
          Tetrahedra and Physics
Frank Dodd (Tony) Smith, Jr. discussion with Klee Irwin

1 - Start with a regular Tetrahedron in flat 3-dim space  

  Tetrahedron Josephson Junction Quantum Computer Qubit 

2 - Add 4 + 12 Tetrahedra sharing faces to get 17 Tetrahedra 

  The 4 fit face-to-face exactly in 3-dim, 
but

the 12 do not fit exactly in 3-dim, 
However, all 17 do fit exactly in curved 3-dim space which is naturally embedded 
in 4-dim space described by Quaternions.

3 - Add 4 half-Icosahedra (10 Tetrahedra each) to form a 40-Tetrahedron Outer 
Shell around the 17 Tetrahedra and so form a 57G 

Like the 12 of 17, the Outer 40 do not exactly fit together in flat 3-dim space.  

If you could force all 57 Tetrahedra to fit together exactly, you would be 
curving 3-dim space by a Dark Energy Conformal Transformation. 
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4 - The 57G can be combined with a Triangle of a Pearce D-Network

to form a 300-tetrahedron configuration 57G-Pearce

5 - Doubling the 300-cell 57G-Pearce produces a {3,3,5} 600-cell polytope 

of 600 Tetrahedra and 120 vertices in 4-dim

6 - Adding a second {3,3,5} 600-cell displaced by a Golden Ratio screw twist 
uses four 57G-Pearce to produce a 240 Polytope with 240 vertices in 4-dim
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7 - Extend 4-dim space to 4+4 = 8-dim space by considering the Golden Ratio 
algebraic part of 4-dim space as 4 independent dimensions, thus transforming the 
4-dim 240 Polytope into the 240-vertex 8-dim Gosset Polytope 

 

that represents the Root Vectors of the E8 Lie Algebra and the first shell of an 8-
dim E8 Lattice

8 - The 240 Root Vectors of 248-dimensional E8 have structure inherited from the 
real Clifford Algebra Cl(16) = Cl(8) x Cl(8)   

which structure allows construction of a E8 Physics Lagrangian from which  
realistic values of particle masses, force strengths, etc., can be calculated. 
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Tetrahedra can be used as Josephson Junctions. 

A very useful reference is the 2003 dissertation of Christopher Bell at St. John’s 
College Cambridge entitled “Nanoscale Josephson devices”, on the web at 
http://www.dspace.cam.ac.uk/bitstream/1810/34607/1/chris_bell_thesis.pdf

Feigelman, Ioffe, Geshkenbein, Dayal, and Blatter in cond-mat/0407663 say: 
“... Superconducting tetrahedral quantum bits ... 

... The novel tetrahedral qubit design we propose below operates in the phase-
dominated regime and exhibits two remarkable physical properties: 
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first, its non-Abelian symmetry group (the tetrahedral group Td) leads to the 
natural appearance of degenerate states and appropriate tuning of parameters 
provides us with a doubly degenerate groundstate. Our tetrahedral qubit then 
emulates a spin-1/2 system in a vanishing magnetic field, the ideal starting point 
for the construction of a qubit. 
Manipulation of the tetrahedral qubit through external bias signals translates into 
application of magnetic fields on the spin;
the application of the bias to different elements of the tetrahedral qubit corresponds 
to rotated operations in spin space. 
Furthermore, geometric quantum computation via Berry phases ... might be 
implemented through adiabatic change of external variables. 
Going one step further, one may hope to make use of this type of systems in the 
future physical realization of non-Abelian anyons, thereby aiming at a new 
generation of topological devices ... which keep their protection even during
operation ... 

The second property we wish to exploit is geometric frustration: 
In our tetrahedral qubit ... it appears in an extreme way by rendering the classical
minimal states continuously degenerate along a line in parameter space. Semi-
classical states then appear only through a fluctuation-induced potential, 
reminiscent of the Casimir effect ... and the concept of inducing
‘order from disorder’ ...
The quantum-tunneling between these semi-classical states defines the operational
energy scale of the qubit, which turns out to be unusually large due to the weakness 
of the fluctuation-induced potential. Hence the geometric frustration present in our
tetrahedral qubit provides a natural boost for the quantum fluctuations without the 
stringent requirements on the smallness of the junction capacitances, thus avoiding
the disadvantages of both the charge- and the phase- device:
The larger junctions reduce the demands on the fabrication process and the 
susceptibility to charge noise and mesoscopic effects, while the large operational 
energy scale due to the soft fluctuation-induced potential reduces the effects of flux 
noise. Both types of electromagnetic noise, charge- and flux noise, appear only in
second order ...

