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Introduction: The ABC conjecture was proposed by Joseph Oesterle in 

1988 and David Masser in 1985. It states that for any infinitesimal 

quantity ε >0, there exists a constant Cε >0, such that for any three 

relatively prime integers a, b and c satisfying a + b = c, the inequality 

holds water, where p/abc indicates that the 

product is over prime p which divide the product abc. This is an 

unsolved problem hitherto although somebody published papers on the 

internet claiming proved it.  

 

Abstract  

We first get rid of three kinds from A+B=C according to their respective 

odevity and gcf (A, B, C) =1. After that, expound relations between C and 

raf (ABC) by the symmetric law of odd numbers. Finally we have proven 

C≤Cε [raf (ABC)] 1+ ε in which case A+B=C, where gcf (A, B, C) =1.  
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Values of A, B and C in set A+B=C  

For positive integers A, B and C, let raf (A, B, C) denotes the product of all 

distinct prime factors of A, B and C, e.g. if A=112×13, B=33 and C=2×13×61, 

then raf (A, B, C) =2×3×11×13×61 =52338. In addition, let gcf (A, B, C) 

denotes greatest common factor of A, B and C.  

The ABC conjecture states that given any real number ε > 0, there exists a 

constant Cε >0 such that for every triple of positive integers A, B and C 

satisfying A+B=C, and gcf (A, B, C) =1, then we have C≤Cε [raf (ABC)] 1+ ε.  

Let us first get rid of three kinds from A+B=C according to their respective 

odevity and gcf (A, B, C) =1, as listed below.     

1. If A, B and C all are positive odd numbers, then A+B is an even number, 

yet C is an odd number, evidently there is only A+B≠C
 according to an odd 

number ≠ an even number.   

2. If any two in A, B and C are positive even numbers, and another is a 

positive odd number, then when A+B is an even number, C is an odd number, 

yet when A+B is an odd number, C is an even number, so there is only 

A+B≠C
 according to an odd number ≠ an even number.  

3. If A, B and C all are positive even numbers, then they have at least a 

common prime factor 2, manifestly this and the given prerequisite of gcf (A, 

B, C) =1 are inconsistent, so A, B and C can not be three positive even 

numbers together.    

Therefore we can only continue to have a kind of A+B=C, namely A, B and 
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C are two positive odd numbers and one positive even number. So let 

following two equalities add together to replace A+B=C in which case A, B 

and C are two positive odd numbers and one positive even number.  

1. A+B=2XS, where A, B and S are three relatively prime positive odd 

numbers, and X is a positive integer.  

2. A+2YV=C, where A, V and C are three relatively prime positive odd 

numbers, and Y is a positive integer.   

Consequently the proof for ABC conjecture, by now, it is exactly to prove 

the existence of following two inequalities.   

(1). 2XS ≤Cε [raf (A, B, 2 XS)] 1+ ε in which case A+B=2XS, where A, B and S are 

three relatively prime positive odd numbers, and X is a positive integer.    

(2). C ≤Cε [raf (A, 2YV, C)] 1+ ε in which case A+2YV =C, where A, V and C are 

three relatively prime positive odd numbers, and Y is a positive integer.    

Circumstances Relating to the Proof    

Let us divide all positive odd numbers into two kinds of A and B, namely the 

form of A is 1+4n, and the form of B is 3+4n, where n≥0. From small to 

large odd numbers of A and of B are arranged as follows respectively.  

A: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69…1+4n …    

B: 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63, 67…3+4n …   

We list also from small to great natural numbers, well then you would 

discover that Permutations of seriate natural numbers show up a certain law.  

1, 21, 3, 22, 5, 21×3, 7, 23, 9, 21×5, 11, 22×3, 13, 21×7, 15, 24, 17, 21×9, 19, 
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22×5, 21, 21×11, 23, 23×3, 25, 21×13, 27, 22×7, 29, 21×15, 31, 25, 33, 21×17, 

35, 22×9, 37, 21×19, 39, 23×5, 41, 21×21, 43, 22×11, 45, 21×23, 47, 24×3, 49, 

21×25, 51, 22×13, 53, 21×27, 55, 23×7, 57, 21×29, 59, 22×15, 61, 21×31, 63, 

26, 65, 21×33, 67, 22×17, 69, 21×35, 71, 23×9, 73, 21×37, 75, 22×19, 77, 

21×39, 79, 24×5, 81, 21×41, 83, 22×21, 85, 21×43, 87, 23×11, 89, 21×45, 91, 

22×23, 93, 21×47, 95, 25×3, 97, 21×49, 99, 22×25, 101, 21×51, 103 …→   

Evidently even numbers contain prime factor 2, yet others are odd numbers 

in the sequence of natural numbers above-listed.  

