etc are bilateral symmetries whereby even number $2^3\times3$ to act as the center of the symmetry, and there are $23+25=2^4\times3$, $21+27=2^4\times3$, $19+29=2^4\times3$ etc. For another example, odd numbers 49(A) and 51(B), 47(B) and 53(A), 45(A) and 55(B) etc are bilateral symmetries whereby even number 2×25 to act as the center of the symmetry, and there are $49+51=2^2\times25$, $21+27=2^2\times25$, $19+29=2^2\times25$ etc. Again give an example, 63(B) and 65(A), 61(A) and 67(B), 59(B) and 69(A) etc are bilateral symmetries whereby even number 2^6 to act as the center of the symmetry, and there are $63+65=2^7$, $61+67=2^7$, $59+69=2^7$ etc.

Overall, if A and B are two bilateral symmetric odd numbers whereby $2^{X}S$ to act as the center of the symmetry, then there is $A+B=2^{X+1}S$.

The number of A plus B on the left of 2^XS is exactly the number of pairs of bilateral symmetric A and B. If we regard any finite-great even number 2^XS as a symmetric center, then there are merely finitely more pairs of bilateral symmetric A and B, namely the number of pairs of A and B which express $2^{X+1}S$ as the sum is finite. That is to say, the number of pairs of bilateral symmetric A and B for symmetric center 2^XS is $2^{X-1}S$, where $S \ge 1$.

On the supposition that A and B are bilateral symmetric odd numbers

whereby $2^{X}S$ to act as the center of the symmetry, then $A+B=2^{X+1}S$. By now, let A plus $2^{X+1}S$ makes $A+2^{X+1}S$, then B and $A+2^{X+1}S$ are still bilateral symmetry whereby $2^{X+1}S$ to act as the center of the symmetry, and $B+(A+2^{X+1}S)=(A+B)+2^{X+1}S=2^{X+1}S+2^{X+1}S=2^{X+2}S$.

If substitute B for A, let B plus $2^{X+1}S$ makes $B+2^{X+1}S$, then A and $B+2^{X+1}S$ are too bilateral symmetry whereby $2^{X+1}S$ to act as the center of the symmetry, and $A+(B+2^{X+1}S)=2^{X+2}S$.

Provided both let A plus $2^{X+1}S$ makes $A+2^{X+1}S$, and let B plus $2^{X+1}S$ makes $B+2^{X+1}S$, then $A+2^{X+1}S$ and $B+2^{X+1}S$ are likewise bilateral symmetry whereby 3×2^XS to act as the center of the symmetry, and $(A+2^{X+1}S)+(B+2^{X+1}S)=3\times 2^{X+1}S$.

Since there are merely A and B at two odd places of each and every bilateral symmetry on two sides of an even number as the center of the symmetry, then aforementioned $B+(A+2^{X+1}S)=2^{X+2}S$ and $A+(B+2^{X+1}S)=2^{X+2}S$ are exactly $A+B=2^{X+2}S$ respectively, and write $(A+2^{X+1}S)+(B+2^{X+1}S)=3\times 2^{X+1}S$ down $A+B=3\times 2^{X+1}S=2^{X+1}S_t$, where S_t is an odd number ≥ 3 .

Do it like this, not only equalities like as $A+B=2^{X+1}S$ are proven to continue the existence, one by one, but also they are getting more and more along with which X is getting greater and greater, up to exist infinitely more equalities like as $A+B=2^{X+1}S$ when X expresses every natural number.

In other words, added to a positive even number on two sides of $A+B=2^{X}S$, then we get still such an equality like as $A+B=2^{X}S$.

Whereas no matter how great a concrete even number $2^{X}S$ as the center of the symmetry, there are merely finitely more pairs of A and B which express $2^{X+1}S$ as the sum.

