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Abstract – In this paper, we propose a new approach
to track multiple ground target with GMTI (Ground
Moving Target Indicator) and IMINT (IMagery INtel-
ligence) reports. This tracking algorithm takes into ac-
count road network information and is adapted to the
out of sequence measurement problem. The scope of
the paper is to fuse the attribute type information given
by heterogeneous sensors with DSmT (Dezert Smaran-
dache Theory) and to introduce the type results in the
tracking process. We show the ground target tracking
improvement obtained due to better targets discrimina-
tion and an efficient conflicting information manage-
ment on a realistic scenario.

Keywords: Multiple target tracking, heterogeneous
data fusion, DSmT.

1 Introduction
Data fusion for ground battlefield surveillance is more

and more strategic in order to create the situational as-
sessment or improve the precision of fire control system.
The challenge of data fusion for the theatre surveillance
operation is to know where the targets are, how they
evolve (manoeuvres, group formations,. . . ) and what
are their identities.

For the first two questions, we develop new ground
target tracking algorithms adapted to GMTI (Ground
Moving Target Indicator) sensors. In fact, GMTI sen-
sors are able to cover a large surveillance area during
few hours or more if several sensors exists. However,
ground target tracking algorithms are used in a com-
plex environment due to the high traffic density and
the false alarms that generate a significant data quan-
tity, the terrain topography which can provocate occlu-
sion areas for the sensor and the high maneuvrability of
the ground targets which yields to the data association
problem. Several references exist for the MGT (Multi-
ple Ground Tracking) with GMTI sensors [1, 2] whose
fuse contextual informations with MTI reports. The
main results are the improvement of the track precision

and track continuity. Our algorithm [6] is built with
several reflexions inspired of this literature. Based on
road segment positions, dynamic motion models under
road constraint are built and an optimized projection
of the estimated target states is proposed to keep the
track on the road. A VS-IMM (Variable Structure In-
teracting Multiple Models) filter is created with a set of
constrained models to deal with the target maneuvers
on the road. The set of models used in the variable
structure is adjusted sequentially according to target
positions and to the road network topology.

Now, we extended the MGT with several sensors. In
this paper, we first consider the centralized fusion be-
tween GMTI and IMINT (IMagery INTelligence) sen-
sors reports. The first problem of the data fusion
with several sensors is the data registration in order
to work in the same geographic and time referentials.
This point is not presented in this paper. However,
in a multisensor system, measurements can arrive out
of sequence. Following Bar-Shalom and Chen’s works
[3], the VS-IMMC (VS-IMM Constrained) algorithm
is adapted to the OOSM (Out Of Sequence Measure-
ment) problem, in order to avoid the reprocessing of
entire sequence of measurements. The VS-IMMC is
also extended in a multiple target context and inte-
grated in a SB-MHT (Structured Branching - Multiple
Hypotheses Tracking). Despite of the resulting track
continuity improvement for the VS-IMMC SB-MHT al-
gorithm, unavoidable association ambiguities arise in a
multi-target context when several targets move in close
formation (crossing and passing). The associations be-
tween all constrained predicted states are compromised
if we use only the observed locations as measurements.
The weakness of this algorithm is due to the lack of
good target state discrimination.

One way to enhance data associations is to use the
reports classification attribute. In our previous work
[5], the classification information of the MTI segments
has been introduced in the target tracking process. The
idea was to maintain aside each target track a set of ID
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hypotheses. Their committed belief are revised in real
time with the classifier decision through a very recent
and efficient fusion rule called proportional conflict re-
distribution (PCR). In this paper, in addition to the
measurement location fusion, a study is carried out to
fuse MTI classification type with image classification
type associated to each report. The attribute type of
the image sensors belongs to a different and better clas-
sification than the MTI sensors. The counterpart is the
short coverage of image sensors that brings about a low
data quantity. In section 2, the motion and measure-
ment models are presented with a new ontologic model
in order to place the different classification frames in
the same frame of discernment. After the VS-IMMC
description given in section 3, the PCR fusion rule orig-
inally developed in DSmT (Dezert-Smarandache The-
ory) framework is presented in section 4 to fuse the
target type information available and to include the re-
sulting fused target ID into the tracking process. The
last part of this paper is devoted to simulation results
for a multiple target tracking scenario within a real en-
vironment.

