A Proof of the ABC Conjecture

Zhang Tianshu

Zhanjiang city, Guangdong province, China Email: chinazhangtianshu@126.com

Introduction: The ABC conjecture was proposed by Joseph Oesterle in 1988 and David Masser in 1985. It states that for any infinitesimal quantity $\varepsilon > 0$, there exists a constant $C_{\varepsilon} > 0$, such that for any three relatively prime integers a, b and c satisfying a + b = c, the inequality $\max(|a|, |b|, |c|) \le C_{\varepsilon} \prod_{p|a|b|c} p^{1+\varepsilon}$ holds water where p/abc indicates that the

holds water, where p/abc indicates that the product is over prime p which divide the product abc. This is an unsolved problem hitherto although somebody published papers on the internet claiming proved it.

Abstract

We first get rid of three kinds from A+B=C according to their respective odevity and gcf (A, B, C) =1. After that, expound relations between C and raf (ABC) by the symmetric law of odd numbers. Finally we have proven $C \leq C_{\varepsilon} [raf (ABC)]^{1+\varepsilon}$ in which case A+B=C, where gcf (A, B, C) =1.

AMS subject classification: 11A99, 11D99, 00A05.

Keywords: ABC conjecture, A+B=C, gcf (A, B, C) =1, Symmetric law of odd numbers, Sequence of natural numbers, $C \le C_{\varepsilon} [raf (ABC)]^{1+\varepsilon}$.

Values of A, B and C in set A+B=C

For positive integers A, B and C, let raf (A, B, C) denotes the product of all distinct prime factors of A, B and C, e.g. if $A=11^2\times13$, $B=3^3$ and $C=2\times13\times61$, then raf (A, B, C) = $2\times3\times11\times13\times61$ =52338. In addition, let gcf (A, B, C) denotes greatest common factor of A, B and C.

The ABC conjecture states that given any real number $\varepsilon > 0$, there exists a constant $C_{\varepsilon} > 0$ such that for every triple of positive integers A, B and C satisfying A+B=C, and gcf (A, B, C) =1, then we have C $\leq C_{\varepsilon}$ [raf (ABC)] ^{1+ ε}. Let us first get rid of three kinds from A+B=C according to their respective odevity and gcf (A, B, C) =1, as listed below.

1. If A, B and C all are positive odd numbers, then A+B is an even number, yet C is an odd number, evidently there is only $A+B\neq C$ according to an odd number \neq an even number.

2. If any two in A, B and C are positive even numbers, and another is a positive odd number, then when A+B is an even number, C is an odd number, yet when A+B is an odd number, C is an even number, so there is only $A+B\neq C$ according to an odd number \neq an even number.

3. If A, B and C all are positive even numbers, then they have at least a common prime factor 2, manifestly this and the given prerequisite of gcf (A, B, C) =1 are inconsistent, so A, B and C can not be three positive even numbers together.

Therefore we can only continue to have a kind of A+B=C, namely A, B and

C are two positive odd numbers and one positive even number. So let following two equalities add together to replace A+B=C in which case A, B and C are two positive odd numbers and one positive even number.

1. $A+B=2^{X}S$, where A, B and S are three relatively prime positive odd numbers, and X is a positive integer.

2. $A+2^{Y}V=C$, where A, V and C are three relatively prime positive odd numbers, and Y is a positive integer.

Consequently the proof for ABC conjecture, by now, it is exactly to prove the existence of following two inequalities.

(1). $2^{X}S \leq C_{\varepsilon} [raf (A, B, 2^{X}S)]^{1+\varepsilon}$ in which case A+B= $2^{X}S$, where A, B and S are three relatively prime positive odd numbers, and X is a positive integer.

(2). $C \leq C_{\varepsilon} [raf (A, 2^{Y}V, C)]^{1+\varepsilon}$ in which case $A+2^{Y}V = C$, where A, V and C are three relatively prime positive odd numbers, and Y is a positive integer.

Circumstances Relating to the Proof

Let us divide all positive odd numbers into two kinds of A and B, namely the form of A is 1+4n, and the form of B is 3+4n, where $n\geq 0$. From small to large odd numbers of A and of B are arranged as follows respectively.

A: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69...1+4n ...

B: 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63, 67...3+4n ...