After each of odd numbers in the sequence of natural numbers is replaced by 

self-belongingness, the sequence of natural numbers is changed into the 

following forms.  

A, 21, B, 22, A, 21×3, B, 23, A, 21×5, B, 22×3, A, 21×7, B, 24, A, 21×9, B, 22×5 

A, 21×11, B, 23×3, A, 21×13, B, 22×7, A, 21×15, B, 25, A, 21×17, B, 22×9, A 

21×19, B, 23×5, A, 21×21, B, 22×11, A, 21×23, B, 24×3, A, 21×25, B, 22×13, A 

21×27, B, 23×7, A, 21×29, B, 22×15, A, 21×31, B, 26, A, 21×33, B, 22×17, A 

21×35, B, 23×9, A, 21×37, B, 22×19, A, 21×39, B, 24×5, A, 21×41, B, 22×21, A 

21×43, B, 23×11, A, 21×45, B, 22×23, A, 21×47, B, 25×3, A, 21×49, B, 22×25, 

A, 21×51, B …→   

Thus it can be seen, leave from any given even number >2, there are finitely 

many cycles of (B, A) leftwards until (B=3, A=1), and there are infinitely 

many cycles of (A, B) rightwards.   

If we regard an even number on the sequence of natural numbers as a 
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symmetric center of odd numbers, then two odd numbers of every bilateral 

symmetry are A and B always, and a sum of bilateral symmetric A and B is 

surely the double of the even number. For example, odd numbers 23(B) and 

25(A), 21(A) and 27(B), 19(B) and 29(A) etc are bilateral symmetries 

whereby even number 23×3 to act as the center of the symmetry, and there 

are 23+25=24×3, 21+27=24×3, 19+29=24×3 etc. For another example, odd 

numbers 49(A) and 51(B), 47(B) and 53(A), 45(A) and 55(B) etc are 

bilateral symmetries whereby even number 2×25 to act as the center of the 

symmetry, and there are 49+51=22×25, 21+27=22×25, 19+29=22×25 etc. 

Again give an example, 63(B) and 65(A), 61(A) and 67(B), 59(B) and 69(A) 

etc are bilateral symmetries whereby even number 26 to act as the center of 

the symmetry, and there are 63+65=27, 61+67=27, 59+69=27 etc.   

Overall, if A and B are two bilateral symmetric odd numbers whereby 2XS to 

act as the center of the symmetry, then there is A+B=2X+1S.   

The number of A plus B on the left of 2XS is exactly the number of pairs of 

bilateral symmetric A and B. If we regard any finite-great even number 2XS 

as a symmetric center, then there are merely finitely more pairs of bilateral 

symmetric A and B, namely the number of pairs of A and B which express 

2X+1S as the sum is finite. That is to say, the number of pairs of bilateral 

symmetric A and B for symmetric center 2XS is 2X-1S, where S≥1.   

On the supposition that A and B are bilateral symmetric odd numbers 

whereby 2XS to act as the center of the symmetry, then A+B=2X+1S. By now, 
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let A plus 2X+1S makes A+2X+1S, then B and A+2X+1S are still bilateral 

symmetry whereby 2X+1S to act as the center of the symmetry, and 

B+(A+2X+1S) =(A+B)+2X+1S =2X+1S+2X+1S =2X+2S.   

If substitute B for A, let B plus 2X+1S makes B+2X+1S, then A and B+2X+1S 

are too bilateral symmetry whereby 2X+1S to act as the center of the 

symmetry, and A+ (B+2X+1S) =2X+2S.  