in order to benefit from a protected degenerate ground state doublet, the qubit 
design requires a certain minimal complexity; it seems to us that the tetrahedron 
exhibits the minimal symmetry requirements necessary for this type of protection
and thus the minimal complexity necessary for its implementation. ...”.
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Construction of 57G in 3-dim space

Eric A. Lord, Alan L. Mackay, and S. Ranganathan in their book “New Geometries 
for New Materials” (Cambridge 2006) said: 
“... The gamma-Brass cluster ... starts from a single tetrahedron 

[  

                                                         ] 

Place four spheres in contact. 
Then place a sphere over each face of the tetrahedral cluster. 
The centres and bonds then form a stella quadrangula 

built from five regular tetrahedra ...[ a total of 1+4 = 5 tetrahedra ]... 

Six more spheres [ vertices ] placed over the edges of the original tetrahedron form 
an octagonal shell. In terms of the network of centres and bonds we now have 
added 12 [ = 2x6 ] more tetrahedra ... 
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There are now five tetrahedra around each edge of the original tetrahedron. ... 

...[ we now have 1+4+12 = 17 tetrahedra ]... 

[ The 12 newly added tetrahedra ]... are not quite regular ...[ i.e., 
nonzero Fuller unzipping angles appear as described by Thomas Banchoff 
in his book “Beyond the Third Dimension” (Scientific American Library 1990) 
where he said: 
“... in three-space .... we can fit five tetrahedra around an edge ...

[ image from Conway and Torquato PNAS 103 (2006) 10612-10617 

] 
... with a ... small amount of room to spare, 
which allows folding into 4-space ...[ where the fit can be made exact ]...”. 
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Note that all the subsequently added tetrahedra of layers and structures further out 
from the center are also “not quite regular”, or, in other words, leave gaps among 
tetrahedra that are related to the Fuller unzipping angle. 
The irregularity, or Fuller unzipping angle, can be visualized as the amount of 
curvature in a collection of tetrahedra by which it deviates from the flatness 
of 3-dim space described by the 3-dim Diamond Lattice. 

The irregularity goes away in curved 3-dim space, 
which, if it is to be realized in a flat space, must be realized in 4-dim space
by adding a 4th dimension to 3-dim space. 
However, for now, we will continue with construction of the 57G and 
its Array in 3-dim space, 
and leave additional dimensions to later sections of this paper. ]

... 12 more spheres [ vertices in addition to the 1+4+12 = 17 ] complete the rings of 
five tetrahedra around the edges of the four secondary tetrahedra ...[ They add 2x12 
= 24 more tetrahedra for a total of 1+4+12+24 = 41 tetrahedra ]... 

... Without increasing the number of vertices [ which is now 26 ], 
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inserting 16 more tetrahedra reveals the structure to be 
four interpenetrating icosahedra sharing a common tetrahedral building block ...

...[ and gives a total of 41 + 16 = 57 tetrahedra ]... and 26 vertices ... the model of 
the 26-atom gamma-brass cluster as four interpenetrating icosahedral clusters ...". 

Note that each of the 4 interpenetrating icosahedra has: 

10 tetrahedra to itself (each belongs to only 1)
6 tetrahedral shared with one other (each belongs to 2)
3 tetrahedra shared with two others (each belongs to 3) 
1 tetrahedron shared with all three others (belongs to 4)

so 

the total number of tetrahedra in a 57G 
is 4x10 + 4x6/2 + 4x3/3 + 4x1/4 = 40+12+4+1 = 57. 
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Extension of a 57G in 3-dim space

To extend a 57-tetrahedron 26-vertex 57G, 
first construct some auxiliary structures, 
the first of which is an 81-tetrahedron 38-vertex Pearce Cluster: 

Begin with a 57-tetrahedron 26-vertex 57G 

Then add 40 more tetrahedra and 12 more vertices to get 

97 tetrahedra with 38 vertices. 

Then remove the 4x4 = 16 tetrahedra of the type of those colored green 
(note that this does not remove any vertices) 
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to get the 81-tetrahedron 38-vertex Pearce Cluster 

which has the configuration of four icosahedra in face contact with a central 
tetrahedron and with each other. 