If X is defined as a concrete positive integer, then there are only a part of $A+B=2^{X}S$ to satisfy gcf (A, B, $2^{X}S$) =1. For example, when $2^{X}S=18$, there are merely 1+17=18, 5+13=18 and 7+11=18 to satisfy gcf (A, B, $2^{X}S$) =1, yet 3+15=18 and 9+9=18 suit not because they have common prime factor 3. If add or subtract a positive odd number on two sides of $A+B=2^{X}S$, then we get another equality like as $A+2^{Y}V=C$. That is to say, equalities like as $A+2^{Y}V=C$ can come from $A+B=2^{X+1}S$ so as add or subtract a positive odd number on two sides of $A+B=2^{X+1}S$.

Therefore, on the one hand, equalities like as $A+2^{Y}V=C$ are getting more and more along with which equalities like as $A+B=2^{X+1}S$ are getting more and more, up to infinite more equalities like as $A+2^{Y}V=C$ exist along with which infinite more equalities like as $A+B=2^{X+1}S$ appear.

Certainly we can likewise transform $A+2^{Y}V=C$ into $A+B=2^{X}S$ so as add or subtract a positive odd number on the two sides of $A+2^{Y}V=C$.

On the other hand, if C is only defined as a concrete positive odd number, then there is merely finitely more pairs of A and $2^{Y}V$ which express C as the sum. But also, there is probably a part of A+2 ^{Y}V =C to satisfy gcf (A, $2^{Y}V$, C) =1. For example, when C=25, there are merely 1+24=25, 3+22=25, 7+18=25, 9+16=25, 11+14=25 and 13+12=25 to satisfy gcf (A, $2^{Y}V$, C) =1, yet

5+20=25 and 15+10=25 suit not because they have common prime factor 5. After factorizations of A, B, S, V and C in A+B= 2^{X+1} S plus A+ 2^{Y} V=C, if part prime factors have greater exponents, then there are both 2^{X+1} S \geq raf (A, B, 2^{X+1} S) in which case A+B= 2^{X+1} S satisfying gcf (A, B, 2^{X+1} S) =1, and C \geq raf (A, 2^{Y} V, C) in which case A+ 2^{Y} V=C satisfying gcf (A, 2^{Y} V, C) =1. For examples, 2^{7} > raf (3, 5^{3} , 2^{7}) for 3+ 5^{3} = 2^{7} ; and 3^{10} > raf (5⁶, 2^{5} ×23×59, 3^{10}) for 5^{6} + 2^{5} ×23×59= 3^{10} .

On the contrary, there are both $2^{X+1}S \le \operatorname{raf}(A, B, 2^{X+1}S)$ in which case $A+B=2^{X+1}S$ satisfying gcf $(A, B, 2^{X+1}S)=1$, and $C \le \operatorname{raf}(A, 2^{Y}V, C)$ in which case $A+2^{Y}V=C$ satisfying gcf $(A, 2^{Y}V, C)=1$. For examples, $2^{2}\times 7 < \operatorname{raf}(13, 3\times 5, 2^{2}\times 7)$ for $13+3\times 5=2^{2}\times 7$; and $3^{4}<\operatorname{raf}(11\times 7, 2^{2}, 3^{4})$ for $11\times 7+2^{2}=3^{4}$.

Since either A or B in $A+B=2^{X+1}S$ plus an even number is still an odd number, and $2^{X+1}S$ plus the even number is still an even number, thereby we can use $A+B=2^{X+1}S$ to express every equality which plus an even number on two sides of $A+B=2^{X+1}S$ makes.

Consequently, there are infinitely more $2^{X+1}S \ge \operatorname{raf}(A, B, 2^{X+1}S)$ plus $2^{X+1}S \le \operatorname{raf}(A, B, 2^{X+1}S)$ in which case $A+B=2^{X+1}S$.

Likewise, either $2^{Y}V$ plus an even number is still an even number, or A plus an even number is still an odd number, and C plus the even number is still an odd number, so we can use equality $A+2^{Y}V=C$ to express every equality which plus an even number on two sides of $A+2^{Y}V=C$ makes.