2 Motion & observation models

2.1 GIS description

The GIS (Geographical Information System) used in
this work contains both the segmented road network
and the DTED (Digital Terrain Elevation Data). Each
road segment expressed in WGS84 is converted in a
Topographic Coordinate Frame (denoted TCF ). The
TCF is defined according to the origin O in such a
way that the axes X, Y and Z are respectively oriented
towards the local East, North and Up directions. The
target tracking process is carried out in the TCF.

2.2 Constrained motion model

The target state at the current time tk is defined in
the local horizontal plane of the TCF :

x(k) = [x(k) ẋ(k) y(k) ẏ(k)]
′

(1)

where (x(k), y(k)) and (ẋ(k), ẏ(k)) define respectively
the target location and velocity in the local horizon-
tal plane. The dynamics of the target evolving on the
road are modelized by a first-order differential system.
The target state on the road segment s is defined by
xs(k) where the target position (xs(k), ys(k)) belongs
to the road segment s and the corresponding heading
(ẋs(k), ẏs(k)) is in its direction.

The event that the target is on road segment s is
noted es(k) = {x(k) ∈ s}. Given the event es(k) and
according to a motion model Mi, the estimation of the
target state can be improved by considering the road
segment s. It follows:

xs(k) = Fs,i(∆(k)) · xs(k − 1) + Γ(∆(k)) · vs,i(k) (2)

where ∆(k) is the sampling time, Fs,i is the state tran-
sition matrix associated to the road segment s and
adapted to a motion model Mi, vs,i(k) is a white Gaus-
sian random vector with covariance matrix Qs,i(k) cho-
sen in such a way that the standard deviation along the
road segment is higher than the standard deviation in
the orthogonal direction. It is defined by:

Qs,i(k) = Rθs
·

(
σ2

d 0
0 σ2

n

)
·R

′

θs
(3)

where Rθs
is the rotation matrix associated with the

direction θs defined in the plane (O, X, Y ) of the road
segment s. The matrix Γ(∆k) is defined in [8].

To improve the modeling for targets moving on a
road network, we proposed in [5] to adapt the level of
the dynamic model’s noise based on the length of the
road segment s. The idea is to increase the standard
deviation σn defined in (3) to take into account the
error on the road segment location. After the state
estimation obtained by a Kalman filter, the estimated
state is then projected according to the road constraint
es(k). This process is detailed in [6].

2.3 GMTI measurement model

According to the NATO GMTI format [7], the MTI
reports received at the fusion station are expressed in
the WGS84 coordinates system. The MTI reports must
be converted in the TCF. A MTI measurement z at the
current time tk is given in the TCF by:

z(k) = [x(k) y(k) ρ̇(k)]′ (4)

where (x(k), y(k)) is the location of the MTI report
in the local frame (O, X, Y ) and ρ̇(k) is the associated
range measurement expressed by:

ρ̇(k) =
(x(k) − xc(k)) · ẋ(k) + (y(k) − yc(k)) · ẏ(k)√

(x(k) − xc(k))2 + (y(k) − yc(k))2

(5)
where (xc(k), yc(k)) is the sensor location at the cur-

rent time in the TCF . Because the range radial velocity
is correlated to the MTI location components, the use
of an extended Kalman filter (EKF) is not adapted.
In the literature, several techniques exist to uncorre-
late the range radial velocity from the location com-
ponents. We prefer to use the AEKF (Alternative Ex-
tended Kalman Filter) proposed by Bizup and Brown
in [9], because the implementation is easier by using
the alternative lienarization than another algorithms to
decorrelate the components. Moreover, AEKF work-
ing in the sensor referential/frame remains invariant by
translation. The AEKF measurement equation is given
by:

zMTI(k) = HMTI(k) · x(k) + wMTI(k) (6)

where wMTI(k) is a zero-mean white Gaussian noise
vector with a covariance RMTI(k) (given in [5]) and
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HMTI(k) is defined by:

HMTI(k) =




1 0 0 0
0 0 1 0

0 ∂ρ̇(k)
∂ẋ 0 ∂ρ̇(k)