We list also from small to great natural numbers, well then you would discover that Permutations of seriate natural numbers show up a certain law. 1, 2^1 , 3, 2^2 , 5, $2^1 \times 3$, 7, 2^3 , 9, $2^1 \times 5$, 11, $2^2 \times 3$, 13, $2^1 \times 7$, 15, 2^4 , 17, $2^1 \times 9$, 19,

3

 $2^{2} \times 5, 21, 2^{1} \times 11, 23, 2^{3} \times 3, 25, 2^{1} \times 13, 27, 2^{2} \times 7, 29, 2^{1} \times 15, 31, 2^{5}, 33, 2^{1} \times 17,$ $35, 2^{2} \times 9, 37, 2^{1} \times 19, 39, 2^{3} \times 5, 41, 2^{1} \times 21, 43, 2^{2} \times 11, 45, 2^{1} \times 23, 47, 2^{4} \times 3, 49,$ $2^{1} \times 25, 51, 2^{2} \times 13, 53, 2^{1} \times 27, 55, 2^{3} \times 7, 57, 2^{1} \times 29, 59, 2^{2} \times 15, 61, 2^{1} \times 31, 63,$ $2^{6}, 65, 2^{1} \times 33, 67, 2^{2} \times 17, 69, 2^{1} \times 35, 71, 2^{3} \times 9, 73, 2^{1} \times 37, 75, 2^{2} \times 19, 77,$ $2^{1} \times 39, 79, 2^{4} \times 5, 81, 2^{1} \times 41, 83, 2^{2} \times 21, 85, 2^{1} \times 43, 87, 2^{3} \times 11, 89, 2^{1} \times 45, 91,$ $2^{2} \times 23, 93, 2^{1} \times 47, 95, 2^{5} \times 3, 97, 2^{1} \times 49, 99, 2^{2} \times 25, 101, 2^{1} \times 51, 103 \dots \rightarrow$

Evidently even numbers contain prime factor 2, yet others are odd numbers in the sequence of natural numbers above-listed.

After each of odd numbers in the sequence of natural numbers is replaced by self-belongingness, the sequence of natural numbers is changed into the following forms.

A, 2^{1} , B, 2^{2} , A, $2^{1}\times3$, B, 2^{3} , A, $2^{1}\times5$, B, $2^{2}\times3$, A, $2^{1}\times7$, B, 2^{4} , A, $2^{1}\times9$, B, $2^{2}\times5$ A, $2^{1}\times11$, B, $2^{3}\times3$, A, $2^{1}\times13$, B, $2^{2}\times7$, A, $2^{1}\times15$, B, 2^{5} , A, $2^{1}\times17$, B, $2^{2}\times9$, A $2^{1}\times19$, B, $2^{3}\times5$, A, $2^{1}\times21$, B, $2^{2}\times11$, A, $2^{1}\times23$, B, $2^{4}\times3$, A, $2^{1}\times25$, B, $2^{2}\times13$, A $2^{1}\times27$, B, $2^{3}\times7$, A, $2^{1}\times29$, B, $2^{2}\times15$, A, $2^{1}\times31$, B, 2^{6} , A, $2^{1}\times33$, B, $2^{2}\times17$, A $2^{1}\times35$, B, $2^{3}\times9$, A, $2^{1}\times37$, B, $2^{2}\times19$, A, $2^{1}\times39$, B, $2^{4}\times5$, A, $2^{1}\times41$, B, $2^{2}\times21$, A $2^{1}\times43$, B, $2^{3}\times11$, A, $2^{1}\times45$, B, $2^{2}\times23$, A, $2^{1}\times47$, B, $2^{5}\times3$, A, $2^{1}\times49$, B, $2^{2}\times25$, A, $2^{1}\times51$, B ...→

Thus it can be seen, leave from any given even number >2, there are finitely many cycles of (B, A) leftwards until (B=3, A=1), and there are infinitely many cycles of (A, B) rightwards.

If we regard an even number on the sequence of natural numbers as a

symmetric center of odd numbers, then two odd numbers of every bilateral symmetry are A and B always, and a sum of bilateral symmetric A and B is surely the double of the even number. For example, odd numbers 23(B) and 25(A), 21(A) and 27(B), 19(B) and 29(A) etc are bilateral symmetries whereby even number $2^3 \times 3$ to act as the center of the symmetry, and there are $23+25=2^4\times 3$, $21+27=2^4\times 3$, $19+29=2^4\times 3$ etc. For another example, odd numbers 49(A) and 51(B), 47(B) and 53(A), 45(A) and 55(B) etc are bilateral symmetries whereby even number 2×25 to act as the center of the symmetry, and there are $49+51=2^2\times 25$, $21+27=2^2\times 25$, $19+29=2^2\times 25$ etc. Again give an example, 63(B) and 65(A), 61(A) and 67(B), 59(B) and 69(A) etc are bilateral symmetries whereby even number 2^6 to act as the center of the symmetry, and there are $63+65=2^7$, $61+67=2^7$, $59+69=2^7$ etc.