Consequently, there are infinitely more $C \ge \operatorname{raf}(A, 2^Y V, C)$ plus $C \le \operatorname{raf}(A, 2^Y V, C)$

 $2^{Y}V$, C) in which case $A+2^{Y}V=C$.

But, if let $2^{X+1}S \ge raf$ (A, B, $2^{X+1}S$) and $2^{X+1}S \le raf$ (A, B, $2^{X+1}S$) separate, and let $C \ge raf$ (A, 2^YV , C) and $C \le raf$ (A, 2^YV , C) separate, then for inequalities like as each kind of them, we conclude not out whether they are still infinitely more.

However, what deserve to be affirmed is that there are $2^{X+1}S \ge raf$ (A, B, $2^{X+1}S$) and $2^{X+1}S \le raf$ (A, B, $2^{X+1}S$) in which case $A+B=2^{X+1}S$ satisfying gcf (A, B, $2^{X+1}S$) =1, and there are $C \ge raf$ (A, $2^{Y}V$, C) and $C \le raf$ (A, $2^{Y}V$, C) in which case $A+2^{Y}V=C$ satisfying gcf (A, $2^{Y}V$, C) =1, according to the preceding illustration with examples.

Proving $C \le C_{\epsilon} [raf(A, B, C)]^{1+\epsilon}$

Hereinbefore, we have deduced that both there are $2^{X+1}S \le raf$ (A, B, $2^{X+1}S$) and $2^{X+1}S \ge raf$ (A, B, $2^{X+1}S$) in which case $A+B=2^XS$ satisfying gcf (A, B, $2^{X+1}S$) =1, and there are $C \le raf$ (A, 2^YV , C) and $C \ge raf$ (A, 2^YV , C) in which case $A+2^YV=C$ satisfying gcf (A, 2^YV , C) =1, whether each kind of them is infinitely more, or is finitely more.

First let us expound a set of identical substitution as the follows. If an even number on the right side of each of above-mentioned four inequalities added to a smaller non-negative real number such as $R \geq 0$, then the result is both equivalent to multiply the even number by another very small real number, and equivalent to increase a tiny real number such as $\epsilon \geq 0$ to the exponent of

the even number, i.e. form a new exponent $1+\epsilon$, but when R=0, the multiplied real number is 1, yet $\epsilon=0$.

Actually, aforementioned three ways of doing, all are in order to increase an identical even number into a value and the same.

Such being the case the identical substitution between each other, then we set about proving aforesaid four inequalities, one by one, thereinafter.

(1). For inequality $2^{X+1}S \le raf$ (A, B, $2^{X+1}S$), $2^{X+1}S$ divided by raf (A, B, $2^{X+1}S$) is equal to $2^XS_1^{t-1} \sim S_n^{m-1}/A_{raf}B_{raf}$ as a true fraction, where $S_1 \sim S_n$ express all distinct prime factors of S; t-1~m-1 are respectively exponents of prime factors $S_1 \sim S_n$ orderly; A_{raf} expresses the product of all distinct prime factors of A; and B_{raf} expresses the product of all distinct prime factors of B.

After that, even number raf (A, B, $2^{X+1}S$) added to a smaller non-negative real number such as $R \ge 0$ to turn the even number itself into [raf (A, B, $2^{X+1}S$)] $^{1+\epsilon}$. Undoubtedly there is $2^{X+1}S \le [\text{raf }(A, B, 2^{X+1}S)]^{-1+\epsilon}$ successively.

By now, multiply [raf (A, B, $2^{X+1}S$)] $^{1+\epsilon}$ by $2^XS_1^{t-1} \sim S_n^{m-1}/A_{raf}B_{raf}$, then it has still $2^{X+1}S \leq 2^XS_1^{t-1} \sim S_n^{m-1}/A_{raf}B_{raf}$ [raf (A, B, $2^{X+1}S$)] $^{1+\epsilon}$.