Then note that 4 Pearce Clusters can be put in face contact with each other to form 
the basis of what Lord and Ranganathan in Eur. Phys. J. D 15 (2001) 335-343 
describe as “... a D [ Diamond ] network open packing in which a regular 
tetrahedron is centered at each node ...

... and is linked to neighboring nodes by oblate icosahedra. ...”. 

Then, consider a Pearce Triangle formed by 3 Pearce Clusters 
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Each triangular face is made up of 3 Pearce 81G clusters in face contact,
for a total of 3x81 = 243 tetrahedra.

Consider a triangular face. You can insert one 57G into its center hole. 

the Pearce Triangle face has 3x81 = 243 tetrahedra and 3x38 - 3x3 = 105 vertices.
Since the 57G TetraJJ Nucleus has 57 tetrahedra and 26 vertices,
and since fitting it into the center of the Pearce Triangle effectively cancels 9
vertices in forming the combined 57G + Triangle configuration,
the 57G + Triangle has 243 + 57 = 300 tetrahedra and 105 + 26 - 9 = 122 vertices.



Now consider 4 copies of 57G + Triangular Face 

Taken together the 4 copies of 57G represent all 4x4 = 16 first-generation fermions, 
both particles and antiparticles, so that when you put them all together by superposition 
of Pearce 81G to make

you have a 3-dim diamond network basic unit ( DNBU ) containing
4x57 + 4x3x81 = 228 + 972 = 1200 tetrahedra
and 
a 3-dim diamond network that is made up of tetrahedral-shaped DNBU
connected to each other by sharing corner icosahedra.



Each DNBU of the 3-dim diamond network contains

4 real 57G which together represent all 16 first-generation fermion particles/antiparticles 
and

4 virtual quantum superpositions, each of 3 virtual 81G
so that
the 3-dim diamond network is a superposition of 3 virtual diamond networks,
corresponding to the 3 Imaginary Quaternions {i,j,k}

which is analogous to the Cl(16)-E8 physics 8-dim lattice that is a superposition of 8 E8 lattices including
the 7 independent Integral Domains corresponding to the 7 Imaginary Octonions {i,j,k,E,I,J,K}.

The 4x57 + 4x3x81 = 1200 tetrahedra and the icosahedra formed by them
are not exactly regular in flat 3-dim space 

but
they can be made regular by going into 4-dim (equivalent to curving 3-dim)

where they form two 600-cells (circles 1,3,4,5 and 2,6,7,8 in the image below) 
and 

the 3-dim diamond packing becomes a 4-dim hyperdiamond lattice.

Using Golden Ratio to get 600-cells of two sizes 
and forming a 4+4 = 8-dim space

produces E8 lattices with 240-vertex polytopes (projected to 8 circles of 30 in the image below) 
whose vertices are the 120+120 vertices of the two 600-cells.



Two {3,3,5} 600-cell sets of 20 vertices form a 240 Polytope in 4 dimensions 
and if 4-dimensional space is extended to 8-dimensional space by considering 
Golden Ratio Irrational Algebraic Coordinates to be independent, 
the 240 vertices of the 240 Polytope form the Root Vectors of the E8 Lie Algebra. 
Jean-Francois Sadoc and Remy Mosseri in their book 
“Geometric Frustration” (Cambridge 2006) said: 
“... The polytope 240 ...[ is ]... not a regular polytope in the Coxeter sense ... but ... 
an ordered structure on a hypersphere ... S3 ...
the diamond crystalline structure can be obtained by starting from an f.c.c. 
structure and adding a second replica of the f.c.c. structure, translated by 
(1/4,1/4,1/4,1/4) with respect to the first one. 
Similarly, 
polytope 240 is generated by adding two replicas of the {3,3,5}, displaced along a 
screw axis of S3. ... 
Each vertex of the first {3,3,5} replica is surrounded by four vertices from the 
second replica. ... The local configuration is perfectly tetrahedral ... 
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which shows orthogonal mapping of subsets of increasing size of the polytope. 
... polytope 240 is locally denser than the diamond structure. This is exactly the 
corollary of what was said ... for the {3,3,5} compared to the f.c.c. dense 
structure ...
The direct symmetry group of ... polytope 240 ... is ... G240 = Y’ x O’ / Z2 
where ... Y’ ... is the binary icosahedral group ...[ and ]... 
O’ ... is the binary ... octahedral group ... 
Note ... The direct symmetry group of the {3,3,5} polytope is a sub-group of SO(4) 
which reads G’ = Y’ x Y’ / Z2 ... Since the order of Y’  is 120, the quotient by  Z2 
implies that the order of G’ is 7200. ... The total symmetry group G also includes 
indirect orthogonal transformations, analagous to reflections ... This adds 7200 new 
elements and gives the full group G of order 14400. ... 
O’ is not a subgroup of Y’ ... polytope 240, while sharing some of the {3,3,5} 
symmetries, also has new symmetries, in particular a 40-fold screw axis ... 
Another way to describe the 240 ... is to ... follow a building rule similar to that 
which leads to the diamond structure starting from the f.c.c. structure: 
a new vertex is placed at the centre of some tetrahedral cells of the compact 
structure. In the f.c.c. case, one tetrahedron over two is centered, while in the 
present case, one tetrahedron over five will be centered, which has the 
consequence of breaking the five-fold symmetry of the polytope {3,3,5}, 
only a tenfold screw axis being preserved. 
One gets a regular structure with 240 vertices, called polytope 240, which is chiral; 
it cannot be superimposed on its mirror image. 
The polytope 240 with opposite chirality has ... O’ x Y’ / Z2 as its symmetry 
group.  ...”. 