Overall, if A and B are two bilateral symmetric odd numbers whereby $2^{X}S$ to act as the center of the symmetry, then there is A+B= $2^{X+1}S$.

The number of A plus B on the left of $2^{x}S$ is exactly the number of pairs of bilateral symmetric A and B. If we regard any finite-great even number $2^{x}S$ as a symmetric center, then there are merely finitely more pairs of bilateral symmetric A and B, namely the number of pairs of A and B which express $2^{x+1}S$ as the sum is finite. That is to say, the number of pairs of bilateral symmetric A and B for symmetric center $2^{x}S$ is $2^{x-1}S$, where $S \ge 1$.

On the supposition that A and B are bilateral symmetric odd numbers whereby $2^{X}S$ to act as the center of the symmetry, then A+B= $2^{X+1}S$. By now, let A plus $2^{X+1}S$ makes $A+2^{X+1}S$, then B and $A+2^{X+1}S$ are still bilateral symmetry whereby $2^{X+1}S$ to act as the center of the symmetry, and $B+(A+2^{X+1}S) = (A+B)+2^{X+1}S = 2^{X+1}S+2^{X+1}S = 2^{X+2}S$.

If substitute B for A, let B plus $2^{X+1}S$ makes $B+2^{X+1}S$, then A and $B+2^{X+1}S$ are too bilateral symmetry whereby $2^{X+1}S$ to act as the center of the symmetry, and A+ (B+ $2^{X+1}S$) = $2^{X+2}S$.

Provided both let A plus $2^{X+1}S$ makes $A+2^{X+1}S$, and let B plus $2^{X+1}S$ makes $B+2^{X+1}S$, then $A+2^{X+1}S$ and $B+2^{X+1}S$ are likewise bilateral symmetry whereby $3\times 2^{X}S$ to act as the center of the symmetry, and $(A+2^{X+1}S)+(B+2^{X+1}S)=3\times 2^{X+1}S$.

Since there are merely A and B at two odd places of each and every bilateral symmetry on two sides of an even number as the center of the symmetry, then aforementioned $B+(A+2^{X+1}S)=2^{X+2}S$ and $A+(B+2^{X+1}S)=2^{X+2}S$ are exactly $A+B=2^{X+2}S$ respectively, and write $(A+2^{X+1}S)+(B+2^{X+1}S)=3\times 2^{X+1}S$ down $A+B=3\times 2^{X+1}S=2^{X+1}S_t$, where S_t is an odd number ≥ 3 .

Do it like this, not only equalities like as $A+B=2^{X+1}S$ are proven to continue the existence, one by one, but also they are getting more and more along with which X is getting greater and greater, up to exist infinitely more equalities like as $A+B=2^{X+1}S$ when X expresses every natural number.

In other words, added to a positive even number on two sides of $A+B=2^{x}S$, then we get still such an equality like as $A+B=2^{x}S$.

Whereas no matter how great a concrete even number 2^xS as the center of

the symmetry, there are merely finitely more pairs of A and B which express $2^{X+1}S$ as the sum.

If X is defined as a concrete positive integer, then there are only a part of $A+B=2^{X}S$ to satisfy gcf (A, B, $2^{X}S$) =1. For example, when $2^{X}S=18$, there are merely 5+13=18 and 7+11=18 to satisfy gcf (A, B, $2^{X}S$) =1, yet 3+15=18 and 9+9=18 suit not because they have common prime factor 3.

If added to a positive odd number on two sides of $A+B=2^{x}S$, then we get another equality like as $A+2^{y}V=C$. That is to say, equalities like as $A+2^{y}V=C$ can come from $A+B=2^{X+1}S$ so as add or subtract a positive odd number on two sides of $A+B=2^{X+1}S$.

Therefore, on the one hand, equalities like as $A+2^{Y}V=C$ are getting more and more along with which equalities like as $A+B=2^{X+1}S$ are getting more and more, up to infinite more equalities like as $A+2^{Y}V=C$ exist along with which infinite more equalities like as $A+B=2^{X+1}S$ appear.