Also let $C_{\epsilon} = 2^X S_1^{t-1} \sim S_n^{m-1} / A_{raf} B_{raf}$, we get $2^{X+1} S \leq C_{\epsilon} [raf (A, B, 2^{X+1} S)]^{1+\epsilon}$. Manifestly when R = 0, it has $\epsilon = 0$, and $2^{X+1} S = C_{\epsilon} [raf (A, B, 2^{X+1} S)]^{1+\epsilon}$.

(2). For inequality $C \le \operatorname{raf}(A, 2^Y V, C)$, C divided by $\operatorname{raf}(A, 2^Y V, C)$ is equal to $C_1^{j-1} \sim C_e^{f-1}/2A_{raf}V_{raf}$ as a true fraction, where $C_1 \sim C_e$ express all distinct prime

factors of C; j-1~f-1 are respectively exponents of prime factors C_1 ~ C_e orderly; A_{raf} expresses the product of all distinct prime factors of A; and V_{raf} expresses the product of all distinct prime factors of V.

After that, even number raf $(A, 2^YV, C)$ added to a smaller non-negative real number such as $R \ge 0$ to turn the even number itself into $[\text{raf } (A, 2^YV, C)]^{1+\epsilon}$. Undoubtedly there is $C \le [\text{raf } (A, 2^YV, C)]^{1+\epsilon}$ successively.

By now, multiply [raf (A, $2^{Y}V$, C)] $^{1+\epsilon}$ by $C_{1}^{j-1} \sim C_{e}^{f-1}/2A_{raf}V_{raf}$, then it has still $C \leq C_{1}^{j-1} \sim C_{e}^{f-1}/2A_{raf}V_{raf}$ [raf (A, $2^{Y}V$, C)] $^{1+\epsilon}$.

Also let $C_{\epsilon} = C_1^{j-1} \sim C_e^{f-1}/2A_{raf}V_{raf}$, we get $C \leq C_{\epsilon} [raf(A, 2^YV, C)]^{1+\epsilon}$.

Manifestly when R=0, it has $\epsilon=0$, and $C=C_{\epsilon}[raf(A,2^{Y}V,C)]^{1+\epsilon}$.

(3). For inequality $2^{X+1}S \ge \operatorname{raf}(A,B,2^{X+1}S)$, $2^{X+1}S$ divided by $\operatorname{raf}(A,B,2^{X+1}S)$ is equal to $2^XS_1^{t-1} \sim S_n^{m-1}/A_{raf}B_{raf}$ as a false fraction, where $S_1 \sim S_n$ express all distinct prime factors of S; $t-1 \sim m-1$ are respectively exponents of prime factors $S_1 \sim S_n$ orderly; A_{raf} expresses the product of all distinct prime factors of A; and B_{raf} expresses the product of all distinct prime factors of B.

Evidently $2^{X}S_{1}^{t-1} \sim S_{n}^{m-1}/A_{raf}B_{raf}$ as the false fraction is greater than 1.

Then, even number raf (A, B, $2^{X+1}S$) added to a smaller non-negative real number such as $R \ge 0$ to turn the even number itself into $[raf (A, B, 2^{X+1}S)]^{1+\epsilon}$. After that, multiply $[raf (A, B, 2^{X+1}S)]^{1+\epsilon}$ by $2^XS_1^{t-1} \sim S_n^{m-1}/A_{raf}B_{raf}$, then it has $2^{X+1}S \le 2^XS_1^{t-1} \sim S_n^{m-1}/A_{raf}B_{raf}$ $[raf (A, B, 2^{X+1}S)]^{1+\epsilon}$.

Let
$$C_{\epsilon} = 2^{X} S_{1}^{t-1} \sim S_{n}^{m-1} / A_{raf} B_{raf}$$
, we get $2^{X+1} S \leq C_{\epsilon} [raf(A, B, 2^{X+1} S)]^{1+\epsilon}$.