∂ẏ


 (7)

Each MTI report is characterized both with the lo-
cation and velocity information and also with the at-
tribute information and its probability that it is correct.
We denote CMTI the frame of discernment on target ID
based on MTI data. CMTI is assumed to be constant
over the time and consists in a finite set of exhaustive
and exclusive elements representing the possible states
of the target classification. In this paper, we consider
only 3 elements in CMTI defined as:

CMTI =





c1 , Tracked vehicle

c2 , Wheeled vehicle

c3 , Rotary wing aircraft



 (8)

We consider also the probabilities P{c(k)} (∀c(k) ∈
CMTI) as input parameters of our tracking systems
characterizing the global performances of the classifier.
The vector of probabilities [P (c1) P (c2) P (c3)] repre-
sents the diagonal of the confusion matrix of the clas-
sification algorithm assumed to be used. Let z⋆

MTI(k)
the extended MTI measurements including both kine-
matic part and attribute part expressed by te herein
formula:

z⋆
MTI (k) , {zMTI(k), c(k), P{c(k)}} (9)

2.4 IMINT motion model

For the imagery intelligence (IMINT), we consider
two sensor types : a video EO/IR sensor carried by
a Unanimed Aerial Vehicule (UAV) and a EO sensor
fixed on a Unattended Ground Sensor (UGS).

We assume that the video information given by both
sensor types are processed by their own ground sta-
tions and that the system provides the video reports
of target detections with their classification attributes.
Moreover, a human operator selects targets on a movie
frame and is able to choose its attribute with a HMI
(Human Machine Interface). In addition, the opera-
tor is able with the UAV to select several targets on a
frame. On the contrary, the operator selects only one
target with the frames given by the UGS. There is no
false alarm and a target cannot be detected by the op-
erator (due to terrain mask for example). The video
report on the movie frame is converted in the TCF.
The measurement equation is given by:

zvideo(k) = Hvideo(k) · x(k) + wvideo(k) (10)

where Hvideo is the observation matrix of the video sen-
sor

Hvideo =

(
1 0 0 0
0 0 1 0

)
(11)

The white noise Gaussian process wvideo(k) is centered
and has a known covariance Rvideo(k) given by the
ground station.

Each video report is associated to the attribute in-
formation c(k) with its probability P{c(k)} that it is
correct. We denote Cvideo the frame of discernment
for an EO/IR source. As CMTI , Cvideo is assumed to
be constant over the time and consists in a finite set of
exhaustive and exclusive elements representing the pos-
sible states of the target classification. In this paper,
we consider only eight elements in Cvideo as follows:

Cvideo =





civilian car
military armoured car

wheeled armoured vehicule
civilian bus
military bus
civilian truck

military armoured truck
copter





(12)

Let z⋆
video(k) be the extended video measurements

including both kinematic part and attribute part ex-
pressed by the following formula (∀c(k) ∈ Cvideo):

z⋆
video(k) , {zvideo(k), c(k), P{c(k)}} (13)

For notation convenience, the measurements se-
quence Zk,l represents a possible set of measurements
generated by the target up to time k (i.e., there ex-
ists a subsequence n and a measurement i such that
Zk,l =

{
Zk−1,n, ..., z⋆

j (k)
}
) associated with the track

T k,l. At the current time k, the track T k,l is represented
by a sequence of the state estimates. z⋆

j (k) is the jth

measurement available at time k among m(k) validated
measurements around the target measurement predic-
tion.

3 Tracking with road constraints

3.1 VS IMM with a road network

The IMM is an algorithm for combining state esti-
mates arising from multiple filter models to get a better
global state estimate when the target is under maneu-
vers. In section 2.2, a constrained motion model i to
a road segment s, noted M i

s(k), was defined. Here we
extend the segment constraint to the different dynamic
models (among a set of r + 1 motion models) that a
target can follow. The model indexed by r = 0 is the
stop model. It is evident that when the target moves
from one segment to the next, the set of dynamic mod-
els changes. In a conventionnal IMM estimator [1], the
likelihood function of a model i = 0, 1, . . . , r is given,
for a track T k,l, associated with the j-th measurement,
j ∈ {0, 1, . . . , m(k)} by:

Λl
i(k) = p{zj(k)|M i

s(k),Zk−1,n} (14)
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where Zk−1,n is the subsequence of measurements as-
sociated with the track T k,l.