Certainly we can likewise transform $A+2^{Y}V=C$ into $A+B=2^{X}S$ so as add or subtract a positive odd number on the two sides of $A+2^{Y}V=C$.

On the other hand, if C is only defined as a concrete positive odd number, then there is merely finitely more pairs of A and $2^{Y}V$ which express C as the sum. But also, there is only a part of A+2^YV=C to satisfy gcf (A, $2^{Y}V$, C) =1. For example, when C=25, there are merely 3+22=25, 7+18=25, 9+16=25, 11+14=25and 13+12=25 to satisfy gcf (A, $2^{Y}V$, C) =1, yet 5+20=25 and 15+10=25 suit not because they have common prime factor 5. After factorizations of A, B, S, V and C in A+B=2^{X+1}S plus A+2^YV=C, if part prime factors have greater exponents, then there are both $2^{X+1}S \ge raf$ (A, B, $2^{X+1}S$) in which case A+B= $2^{X+1}S$ satisfying gcf (A, B, $2^{X+1}S$) =1, and C \ge raf (A, $2^{Y}V$, C) in which case A+ $2^{Y}V$ =C satisfying gcf (A, $2^{Y}V$, C) =1. For examples, $2^{7} > raf$ (3, 5^{3} , 2^{7}) for 3+ $5^{3}=2^{7}$; and $3^{10} > raf$ (5⁶, $2^{5} \times 23 \times 59$, 3^{10}) for $5^{6}+2^{5}\times 23\times 59=3^{10}$.

On the contrary, there are both $2^{X+1}S \le raf$ (A, B, $2^{X+1}S$) in which case $A+B=2^{X+1}S$ satisfying gcf (A, B, $2^{X+1}S$) =1, and $C \le raf$ (A, $2^{Y}V$, C) in which case $A+2^{Y}V=C$ satisfying gcf (A, $2^{Y}V$, C) =1. For examples, $2^{2}\times7 < raf$ (13, 3×5 , $2^{2}\times7$) for $13+3\times5=2^{2}\times7$; and $3^{4} < raf$ (11×7 , 2^{2} , 3^{4}) for $11\times7+2^{2}=3^{4}$.

Since either A or B in A+B= $2^{X+1}S$ plus an even number is still an odd number, and $2^{X+1}S$ plus the even number is still an even number, thereby we can use A+B= $2^{X+1}S$ to express every equality which plus an even number on two sides of A+B= $2^{X+1}S$ makes.

Consequently, there are infinitely more $2^{X+1}S \ge raf(A, B, 2^{X+1}S)$ plus $2^{X+1}S \le raf(A, B, 2^{X+1}S)$ in which case $A+B=2^{X+1}S$.

Likewise, either $2^{Y}V$ plus an even number is still an even number, or A plus an even number is still an odd number, and C plus the even number is still an odd number, so we can use equality $A+2^{Y}V=C$ to express every equality which plus an even number on two sides of $A+2^{Y}V=C$ makes.

Consequently, there are infinitely more $C \ge raf(A, 2^{Y}V, C)$ plus $C \le raf(A, C)$

 $2^{Y}V$, C) in which case A+ $2^{Y}V$ = C.

But, if let $2^{X+1}S \ge raf$ (A, B, $2^{X+1}S$) and $2^{X+1}S \le raf$ (A, B, $2^{X+1}S$) separate, and let $C \ge raf$ (A, $2^{Y}V$, C) and $C \le raf$ (A, $2^{Y}V$, C) separate, then for inequalities like as each kind of them, we conclude not out whether they are still infinitely more.

However, what deserve to be affirmed is that there are $2^{X+1}S \ge raf$ (A, B, $2^{X+1}S$) and $2^{X+1}S \le raf$ (A, B, $2^{X+1}S$) in which case A+B= $2^{X+1}S$ satisfying gcf (A, B, $2^{X+1}S$) =1, and there are C \ge raf (A, $2^{Y}V$, C) and C \le raf (A, $2^{Y}V$, C) in which case A+ $2^{Y}V$ =C satisfying gcf (A, $2^{Y}V$, C) =1, according to the preceding illustration with examples.