If 4-dimensional space is extended to 8-dimensional space by considering 
Golden Ratio Irrational Algebraic Coordinates to be independent, 
the 240 vertices of the 240 Polytope form 

the 240 Root Vectors of the E8 Lie Algebra. 
As to chirality, note that the Lie Algebra structure 

248-dim E8 = 120-dim adjoint of D8 + 128-dim half-spinor of D8 
does not include the other mirror image half-spinor of D8. 
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How does the 57G structure represent Physics ? 

The 26 vertices and 57 tetrahedra (image from Lord et al does not show all interior edges) of 
a 57G are:  
4 yellow vertices of the central tetrahedron 
4 magenta vertices that add 4 tetrahedra in face contact with the central tetrahedron
4x3 = 12 cyan vertices adding 4 tetrahedra in vertex contact with the central tetrahedron
The 4 cyan-vertex tetrahedra represent a fundamental set: lepton + 3 RGB quarks

6 white vertices that each add 2 tetrahedra in edge contact with the central tetrahedron 
and each add 6 tetrahedra in vertex contact with the central tetrahedron 
for 6x8 = 48 new tetrahedra 

The 48 new white-vertex tetrahedra represent Gauge Bosons



Consider the orientation of the 57G as it is inserted into the Pearce triangle and look at 
the representation of the neutrino + RGB down quarks 

and of the electron + RGB up quarks 

Their antiparticles are similarly represented, 



so four 57G account for all 16 first-generation fermion particles and antiparticles:  



What about Gauge Bosons and Ghosts ? 

The 6 white vertices and their 6x8 = 48 new tetrahedra represent Gauge Bosons

To see how they are configured look more closely at the top white vertex

In the middle there are 2 black tetrahedra sharing a white vertex - central edge face  
and containing 2 magenta vertices

Then look at the front side of the middle where you see  
2 orange tetrahedra with a white vertex, 
connecting yellow and magenta vertices and a cyan vertex of a front cyan tetrahedron
and 
1 purple tetrahedron with a white vertex, between the 2 orange tetrahedra, 
connecting a yellow vertex with 2 cyan vertices of the front cyan tetrahedron

The back side of the middle also has 2+1 = 3 tetrahedra so 
there are 2 + 2+1 + 2+1 = 8 new tetrahedra associated with each of the 6 white vertices. 



Now look at the basic structure of 57G representation of a lepton and 3 RGB quarks: 

The lepton tetrahedron (black) is surrounded by 3 white vertices (labelled 1,2,3)
each of which is surrounded by 8 tetrahedra as described above so 
the lepton set of 3 white vertices corresponds to 3x8 = 24 tetrahedra 
which represent the 24 root vectors of the E8 subalgebra 28-dim D4 
with 16 for Gauge Bosons of Gravity + Dark Energy and 12 for Standard Model Ghosts. 
Upon insertion of 57G the (1,2,3) stuff is in close contact with the Pearce triangle hole. 

The quark tetrahedron (green-blue-red) are surrounded by 3 white vertices (labelled 4,5,6)
each of which is surrounded by 8 tetrahedra as described above so 
the quark set of 3 white vertices corresponds to 3x8 = 24 tetrahedra 
which represent the 24 root vectors of the E8 subalgebra 28-dim D4 
with 12 for Standard Model Gauge Bosons and 16 for Gravity + Dark Energy Ghosts. 
The (4,5,6) stuff is interleaved with the quarks with Red, Green, Blue SU(3) color. 