Using the IMM estimator with a stop motion model,
the likelihood function of the moving target mode for
i = 1, . . . , r and for j ∈ {0, 1, . . . , m(k)} is given by:

Λl
i(k) = PD · p{zj(k)|M i

s(k),Zk−1,n} · (1 − δmj,0)

+(1 − PD) · δmj ,0 (15)

while the likelihood of the stopped target mode (i.e.
r = 0) is:

Λl
0(k) = p{zj(k)|M i

0(k),Zk−1,n} = δmj,0 (16)

where PD is the sensor detection probability, δmj ,0 is
the Kronecker function defined by δmj,0 = 1 if mj = 0
and δmj ,0 = 0 whenever mj 6= 0.

The combined/global likelihood function Λl(k) of a
track including a stop model is then given by:

Λl(k) =

r∑

i=0

Λi(k) · µi(k|k − 1) (17)

where µi(k|k − 1) is the predicted model probabilities
[8].

The steps of the IMM under road segment s con-
straint are the same as for the classical IMM as de-
scribed in [8].

In real application, the predicted state could also
appear onto another road segment, because of a road
turn for example, and we need to introduce new con-
strained motion models. In such case, we activate the
most probable road segments sets depending on the lo-
cal predicted state x̂l

i,s(k|k − 1) location of the track

T k,l[5, 1]. We consider r + 1 oriented graphs which de-
pend on the road network topology. For each graph i,
i = 0, 1, . . . , r, each node is a constrained motion model
M i

s. The nodes are connected to each other according
to the road network configuration and one has a finite
set of r + 1 motion models constrained to a road sec-
tion. The selection of the most probable motion model
set, to estimate the road section on which the target
is moving on, is based on a sequential probability ratio
test (SPRT).

3.2 OOSM algorithm

The data fusion that operates in a centralized ar-
chitecture suffers of delayed measurement due to com-
munication data links, time algorithms execution, data
quantity,. . . In order to avoid reordering and reprocess-
ing an entire sequence of measurements for real-time
application, the delayed measurements are processed as
out-of-sequence measurements (OOSM). The algorithm
used in this work is described in [3]. In addition, ac-
cording to the road network constraint, the state retro-
diction step is done on the road.

3.3 Multiple target tracking

For the MGT problem, we use the SB-MHT (Struc-
tured Branching Multiple Hypotheses Tracking) pre-
sented in [10]. When the new measurements set Z(k)
is received, a standard gating procedure is applied in
order to validate MTI reports to track pairings. The
existing tracks are updated with VS-IMMC and the
extrapolated and confirmed tracks are formed. More
details can be found in chapter 16 of [10]. In order to
palliate the association problem, we need a probabilis-
tic expression for the evaluation of the track formation
hypotheses that includes all aspects of the data associ-
ation problem. It is convenient to use the log-likelihood
ratio (LLR) or a track score of a track T k,l which can
be expressed at current time k in the following recursive
form:

Ll(k) = Ls(k − 1) + ∆Ll(k) (18)

with

∆Ll(k) = log

(
Λl(k)

λfa

)
(19)

and

L(0) = log

(
λfa

λfa + λnt

)
(20)

where λfa and λnt are respectively the false alarm rate
and the new target rate per unit of surveillance volume
and Λl(k) is the likelihood given in (17).