Manifestly when R=0, it has $\varepsilon=0$, and $2^{X+1}S=C_{\varepsilon}[raf(A,B,2^{X+1}S)]^{1+\varepsilon}$.

(4). For inequality $C \ge \operatorname{raf}(A, 2^Y V, C)$, C divided by $\operatorname{raf}(A, 2^Y V, C)$ is equal to $C_1^{j-1} \sim C_e^{f-1}/2A_{raf}V_{raf}$ as a false fraction, where $C_1 \sim C_e$ express all distinct prime factors of C; $j-1 \sim f-1$ are respectively exponents of prime factors $C_1 \sim C_e$ orderly; A_{raf} expresses the product of all distinct prime factors of A; and A_{raf} expresses the product of all distinct prime factors of A.

Evidently $C_1^{j-1} \sim C_e^{f-1}/2A_gV_q$ as the false fraction is greater than 1.

Then, even number raf $(A, 2^YV, C)$ added to a smaller non-negative real number such as $R \ge 0$ to turn the even number itself into $[raf (A, 2^YV, C)]^{1+\epsilon}$.

After that, multiply [raf (A, $2^{Y}V$, C)] ^{1+ ϵ} by $C_1^{j-1} \sim C_e^{f-1}/2A_{raf}V_{raf}$, then it has $C \leq C_1^{j-1} \sim C_e^{f-1}/2A_{raf}V_{raf}$ [raf (A, $2^{Y}V$, C)] ^{1+ ϵ}.

Let $C_{\epsilon} = C_1^{j-1} \sim C_e^{f-1}/2A_{raf}V_{raf}$, we get $C \leq C_{\epsilon} [raf(A, 2^{Y}V, C)]^{1+\epsilon}$.

Manifestly when R=0, it has $\epsilon=0$, and $C=C_{\epsilon}[raf(A,2^{Y}V,C)]^{1+\epsilon}$.

We have concluded $C_{\epsilon}=2^{X}S_{1}^{t-1}\sim S_{n}^{m-1}/A_{raf}B_{raf}$ and $C_{\epsilon}=C_{1}^{j-1}\sim C_{e}^{f-1}/2A_{raf}V_{raf}$ in preceding proofs, evidently each and every C_{ϵ} is a constant because it consists of known numbers.

Besides, for a smaller non-negative real number $R \ge 0$, actually, it is merely comparatively speaking, if raf (A, B, $2^{X+1}S$) or raf (A, $2^{Y}V$, C) is very great a positive even number such as $2\times11\times13\times99991\times99989\times99961\times99929\times99923$ $\times87641\times72223\times8117\times12347$, then even if $R=2015.11223\sqrt{2}$, it is also a

smaller non-negative real number. Since raf $(A, B, 2^{X+1}S)$ or raf $(A, 2^{Y}V, C)$ may be infinity, so R may tend to infinity.

Taken one with another, we have proven that there are both infinitely more $2^{X+1}S \leq C_{\epsilon} \left[\text{raf } (A,\,B,\,2^{X+1}S) \right]^{1+\epsilon} \text{ when } X \text{ is each and every natural number,}$ and infinitely more $C \leq C_{\epsilon} \left[\text{raf } (A,\,2^{Y}V,\,C) \right]^{1+\epsilon} \text{ when } C \text{ is each and every positive odd number} \geq 1.$

But then, when X is a concrete natural number, even if the concrete natural number tends to infinity, there also are merely finitely more $2^{X+1}S \le C_{\epsilon}$ [raf (A, B, $2^{X+1}S$)]^{1+\epsilon} in which case A+B= $2^{X+1}S$.

When C is a concrete positive odd number, even if the concrete positive odd number tends to infinity, there also are merely finitely more $C \le C_\epsilon$ [raf (A, $2^YV, C)$]^{1+ ϵ} in which case A+2 YV =C.

To sum up, the proof is completed by now. Consequently the ABC conjecture does hold water.