Provided both let A plus 2X+1S makes A+2X+1S, and let B plus 2X+1S makes 

B+2X+1S, then A+2X+1S and B+2X+1S are likewise bilateral symmetry 

whereby 3×2XS to act as the center of the symmetry, and (A+2X+1S)+ 

(B+2X+1S) =3×2X+1S.  

Since there are merely A and B at two odd places of each and every bilateral 

symmetry on two sides of an even number as the center of the symmetry, 

then aforementioned B+(A+2X+1S)=2X+2S and A+(B+2X+1S)=2X+2S are 

exactly A+B=2X+2S respectively, and write (A+2X+1S)+(B+2X+1S)=3×2X+1S 

down A+B=3×2X+1S= 2X+1St, where St is an odd number ≥3.  

Do it like this, not only equalities like as A+B=2X+1S are proven to continue 

the existence, one by one, but also they are getting more and more along 

with which X is getting greater and greater, up to exist infinitely more 

equalities like as A+B=2X+1S when X expresses every natural number.   

In other words, added to a positive even number on two sides of A+B=2XS, 

then we get still such an equality like as A+B=2XS.  

Whereas no matter how great a concrete even number 2XS as the center of 
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the symmetry, there are merely finitely more pairs of A and B which express 

2X+1S as the sum.  

If X is defined as a concrete positive integer, then there are only a part of 

A+B=2XS to satisfy gcf (A, B, 2XS) =1. For example, when 2XS=18, there 

are merely 5+13=18 and 7+11=18 to satisfy gcf (A, B, 2XS) =1, yet 3+15=18 

and 9+9=18 suit not because they have common prime factor 3.    

If added to a positive odd number on two sides of A+B=2XS, then we get 

another equality like as A+2YV=C. That is to say, equalities like as 

A+2YV=C can come from A+B=2X+1S so as add or subtract a positive odd 

number on two sides of A+B=2X+1S.  

Therefore, on the one hand, equalities like as A+2YV=C are getting more and 

more along with which equalities like as A+B=2X+1S are getting more and 

more, up to infinite more equalities like as A+2YV=C exist along with which 

infinite more equalities like as A+B=2X+1S appear.  

Certainly we can likewise transform A+2YV=C into A+B=2XS so as add or 

subtract a positive odd number on the two sides of A+2YV=C.    

On the other hand, if C is only defined as a concrete positive odd number, 

then there is merely finitely more pairs of A and 2YV which express C as the 

sum. But also, there is only a part of A+2YV=C to satisfy gcf (A, 2YV, C) =1. 

For example, when C=25, there are merely 3+22=25, 7+18=25, 9+16=25, 

11+14=25and 13+12=25 to satisfy gcf (A, 2YV, C) =1, yet 5+20=25 and 

15+10=25 suit not because they have common prime factor 5.  
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After factorizations of A, B, S, V and C in A+B=2X+1S plus A+2YV=C, if 

part prime factors have greater exponents, then there are both 2X+1S ≥ raf (A, 

B, 2X+1S) in which case A+B=2X+1S satisfying gcf (A, B, 2X+1S) =1, and C ≥ 

raf (A, 2YV, C) in which case A+2YV=C satisfying gcf (A, 2YV, C) =1. For 

examples, 27 > raf (3, 53, 27) for 3+53=27; and 310 > raf (56, 25×23×59, 310) for 

56+25×23×59=310.     

On the contrary, there are both 2X+1S ≤ raf (A, B, 2X+1S) in which case 

A+B=2X+1S satisfying gcf (A, B, 2X+1S) =1, and C ≤ raf (A, 2YV, C) in which 

case A+2YV=C satisfying gcf (A, 2YV, C) =1. For examples, 22×7 < raf (13, 

3×5, 22×7) for 13+3×5=22×7; and 34 < raf (11×7, 22, 34) for 11×7+22 = 34.   

Since either A or B in A+B=2X+1S plus an even number is still an odd 

number, and 2X+1S plus the even number is still an even number, thereby we 

can use A+B=2X+1S to express every equality which plus an even number on 

two sides of A+B=2X+1S makes.  

Consequently, there are infinitely more 2X+1S ≥ raf (A, B, 2X+1S) plus 2X+1S ≤ 

raf (A, B, 2X+1S) in which case A+B=2X+1S.    