4 Target type tracking
In [4], Blasch and Kahler fused identification at-

tribute given by EO/IR sensors with position measure-
ment. The fusion was used in the validation gate pro-
cess to select only the measurement according to the
usual kinematic criterion and the belief on the identi-
fication attribute. Our approach is different since one
uses the belief on the identification attribute to revise
the LLR with the posterior pignistic probability on the
target type. We recall briefly the Target Type Tracking
(TTT) principle and explain how to improve VS-IMMC
SB-MHT with target ID information. TTT is based
on the sequential combination (fusion) of the predicted
belief of the type of the track with the current ”belief
measurement” obtained from the target classifier deci-
sion. Results depends on the quality of the classifier
characterized by its confusion matrix (assumed to be
known at least partially as specified by STANAG). The
adopted combination rule is the so-called Proportional
Conflict Redistribution rule no 5 (PCR5) developed in
the DSmT (Dezert Smarandache Theory) framework
since it deals efficiently with (potentially high) conflict-
ing information. A detailed presentation with examples
can be found in [12, 11]. This choice is motivated in this
typical application because in dense traffic scenarios,
the VS-IMMC SB-MHT only based on kinematic infor-
mation can be deficient during maneuvers and cross-
roads. Let’s recall first what the PCR5 fusion rule
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is and then briefly the principle of the (single-sensor
based) Target Type Tracker.

4.1 PCR5 combination rule

Let CTot = {θ1, . . . , θn} be a discrete finite set of
n exhaustive elements and two distinct bodies of evi-
dence providing basic belief assignments (bba’s) m1(.)
and m2(.) defined on the power-set1 of CTot. The
idea behind the Proportional Conflict Redistribution
(PCR) rules [11] is to transfer (total or partial) con-
flicting masses of belief to non-empty sets involved in
the conflicts proportionally with respect to the masses
assigned to them by sources. The way the conflicting
mass is redistributed yields actually several versions of
PCR rules, but PCR5 (i.e. PCR rule # 5) does the
most exact redistribution of conflicting mass to non-
empty sets following the logic of the conjunctive rule
and is well adapted for a sequential fusion. It does a
better redistribution of the conflicting mass than other
rules since it goes backwards on the tracks of the con-
junctive rule and redistributes the conflicting mass only
to the sets involved in the conflict and proportionally
to their masses put in the conflict. The PCR5 formula
for s ≥ 2 sources is given in [11]. For the combination
of only two sources (useful for sequential fusion in our
application) when working with Shafer’s model, it is
given by mPCR5(∅) = 0 and ∀X ∈ 2CTot \ {∅}

mPCR5(X) = m12(X)+

∑

Y ∈2CT ot\{X}
X∩Y =∅

[
m1(X)2m2(Y )

m1(X) + m2(Y )
+

m2(X)2m1(Y )

m2(X) + m1(Y )
]

(21)

where m12(X) corresponds to the conjunctive consen-
sus on X between the two sources (i.e. our a prior bba
on target ID available at time k − 1 and our current
observed bba on target ID at time k) and where all de-
nominators are different from zero. If a denominator is
zero, that fraction is discarded.

4.2 Principle of the target type tracker

To estimate the true target type type(k) at time k

from the sequence of declarations c(1), c(2), . . . c(k)
done by the unreliable classifier2 up to time k. To build
an estimator ˆtype(k) of type(k), we use the general prin-
ciple of the Target Type Tracker (TTT) developed in
[12] which consists in the following steps:

• a) Initialization step (i.e. k = 0). Select the tar-
get type frame CTot = {θ1, . . . , θn} and set the

1In our GMTI-MTT applications, we will assume Shafer’s
model for the frame CTot of target ID which means that ele-
ments of CTot are assumed truly exclusive.

2Here we consider only one source of information/classifier,
say based either on the EO/IR sensor, or on a video sensor by
example. The multi-source case is discussed in section 4.3.

prior bba m−(.) as vacuous belief assignment, i.e
m−(θ1 ∪ . . .∪ θn) = 1 since one has no information
about the first observed target type.

• b) Generation of the current bba mobs(.) from
the current classifier declaration c(k) based on
attribute measurement. At this step, one takes
mobs(c(k)) = P{c(k)} = Cc(k)c(k) and all the unas-
signed mass 1 − mobs(c(k)) is then committed to
total ignorance θ1∪. . .∪θn. Cc(k)c(k) is the element
of the known confusion matrix C of the classifier
indexed by c(k)c(k).

• c) Combination of current bba mobs(.) with prior
bba m−(.) to get the estimation of the current bba
m(.). Symbolically we write the generic fusion op-
erator as ⊕, so that m(.) = [mobs ⊕ m−](.) =
[m− ⊕ mobs](.). The combination ⊕ is done ac-
cording to the PCR5 rule (i.e. m(.) = mPCR5(.)).