Proving $C \leq C_{\varepsilon} [raf(A, B, C)]^{1+\varepsilon}$

Hereinbefore, we have deduced that both there are $2^{X+1}S \leq raf$ (A, B, $2^{X+1}S$) and $2^{X+1}S \geq raf$ (A, B, $2^{X+1}S$) in which case A+B=2^XS satisfying gcf (A, B, $2^{X+1}S$) =1, and there are C $\leq raf$ (A, $2^{Y}V$, C) and C $\geq raf$ (A, $2^{Y}V$, C) in which case A+2^YV =C satisfying gcf (A, $2^{Y}V$, C) =1, whether each kind of them is infinitely more, or is finitely more.

First let us expound a set of identical substitution as the follows. If an even number on the right side of each of above-mentioned four inequalities added to a smaller positive real number such as R>0, then the result is both equivalent to multiply the even number by a real number which is smaller than R, and equivalent to increase a tiny real number such as $\varepsilon >0$ to the exponent of the even number, i.e. from this it will form a new exponent 1+ ε . Actually, aforementioned three ways of doing, all are in order to increase an identical even number into a value and the same.

Such being the case the aforementioned substitution between each other, then we set about proving aforesaid four inequalities thereinafter.

(1). For inequality $2^{X+1}S \leq raf(A, B, 2^{X+1}S)$, $2^{X+1}S$ divided by raf(A, B, $2^{X+1}S$) is equal to $2^{X}S_{1}^{t-1} \sim S_{n}^{m-1}/A_{raf}B_{raf}$ as a true fraction, where $S_{1} \sim S_{n}$ expresses all distinct prime factors of S; t-1~m-1 are respectively exponents of prime factors $S_{1} \sim S_{n}$ orderly; A_{raf} expresses the product of all distinct prime factors of A; and B_{raf} expresses the product of all distinct prime factors of B.

After that, even number raf (A, B, $2^{X+1}S$) added to a smaller positive real number such as R>0 to turn the even number itself into [raf (A, B, $2^{X+1}S$)] ^{1+ ε}. Undoubtedly there is $2^{X+1}S \leq$ [raf (A, B, $2^{X+1}S$)] ^{1+ ε} successively.

If multiply [raf (A, B, $2^{X+1}S$)] $^{1+\epsilon}$ by C_{ϵ} , then we get $2^{X+1}S \leq C_{\epsilon}$ [raf (A, B, $2^{X+1}S$)] $^{1+\epsilon}$, where $C_{\epsilon} = A_{raf}B_{raf}/2^{X}S_{1}^{t-1} \sim S_{n}^{m-1}$.

(2). For inequality $C \le raf (A, 2^{Y}V, C)$, C divided by raf $(A, 2^{Y}V, C)$ is equal to $C_1^{j-1} \sim C_e^{f-1}/2A_{raf}V_{raf}$ as a true fraction, where $C_1 \sim C_e$ expresses all distinct prime factors of C; j-1~f-1 are respectively exponents of prime factors $C_1 \sim C_e$ orderly; A_{raf} expresses the product of all distinct prime factors of A; and V_{raf} expresses the product of all distinct prime factors of V.

After that, even number raf (A, 2^YV, C) added to a smaller positive real number such as R>0 to turn the even number itself into $[raf (A, 2^{Y}V, C)]^{1+\epsilon}$. Undoubtedly there is C \leq $[raf (A, 2^{Y}V, C)]^{1+\epsilon}$ successively. If multiply $[raf (A, 2^{Y}V, C)]^{1+\epsilon}$ by C_{ϵ} , then we get $C \leq C_{\epsilon} [raf (A, 2^{Y}V, C)]^{1+\epsilon}$, where $C_{\epsilon} = 2A_{raf}V_{raf} / C_{1}^{j-1} \sim C_{e}^{f-1}$.

(3). For inequality $2^{X+1}S \ge raf(A, B, 2^{X+1}S)$, $2^{X+1}S$ divided by raf(A, B, $2^{X+1}S$) is equal to $2^{X}S_{1}^{t-1} \sim S_{n}^{m-1}/A_{raf}B_{raf}$ as a false fraction, where $S_{1} \sim S_{n}$ expresses all distinct prime factors of S; t-1~m-1 are respectively exponents of prime factors $S_{1} \sim S_{n}$ orderly; A_{raf} expresses the product of all distinct prime factors of A; and B_{raf} expresses the product of all distinct prime factors of B.

Evidently $2^{X}S_{1}^{t-1} \sim S_{n}^{m-1} / A_{raf}B_{raf}$ as the false fraction is greater than 1.

Then, even number raf (A, B, $2^{X+1}S$) added to a smaller positive real number such as R>0 to turn the even number itself into [raf (A, B, $2^{X+1}S$)]^{1+ ϵ}.

