
 1 

 
 

Lognormal distribution of firing time and rate from a single neuron? 
 
 

Eszter A. Kish 1, Claes-Göran Granqvist 2, András Dér 3, Laszlo B. Kish 4,a 
 
 1 Center for Learning and Memory, The University of Texas at Austin, 1 University 

Station, Stop C7000, Austin, TX 78712-0805 
 

 2 Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, P. 
O. Box 534, SE-75121 Uppsala, Sweden 

 

 3 Institute of Biophysics, Biological Research Centre of the Hungarian Academy of 
Sciences, Temesvári krt. 62, P.O.B. 521, Szeged, H-6701, Hungary 

 

 4 Department of Electrical and Computer Engineering, Texas A&M University, College 
Station, TX 77843-3128, USA 

 
 Abstract. Even a single neuron may be able to produce significant lognormal features in 

its firing statistics due to noise in the charging ion current. A mathematical scheme 
introduced in advanced nanotechnology is relevant for the analysis of this mechanism in 
the simplest case, the integrate-and-fire model with white noise in the charging ion 
current. 
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In a recent review [1] the wide occurrence of lognormal-like distributions in the structural 
organization parameters and the firing rate of neurons were surveyed and their assumed 
functionalities were explored. It was assumed that the lognormal distribution of firing 
rates is the consequence of the specially organized circuit connectivity and the high 
complexity of the nervous system. 
 
The natural question emerges if the internal dynamics of single neurons is already able to 
produce a lognormal firing feature due to its inherent stochastic features.  
 
At the first look, such assumption looks rather unconventional. For example, several 
works study stochastic resonance with additive Gaussian noise [2,3] in the membrane 
potential. Due to the level-crossing properties of Gaussian noises, such models obviously 
result in a distribution of firing rates with no long-tail but exponential cutoff.  
 
Still, experimental observations of lognormal firing statistics on lower levels of 
hierarchical organizations [4] seem to justify the question. Below, we present a 
quantitative example how the combination of plausible statistical assumptions and the 
simplest neuron model can lead to the appearance of lognormal firing rate distribution on 
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the level of single neurons. 
 
One of the well-known mathematical ways that lognormal distribution is obtained is a 
random walk on an axis with logarithmic scale (geometric random walk) resulting a 
growing Gaussian distribution over the axis, which is (due to the exponential stretch) 
equivalent to a lognormal distribution on the linear scale. Relevant applications of this 
model are stochastic stone cracking with fixed mean cracking fraction or its inverse 
process via coagulation/aggregation of nanoparticles [5]; both models result in lognormal 
size distribution.  
 
However, these old models cannot account for the lognormal distribution of nanoparticle 
sizes at advanced vapor based fabrication methods [6,7] where the growth is 
condensational (linear in time) and when coagulation/aggregation is avoided. The origin 
of lognormal distribution in such cases was explained by a lognormal residence time 
distribution in the growth zone (vapor zone) of nanoparticle fabrication. Proceeding 
through the zone with a Brownian motion superimposed on a constant drift velocity 
results in a lognormal-like residence time distribution whenever the drift is strong and the 
starting point of the zone has a reflecting boundary [6,7]. The discrete difference equation 
describing the progression though the zone is given as: 
 

  x(k) = x(k −1)+δ +ζ (k) D  ,       (1) 
 
where k is discrete time (measured in computational steps);   x(k)  is the position 
coordinate of the growing particle, δ  is the drift velocity;   ζ (k)  is a random number with 
Gaussian (or other fast-cut-off, such as uniform) distribution, zero mean value, and unity 
variance; and D is the diffusion coefficient, which is the mean-square of the velocity 
noise resulting in the random-walk component superimposed on the drift. When the   ζ (k)  
random numbers are independent,   ζ (k)  represents a band-limited white noise thus the 
resulting random walk component is a Brownian motion.   
 
The motion described by Equation 1 begins at   x(0) = x0  and the first-passage time to the 
other end  xth  of the zone is a random variable  kth . When the   xth ≤ x(kth )  is first satisfied, 
the growth process stops and  kth  is recorded thus  kth  is the residence time in the growth 
zone, that is, time spent by the linear growth. Here the threshold coordinate is given as 

  xth = x0 + L , where  L  is the length of the growth zone. The starting point   x0  is a 
reflecting boundary, that is, the   x0 ≤ x(k)  condition is enforced during the whole motion. 
The condition of strong drift means that the drift is greater than the critical value  δ0 : 
 

 1< δ / δ0  ,           (2) 
 
where the critical drift depends on the strength of the noise and the length of the zone: 
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δ0 =

D
L

 .          (3) 

 
In the case of  δ = δ0 , the noise-free drifting time through the system is equal to mean 

first passage time due to the noise at zero drift. At strong drifts (Equation 2) the set  kth{ }  
of residence time distribution is lognormal and, because the particle size is a linear 
function of the residence time, lognormal particle size distribution is the result, see Figure 
1. 
 