Likewise, either 2YV plus an even number is still an even number, or A plus 

an even number is still an odd number, and C plus the even number is still an 

odd number, so we can use equality A+2YV=C to express every equality 

which plus an even number on two sides of A+2YV=C makes.  

Consequently, there are infinitely more C ≥ raf (A, 2YV, C) plus C ≤ raf (A, 
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2YV, C) in which case A+2YV = C.  

But, if let 2X+1S ≥ raf (A, B, 2X+1S) and 2X+1S ≤ raf (A, B, 2X+1S) separate, 

and let C ≥ raf (A, 2YV, C) and C ≤ raf (A, 2YV, C) separate, then for 

inequalities like as each kind of them, we conclude not out whether they are 

still infinitely more.  

However, what deserve to be affirmed is that there are 2X+1S ≥ raf (A, B, 

2X+1S) and 2X+1S ≤ raf (A, B, 2X+1S) in which case A+B=2X+1S satisfying gcf 

(A, B, 2X+1S) =1, and there are C ≥ raf (A, 2YV, C) and C ≤ raf (A, 2YV, C) 

in which case A+2YV =C satisfying gcf (A, 2YV, C) =1, according to the 

preceding illustration with examples.      

Proving C ≤ Cε [raf (A, B, C)] 1+ε  
 

Hereinbefore, we have deduced that both there are 2X+1S ≤ raf (A, B, 2X+1S) 

and 2X+1S ≥ raf (A, B, 2X+1S) in which case A+B=2XS satisfying gcf (A, B, 

2X+1S) =1, and there are C ≤ raf (A, 2YV, C) and C ≥ raf (A, 2YV, C) in which 

case A+2YV =C satisfying gcf (A, 2YV, C) =1, whether each kind of them is 

infinitely more, or is finitely more.   

First let us expound a set of identical substitution as the follows. If an even 

number on the right side of each of above-mentioned four inequalities added 

to a smaller positive real number such as R>0, then the result is both 

equivalent to multiply the even number by a real number which is smaller than 

R, and equivalent to increase a tiny real number such as ε >0 to the exponent 

of the even number, i.e. from this it will form a new exponent 1+ε.   
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Actually, aforementioned three ways of doing, all are in order to increase an 

identical even number into a value and the same.   

Such being the case the aforementioned substitution between each other, then 

we set about proving aforesaid four inequalities thereinafter.  

(1). For inequality 2X+1S ≤ raf (A, B, 2X+1S), 2X+1S divided by raf (A, B, 2X+1S) 

is equal to 2XS1
t-1~Sn

m-1/ArafBraf as a true fraction, where S1~Sn expresses all 

distinct prime factors of S; t-1~m-1 are respectively exponents of prime 

factors S1~Sn orderly; Araf expresses the product of all distinct prime factors of 

A; and Braf expresses the product of all distinct prime factors of B.    

After that, even number raf (A, B, 2X+1S) added to a smaller positive real 

number such as R>0 to turn the even number itself into [raf (A, B, 2X+1S)] 1+ ε.  

Undoubtedly there is 2X+1S ≤ [raf (A, B, 2 X+1S)] 1+ ε successively.  

If multiply [raf (A, B, 2 X+1S)] 1+ ε by Cε, then we get 2X+1S ≤ Cε [raf (A, B, 

2X+1S)] 1+ ε, where Cε= Araf Braf /2
 XS1

t-1~Sn
m-1.   

(2). For inequality C ≤ raf (A, 2YV, C), C divided by raf (A, 2YV, C) is equal 

to C1
j-1~Ce

f-1/2ArafVraf as a true fraction, where C1~Ce expresses all distinct 

prime factors of C; j-1~f-1 are respectively exponents of prime factors C1~Ce 

orderly; Araf expresses the product of all distinct prime factors of A; and Vraf 

expresses the product of all distinct prime factors of V.    

After that, even number raf (A, 2YV, C) added to a smaller positive real 

number such as R>0 to turn the even number itself into [raf (A, 2YV, C)]1+ε. 