The central yellow-vertex tetrahedron of each 57G 
and the 4 magenta-vertex tetrahedra in face contact with it act as 

an organizing core for interactions among the 4+48 fermion/gauge boson tetrahedra. 
Therefore each Diamond Network Basic Unit containing four 57G 

not only accounts for all 16 first-generation Fermion Particles and AntiParticles 
but also accounts for the Standard Model and Gravity + Dark Energy 

of the Cl(16)-E8 Physics model. 



Now that we have Fermion Particles and AntiParticles 
and Gauge Bosons + Ghosts for the Standard Model and Gravity+ Dark Energy

What About Spacetime ?  

A path in the 3-dim Pearce-cluster Diamond network 

is a chain of mirror-image pairs of face-sharing Icosahedra 

The core of each Icosahedron in the pair is a pair of vertex-sharing Tetrahedra.



If you Jitterbug transform each Icosahedron of the pair into a Cuboctahedron you get 
a mirror-image pair of triangle-face-sharing Cuboctahedra

  
The core of of the Cuboctahedra-pair can be considered to be a 3-space axis 
running through triangle-faces. 
If you consider Buckminster Fuller Vector Equilibrium (cuboctahedron) geometry 

you see that in the Left Cuboctahedron are 3 other axes through triangle-faces that, 
although they plus the original axis are not independent in 3-dim space, 



they make 4 nice independent axes in a 4-dim space in which the cuboctahedron 
is the central figure of a 4-dim 24-cell

( the image is a 3-dim stereo pair with 4th dimension represented 
by colors red -> green -> blue )

Therefore, 
the Left Cuboctahedron of the Jitterbug-transformed 3-dim Diamond network 
goes from 3-dim space to 4-dim space that can represent M4 Physical Spacetime 
and 
if you consider the Right Cuboctahedron of the mirror-pair to also have similar 
Buckminster Fuller Vector Equilibrium Geometry 
you get another 4-dim space that can represent CP2 Internal Symmetry Space 
so that 

Tetrahedral 57G Physics acts in (4+4)-dim M4xCP2 Kaluza-Klein Spacetime
with 8 components of position and 8 components of momentum 

corresponding to D8 / D4xD4 = 64 = 8x8 of Cl(16)-E8 Physics
and 

Standard Model and Gravity + Dark Energy Gauge Bosons and Ghosts 
corresponding to D4xD4 of Cl(16)-E8 Physics

and 
Fundamental First-Generation Fermion 8 Particles and 8 AntiParticles 

with 8-component structure from M4xCP2 Kaluza-Klein
corresponding to E8 / D8 = 128 = 8x8 + 8x8 of ClI16)-E8 Physics

Quantum Physics comes from Sum-Over-Histories Path Integral 
corresponding to the Completion of Union of Tensor Products of Cl(16) AQFT 

of Cl(16)-E8 Physics



The 57G - 81G Pearce - 600-cell - 240 E8 construction with tetrahedra 
requires that the initial flat 3-dim space be curved

What happens if you require the 3-dim space to remain flat ? 

If you construct with (exactly regular) tetrahedra in 3-dim space that remains flat 
that is like making a tetrahedral dense packing of flat 3-dim space. 
The densest such packing now known is described by Chen, Engel, and Glotzer 
in arXiv 1001.0586 :
“... We present the densest known packing of regular tetrahedra 
with density Phi = 4000 / 4671 = 0.856347 ...

... The dimer structures are remarkable in the relative simplicity of the 4-tetrahedron unit 
cell as compared to the 82-tetrahedron unit cell of the quasicrystal approximant, 
whose density is only slightly less than that of the densest dimer packing. 
The dodecagonal quasicrystal is the only ordered phase observed to form from random 
initial configurations of large collections of tetrahedra at moderate densities. 
It is thus interesting to note that for some certain values of N, when the small systems 
do not form the dimer lattice packing, they instead prefer clusters (motifs) present in the 
quasicrystal and its approximant, predominantly pentagonal dipyramids. This suggests 
that the two types of packings - the dimer crystal and the quasicrystal/approximant -
may compete, raising interesting questions about 
the relative stability of the two very different structures at finite pressure. ...”.