• d) Estimation of True Target Type is obtained
from m(.) by taking the singleton of Θ, i.e. a
Target Type, having the maximum of belief (or
eventually the maximum Pignistic Probability).

t̂ype(k) = argmax
A∈CTot

(BetP{A}) (22)

The Pignistic Probability is used to estimate the
probability to obtain the type θi ∈ CTot given the
previous target type estimate t̂ype(k − 1).

BetP{θi} = P{t̂ype(k) = θi|t̂ype(k − 1)} (23)

• e) set m−(.) = m(.); do k = k + 1 and go back to
step b).

Naturally, in order to revise the LLR in our GMTI-
MTT systems for taking into account the estimation
of belief of target ID coming from the Target Type
Trackers, we transform the resulting bba m(.) = [m−⊕
mobs](.) available at each time k into a probability mea-
sure. In this work, we use the classical pignistic trans-
formation defined by [13]:

BetP{A} =
∑

X∈2CTot

|X ∩ A|

|X |
m(X) (24)

4.3 Working with multiple sensors

Since in our application, we work with different sen-
sors (i.e. MTI and Video EO/IR sensors), one has to
deal with the discernment frames CMTI and Cvideo de-
fined in section 2. Therefore we need to adapt the
(single-sensor based) TTT to the multi-sensor case. We
first adapt the frame CMTI to Cvideo and then, we ex-
tend the principle of TTT to combine multiple bba’s
(typically here mMTI

obs (.) and mV ideo
obs (.)) with prior tar-

get ID bba m−(.) to get finally the updated global
bba m(.) at each time k. The proposed approach can
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be theroretically extended to any number of sensors.
When no information is available from a given sensor,
we take as related bba the vacuous mass of belief which
represents the total ignorant source because this doesn’t
change the result of the fusion rule [11] (which is a good
property to satisfy). For mapping CMTI to Cvideo, we
use a (human refinement) process such that each ele-
ment of CMTI can be associated at least to one element
of Cvideo. In this work, the delay on the the type in-
formation provided by the video sensor is not taking
into account to update the global bba m(.). All type
information (delayed or not provided by MTI and video
sensors) are considered as bba mobs(.) available for the
current update. The explicit introduction of delay of
the out of sequence video information is under investi-
gations.

4.4 Data attributes in the VS IMMC

To improve the target tracking process, the introduc-
tion of the target type probability is done in the like-
lihood calculation. For this, we consider the measure-
ment z∗j (k)(∀j ∈ {1, . . . , mk}) described in (9) and (13).
With the assumption that the kinematic and classifica-
tion observations are independant, it is easy to prove
that the new combined likelihood Λl

N associated with
a track T k,l is the product of the kinematic likelihood
(17) with the classification probability in the manner
that:

Λl
N (k) = Λl(k) · P{t̂ype(k)|t̂ype(k − 1)} (25)

where the the probability P
{
t̂ype(k)|t̂ype(k − 1)

}
is

chosen as the pignistic probability value on the declared
target type t̂ype(k) given t̂ype(k − 1) derived from the
updated mass of belief m(.) according to our target type
tracker.

5 Simulations and results

5.1 Scenario description

To evaluate the performances of the VS-IMMC SB-
MHT with the attribute type information, we consider
10 maneuvering (acceleration, deceleration, stop) tar-
gets on a real road network. The 10 target types are
given by (12). The target 1 is passing the military ve-
hicules 2, 3, 4 and 7. Targets 2, 3, 4 and 7 start from
the same starting point.The target 2 is passing the ve-
hicules 3 and 7 in the manner that it places in front of
the convoy. The targets 5, 6, 9 and 10 are civilian vehi-
cles and are crossing the targets 1, 2, 3 and 7 at several
junctions. The goal of this simulation is to reduce the
association complexity by taking into account the road
network topology and the attribute types given by het-
erogeneous sensors. In this scenario, we consider one
GMTI sensor located at (−50km,−60km) at 4000m

in elevation and one UAV located at (−100m,−100m)
at 1200m in elevation and 5 UGS distributed on the

ground. The GMTI sensor tracks the 10 targets at ev-
ery 10 seconds with 20m, 0.0008rad and 1m ·s−1 range,
cross-range and range-rate measurements standard de-
viation respectively. The detection probability PD is
equal to 0.9 and the MDV (Minimal Detectable Veloc-
ity) fixed at 1m · s−1. The false alarms density is fixed
(λfa = 10−8). The confusion matrix described in part
4.2 is given by:

CMTI = diag(
[

0.8 0.7 0.9
]
) (26)

This confusion matrix is only used to simulate the tar-
get type probability of the GMTI sensor. The data
obtained by UAV are given at 10 seconds with 10m

standard deviation in X an Y direction from the TCF.
The time delay of the video data is constant and equal
to 11 seconds. The detection probability PD is equal to
0.9. The human operator only selects for each video re-
port a type defined by (12). In our simulations, the tar-
get type probability depends on the sensor resolution.
For this, we consider the volume Vvideo of the sensor
area surveillance on the ground. The diagonal terms of
the confusion matrix Cvideo are equal to P{c(k)} where
P{c(k)} is defined by:

P{c(k)} =





0.90 if Vvideo ≤ 106m2

0.75 if 106m2 < Vvideo ≤ 108m2

0.50 if Vvideo > 108m2

(27)

For the UGS, the target detection is done if only
the target is located under the minimal range detection
(MRD). The MRD is fixed for the 5 UGS at 1000 m and
each sensor gives delayed measurement every seconds.
The time delay is also equal to 11 seconds. The UGS
specificity is to give only one target detection during
4 seconds in order to detect another target. We recall
that there is no false alarms for this sensor. Based on
[4], the target type probability depends on α (i.e. the
target orientation towards the UGS). The more the tar-
get orientation is orthogonal to the sensor line of sight,
the more the target type probability increases. The di-
agonal terms of the confusion matrix CUGS are equal
to P{c(k)} where P{c(k)} is defined by:

P{c(k)} =

{
0.90 if 5π

6 ≤ α ≤ π
6

0.50 otherwise
(28)

For each detected target, a uniform random number
u ∼ U([0, 1]) is drawn. If u is greater than the true
target type probability of the confusion matrix, a wrong
target type is declared for the ID report and used with
its associated target type probability. The targets are
scanned at different times by the sensors (figure 1).

5.2 Filter parameters

We consider three motion models (i.e. i ∈ {0, 1, 2})
which are respectively a stop model M0 when the target
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Figure 1: Target’s sensor illumination.

is assumed to have a zero velocity, a constant velocity
model M1 with a low uncertainty, and a constant ve-
locity model M2 with a high uncertainty (modeled by
a strong noise). The parameters of the IMM are the
following: for the motion model M1, the standard de-
viation along and orthogonal to the road segment are
equals to 0.05 m·s−2), the constrained constant velocity
model M2 has a high standard deviation to adapt the
dynamics to the target manoeuvre (the standard de-
viation along and orthogonal to the road segment are
respectively equal to 0.8 m · s−2 and 0.4 m · s−2) and
the stop motion model M0 has a standard deviation
equals to zero. These constrained motion models are
however adapted to follow the road network topology.
The transition matrix and the SB-MHT parameters are
those taken in [5].

5.3 Results

For each confirmed track given by the VS-IMMC SB-
MHT, a test is used to associate a track to the most
probable target. The target tracking goal is to track as
long as possible the target with one track. To evaluate
the track maintenance, we use the track length ratio
criterion, the averaged root mean square error (noted
ARMSE) for each target and the track purity and the
type purity (only for the tracks obtained with PCR5)
[5]. These measures of performances are averaged on
50 Monte-Carlo runs.

On figure 2, one sees that the track length ratio be-
comes better with the PCR5 than without as expected
for the target 6. When the targets 1 and 2 are passing
the targets 3, 4 and 7, an association ambiguity arises
to associate the tracks with the correct measurements.
This is due to the close formation between targets with
the GMTI sensor resolution and the road network con-
figureation with junctions. Sometimes tracks are lost
with the VS IMMC SB-MHT without the PCR5. Then
new tracks for each targets are built. That is why, the
track purity of the VS IMMC SB-MHT without PCR5
(Table 1) is smaller than the the track purity with
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Figure 2: Track length ratio.