Undoubtedly there is C ≤ [raf (A, 2YV, C)] 1+ε successively.   
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If multiply [raf (A, 2YV, C)] 1+ε by Cε, then we get C ≤ Cε [raf (A, 2YV, C)] 1+ε, 

where Cε= 2ArafVraf / C1
j-1~Ce

f-1.   

(3). For inequality 2X+1S ≥ raf (A, B, 2X+1S), 2X+1S divided by raf (A, B, 2X+1S) 

is equal to 2XS1
t-1~Sn

m-1/ArafBraf as a false fraction, where S1~Sn expresses all 

distinct prime factors of S; t-1~m-1 are respectively exponents of prime 

factors S1~Sn orderly; Araf expresses the product of all distinct prime factors of 

A; and Braf expresses the product of all distinct prime factors of B.  

Evidently 2XS1
t-1~Sn

m-1/ArafBraf as the false fraction is greater than 1.   

Then, even number raf (A, B, 2X+1S) added to a smaller positive real number 

such as R>0 to turn the even number itself into [raf (A, B, 2X+1S)] 1+ε.  

After that, multiply [raf (A, B, 2X+1S)] 1+ε by 2XS1
t-1~Sn

m-1/ArafBraf, then we get 

2X+1S ≤ 2XS1
t-1~Sn

m-1/ArafBraf [raf (A, B, 2X+1S)] 1+ε.  

Let Cε= 2XS1
t-1~Sn

m-1/ArafBraf, then there is 2X+1S ≤ Cε [raf (A, B, 2X+1S)] 1+ε.   

(4). For inequality C ≥ raf (A, 2YV, C), C divided by raf (A, 2YV, C) is equal 

to C1
j-1~Ce

f-1/2ArafVraf as a false fraction, where C1~Ce expresses all distinct 

prime factors of C; j-1~f-1 are respectively exponents of prime factors C1~Ce 

orderly; Araf expresses the product of all distinct prime factors of A; and Vraf 

expresses the product of all distinct prime factors of V.   

Evidently C1
j-1~Ce

f-1/2AgVq as the false fraction is greater than 1.    

Then, even number raf (A, 2YV, C) added to a smaller positive real number 

such as R>0 to turn the even number itself into [raf (A, 2YV, C)] 1+ε.    

After that, multiply [raf (A, 2YV, C)] 1+ε by C1
j-1~Ce

f-1/2ArafVraf, then we get 
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C≤C1
j-1~Ce

f-1/2ArafVraf [raf (A, 2YV, C)] 1+ε.   

Let Cε= C1
j-1~Ce

f-1/2ArafVraf, then there is C ≤ Cε [raf (A, 2YV, C)] 1+ε.   

We have concluded Cε=ArafBraf/2
XS1

t-1~Sn
m-1, Cε=2ArafVraf/C1

j-1~Ce
f-1, Cε= 

2XS1
t-1~Sn

m-1/ArafBraf and Cε=C1
j-1~Ce

f-1/2ArafVraf in preceding proofs, evidently 

each of them is a constant because it consists of known numbers.  

Besides, for a smaller positive real number R, it is merely comparatively 

speaking, if raf (A, B, 2X+1S) or raf (A, 2YV, C) is very great a positive integer 

such as 11×13×99991×99989×99961×99929×99923×87641×72223, then even 

if R=107.13 √2, it is also a smaller positive real number. Since raf (A, B, 2X+1S) 

or raf (A, 2YV, C) may be infinity, so R may tend to infinity.   

Taken one with another, we have proven that there are both infinitely more 

2X+1S ≤ Cε [raf (A, B, 2 X+1S)] 1+ ε when X is each and every natural number, 

and infinitely more C ≤ Cε [raf (A, 2 YV, C)] 1+ ε when C is each and every 

positive odd number except for 1.     

But then, when X is a concrete natural number, even if the concrete natural 

number tends to infinity, there also are merely finitely more 2X+1S  Cε [raf 

(A, B, 2X+1S)]1+ ε in which case A+B=2X+1S.  

When C is a concrete positive odd number, even if the concrete positive odd 

number tends to infinity, there also are merely finitely more C≤Cε [raf (A, 2 YV, 

C)]1+ ε in which case A+2 YV=C.  

To sum up, the proof is completed by now. Consequently the ABC conjecture 

does hold water.   