If you regard a Tetrahedron as a pair of Binary Dipoles

then the Chen - Engel - Glotzer high ( 0.85+) density configurations have 
the same 8-periodicity property as the Real Clifford Algebras:

which is consistent with regarding the 4 vertices of a Tetrahedron as the 4 elements of 
the Cl(2) Real Clifford Algebra, isomorphic to the Quaternions, 
with graded strucure 1+2+1, and so 4 tetrahedra as Cl(4x2) = Cl(8).

The Large N Limit of 4N Tetra Clusters =
= Completion of Union of All 4N Tetra Clusters would correspond to 

the same generalized Hyperfinite II1 von Neumann factor of Cl(16)-E8 Physics 
that gives a natural Algebraic Quantum Field Theory structure.



What about the QuasiCrystal / approximant in flat 3-dim space ? 

Haji-Akbari1, Engel, Keys, Zheng, Petschek, Palffy-Muhoray, and Glotzer in
arXiv 1012.5138 say: “... a fluid of hard tetrahedra undergoes a first-order phase 
transition to a dodecagonal quasicrystal, 
which can be compressed to a packing fraction of φ = 0.8324.
By compressing a crystalline approximant of the quasicrystal, 
the highest packing fraction we obtain is φ = 0.8503. 
...

To obtain dense packings of hard regular tetrahedra, we carry out Monte-Carlo
(MC) simulations ... of a small system with 512 tetrahedra and a large system with
4096 tetrahedra. ... The large system undergoes a first order transition on
compression of the fluid phase and forms a quasicrystal. ...

... the quasicrystal consists of a periodic stack of corrugated layers ... 
Recurring motifs are rings of twelve tetrahedra that are stacked periodically to
form “logs”...

... Perfect quasicrystals are aperiodic while extending to infinity; they therefore cannot 
be realized in experiments or simulations, which are, by necessity, finite. ...
Quasicrystal approximants are periodic crystals with local tiling structure
identical to that in the quasicrystal. Since they are closely related, and they are
often observed in experiments, we consider them as candidates for dense packings.



The dodecagonal approximant with the smallest unit cell (space group ) has 82
tetrahedra ...

... At each vertex we see the logs of twelve-member rings (shown in red) capped by 
single PDs (green). The logs pack well into squares and triangles with additional,
intermediary tetrahedra (blue). The vertex configuration of the tiling is ...

 ...”. 
The QuasiCrystal approximant is not as dense as the 4N Tetra Cluster packing, 
so I do not regard it as being as useful for fundamental physics as the 4N Tetra packing. 

The true QuasiCrystal is less dense than the QuasiCrystal approximant, 
so I regard it as being less useful for fundamental physics. However, 
as Sadoc and Mosseri say in their book “Geometrical Frustration” (Cambridge 2005) 
“... quasiperiodic structures [can be] derived from the eight-dimensional lattice E8. ...
... using the cut and project method, it is possible to generate 
a four-dimensional quasicrystal having the symmetry of the [600-cell] polytope {3,3,5} ... 
a shell-by-shell analysis ...

... recalls in some respects ... the Fibonacci chain ... 



 ...”.



The relationship between QuasiCrystals and QuasiCrystal approximants is 
discussed by An Pang Tsai in an IOP review “Icosahedral clusters, icosahedral order 
and stability of quasicrystals - a view of metallurgy”: 
“... we overview the stability of quasicrystals ... in relation to phason disorder ... 
the phonon variable leads to long wavelength and low energy distortion of crystals, 
the phason variable in quasicrystals leads to a ... type of distortion ... 
Let a two-dimensional lattice points sit at the corners of squares in a grid. 
... a strip with a slope of an irrational number ... golden mean ... is ... a Fibonacci 
sequence and is exactly a one-dimensional quasicrystal ... 
... [if] the slope of the strip is ... a rational number ...[it]... is a periodic sequence ...
[and]... is called an approximant ... 
in the approximant where the sequence changes by a flip ... This flip is called phason 
flip ... a flipping of tiles in two-dimensions or three-dimensions ... 

...	
  ‘phason	
  strain’	
  ...	
  is	
  the	
  characteris0c	
  disorder	
  for	
  quasicrystals	
  but	
  does	
  not	
  exist	
  in	
  crystals	
  ...	
  
a	
  fully	
  annealed	
  stable	
  iQc	
  [icosahedral	
  quasicrystal]...	
  is	
  almost	
  free	
  of	
  phason	
  disorder	
  ...”.