Target ARMSE Track purity Type purity
1 14.82 0.70 none
2 16.62 0.62 none
3 15.61 0.61 none
4 22.54 0.77 none
5 16.25 0.85 none
6 18.68 0.64 none
7 14.45 0.72 none
8 17.51 0.84 none
9 19.23 0.85 none
10 17.40 0.75 none

Table 1: Tracking results (VSIMMC without PCR5).

Target ARMSE Track purity Type purity
1 14.37 0.78 0.64
2 15.77 0.66 0.62
3 15.60 0.61 0.59
4 21.10 0.81 0.81
5 15.88 0.94 0.55
6 18.68 0.64 0.02
7 14.22 0.76 0.76
8 17.38 0.87 0.87
9 19.20 0.85 0.05
10 17.17 0.83 0.46

Table 2: Tracking results (VSIMMC and PCR5).

PCR5 (Table 2). So, the track precision, given by the
ARMSE criterion, is better with the PCR5. For the tar-
get 6 results, this target is only scanned by the GMTI
sensor and its associated performances are equivalent
for both algorithms. Then, if there is no IMINT infor-
mation and no interaction between targets, the perfor-
mances of the algorithm with PCR5 are the same than
without PCR5.

Despite of the PCR5 improvement on the target
tracking, the difference of performances between the al-
gorithms is not significant. If there is an interaction be-
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tween IMINT and GMTI information, we can see a gain
on the track length ratio or track purity of 10% with
PCR5. This small difference is due to the good con-
strained state estimation. The estimated target states
have a good precision because the target tracking is
done by taking into account the road segments location
and the good performances of the OOSM approach. So,
it implies a substantial improvement of the target-to-
track association. In addition, on Table 2, the type
purity based on PCR5 is derived from the maximum of
BetP criterion. But BetP is computed according the
set Cvideo (12) and if the track receives only MTI re-
ports the choice on the target type is arbitrary for the
tracked vehicles of CMTI (8). In fact, a tracked vehicle
can be 6 elements of (12). So the probability BetP on
the 6 tracked vehicles of (12) is equivalent. The selec-
tion of the maximum of BetP has no meaning because
in such case and the maximum becomes arbitrary. This
explains the bad track purity of targets 6 and 9.

6 Conclusion

In this paper, we have presented a new approach to
improve VS IMMC SB-MHT by introducing the data
fusion with several heterogeneous sensors. Starting
from a centralized architecture, the MTI and IMINT
reports are fused by taking into account the road net-
work information and the OOSM algorithm for delayed
measurements. The VS IMMC SB-MHT is enlarged by
introducing in the data association process the type in-
formation defined in the STANAG 4607 and an IMINT
attribute set. The estimation of the Target ID proba-
bility is done from the updated/current attribute mass
of belief using the Proportional Conflict Redistribution
rule no. 5 developed in DSmT framework and accord-
ing to the Target Type Tracker (TTT) recently devel-
oped by the authors. The Target ID probability once
obtained is then introduced in the track score compu-
tation in order to improve the likelihoods of each data
association hypothesis of the SB-MHT. Our prelimi-
nary results show an improvement of the performances
of the VS-IMMC SB-MHT when the type information
is processed by our PCR5-based Target Type Tracker.
In this work, we did not distinguish undelayed from
delayed sensor reports in the TTT update. This prob-
lem is under investigations and offers new perspectives
to find a solution for dealing efficiently with the time
delay of the information type data and to improve per-
formances. One simple solution would be to use a for-
getting factor of the delayed type information but other
solutions seem also possible to explore and need to be
evaluated. Some works need also to be done to use the
operational ontologic APP-6A for the heterogeneous
type information. Actually, the frame of the IMINT
type information is bigger than the one used in this pa-
per and the IMINT type information can be given at
different granularity levels. As a third perspective, we

envisage to use both the type and contextual informa-
tion in order to recognize the tracks losts in the terrain
masks which represent the possible target occultations
due to the terrain topography in real environments.
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