After that, multiply [raf (A, B, $2^{X+1}S$)] ^{1+ ε} by $2^{X}S_{1}^{t-1} \sim S_{n}^{m-1}/A_{raf}B_{raf}$, then we get $2^{X+1}S \leq 2^{X}S_{1}^{t-1} \sim S_{n}^{m-1}/A_{raf}B_{raf}$ [raf (A, B, $2^{X+1}S$)] ^{1+ ε}.

Let $C_{\varepsilon} = 2^{X}S_{1}^{t-1} \sim S_{n}^{m-1} / A_{raf}B_{raf}$, then there is $2^{X+1}S \leq C_{\varepsilon} [raf(A, B, 2^{X+1}S)]^{1+\varepsilon}$.

(4). For inequality $C \ge raf (A, 2^{Y}V, C)$, C divided by raf $(A, 2^{Y}V, C)$ is equal to $C_{1}^{j-1} \sim C_{e}^{f-1}/2A_{raf}V_{raf}$ as a false fraction, where $C_{1} \sim C_{e}$ expresses all distinct prime factors of C; j-1~f-1 are respectively exponents of prime factors $C_{1} \sim C_{e}$ orderly; A_{raf} expresses the product of all distinct prime factors of A; and V_{raf} expresses the product of all distinct prime factors of V.

Evidently $C_1^{j-1} \sim C_e^{f-1}/2A_gV_q$ as the false fraction is greater than 1.

Then, even number raf (A, $2^{Y}V$, C) added to a smaller positive real number such as R>0 to turn the even number itself into $[raf (A, 2^{Y}V, C)]^{1+\epsilon}$.

After that, multiply [raf (A, $2^{Y}V$, C)] ^{1+ ε} by $C_1^{j-1} \sim C_e^{f-1}/2A_{raf}V_{raf}$, then we get

$$C \leq C_1^{j-1} \sim C_e^{f-1} / 2A_{raf} V_{raf} [raf(A, 2^Y V, C)]^{1+\epsilon}.$$

Let $C_{\epsilon} = C_1^{j-1} \sim C_e^{f-1}/2A_{raf}V_{raf}$, then there is $C \leq C_{\epsilon} [raf(A, 2^{Y}V, C)]^{1+\epsilon}$.

We have concluded $C_{\varepsilon} = A_{raf}B_{raf}/2^{X}S_{1}^{t-1} \sim S_{n}^{m-1}$, $C_{\varepsilon} = 2A_{raf}V_{raf}/C_{1}^{j-1} \sim C_{e}^{f-1}$, $C_{\varepsilon} = 2^{X}S_{1}^{t-1} \sim S_{n}^{m-1}/A_{raf}B_{raf}$ and $C_{\varepsilon} = C_{1}^{j-1} \sim C_{e}^{f-1}/2A_{raf}V_{raf}$ in preceding proofs, evidently each of them is a constant because it consists of known numbers.

Besides, for a smaller positive real number R, it is merely comparatively speaking, if raf (A, B, $2^{X+1}S$) or raf (A, $2^{Y}V$, C) is very great a positive integer such as $11 \times 13 \times 99991 \times 99989 \times 99961 \times 99929 \times 99923 \times 87641 \times 72223$, then even if R=107.13 $\sqrt{2}$, it is also a smaller positive real number. Since raf (A, B, $2^{X+1}S$) or raf (A, $2^{Y}V$, C) may be infinity, so R may tend to infinity.

Taken one with another, we have proven that there are both infinitely more $2^{X+1}S \leq C_{\varepsilon} [raf (A, B, 2^{X+1}S)]^{1+\varepsilon}$ when X is each and every natural number, and infinitely more $C \leq C_{\varepsilon} [raf (A, 2^{Y}V, C)]^{1+\varepsilon}$ when C is each and every positive odd number except for 1.

But then, when X is a concrete natural number, even if the concrete natural number tends to infinity, there also are merely finitely more $2^{X+1}S \leq C_{\varepsilon}$ [raf (A, B, $2^{X+1}S$)]^{1+ ε} in which case A+B= $2^{X+1}S$.

When C is a concrete positive odd number, even if the concrete positive odd number tends to infinity, there also are merely finitely more $C \leq C_{\epsilon}$ [raf (A, 2^YV, C)]^{1+ ϵ} in which case A+2^YV=C.

To sum up, the proof is completed by now. Consequently the ABC conjecture does hold water.