                           
Figure 1. Histogram of density function (left), and cumulative distribution in log-Gaussian plot (right) of 
the sizes of 100 thousand nanoparticles by condensational growth, without coagulation, due to Brownian 
motion superimposed on linear drift in the growth zone (based on [6,7]). The log-Gaussian plot is much 
more efficient than the histogram to follow the behavior in the long tail and a straight line represents ideal 
lognormal distribution. Drift: 16.6 times the critical drift. 

 
To explain the observed lognormality in the single protein molecule detection scheme 
with fluorescent quantum dots, the same mathematical model was applied for quantum-
dot-marked-molecules drifting in a nanofluidic channel through a zone exposed to a laser 
beam. Even the additional photonic shot noise could not destroy the lognormal feature in 
the size distribution of photon bursts [8], see Figure 2. 

 

                              
Figure 2. Histogram of density function (left), and cumulative distribution in log-Gaussian plot (right) of 
photon burst sizes in single molecule detection with quantum dots [8]. Even the additional photon shot 
noise in the model is unable to destroy the lognormal characteristic. Drift: 1.9 times the critical drift. 
 
There is a striking similarity between the model described above and the integrate-and-
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fire model, the simplest dynamical neuron model, if we suppose that there is a band-
limited white noise in the ion current, see Figure 3 for its circuit representation.  

 

 
 

Figure 3. Circuit representation of the integrate-and-fire model: a capacitor is charged by a current 
generator from the initial potential level   U0  up to the threshold potential  Uth  where the firing takes place 
and the capacitor is discharged. In the noise-free case, the membrane potential   U (t)  is drifting with 

  δ = I0 / C  velocity up to the firing threshold, where   I0  is the charging ion current and C is the capacitance. 
The current noise   ΔI(t) , when it is a band-limited white noise with Gaussian or other amplitude density of 
fast cut-off, results in the sum of Brownian motion and a linearly drift in the membrane potential   U (t) . 
With a reflecting boundary at the initial potential value (or proper amplitude density of the noise to prohibit 
backward propagation events) this is the same mathematical model as the one leading to Figure 1 (see 
Equations 1-3). 
 
Thus it is straightforward to apply the model as follows. In the discrete-time model, the 
coordinate of the motion is the membrane potential U, the drift velocity of potential is δ , 
and D is the mean-square of the noise in the ion current: 
 

  U (k) =U (k −1)+δ +ζ (k) D  ,       (4)   
 
where k and   ζ (k)  are defined in the same way as in Equation 1. In accordance with 
Equations 2 and 3, the critical drift is given as: 
 

  
δ0 =

D
Uth −U0

 ,           (5) 

 
where the initial potential value is   U0 =U (0)  and the potential threshold of firing is  Uth . 
The starting point   U0  is a reflecting boundary, that is, the   x0 ≤ x(k)  condition is enforced 
during the whole process. When the   Uth ≤U (kth )  is first satisfied, the neuron fires, the 
membrane potential is discharged and the whole charging process starts from the 
beginning. The actual  kth  value is recorded; it is the time interval between the former and 
the present firing events (inter-spike interval). Here we assumed that the 
firing/discharging process is negligibly short compared to the inter-spike interval. 
because Equations 1 and 4 and the mathematical conditions are identical, in the strong 
drift limit (see Equation 2), the set  kth{ }  has obviously lognormal distribution. 
Furthermore, because any power function of a lognormally distributed random variable is 
also lognormal, not only the inter-spike intervals but also the firing frequency will have 
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lognormal-like distribution if the firing/discharging process is negligibly short compared 
to the inter-spike interval. 
 
Figure 4 shows the histogram obtained by computer simulations of the integrate-and-fire 
model with Equation 4 with   U0 = −60 mV ,   Uth = −40 mV , and relative drifts 

 δ / δ0 = 6 and 24 , respectively. Both the time and frequency data show the familiar 
skewed shape. 

 
 

                             
 

Figure 4. Computer simulations of the integrate-and-fire model with white noise in the ion current causing 
a random walk (Brownian motion) superimposed on the linear drift of the potential. The same random walk 
model with special parameters used as in getting Fig. 1. The width and skewness of the resulting 
lognormal-like distribution depend on the relative drift, which is the drift normalized to the critical drift 
value. Because any power function of a lognormally distributed random variable has also lognormal 
distribution, the lognormal distribution of time intervals between firing implies a lognormal distribution of 
firing frequency (in the limit when the time spent for firing/discharging can be neglected). Drift (a) 6 times 
and (b) 24 times the critical drift. 
 
It is open question if the additive noise in the ion current is strong enough to yield the 
observed distribution of firing frequency of single neurons. However, models and 
observations [9] regarding the stochastic closing and opening of ion channels indicate 
that the noise can be sufficiently strong. It is also an open question and subject of future 
studies how much does the distribution deviate from lognormal in those cases when the 
noise spectrum is 1/f [10,11] instead of white and in the case of more advanced neuron 
models. 
 
Finally, we note that Longtin [12] studied stochastic resonance phenomena in the time 
distribution of firing events at sinusoidal excitation of the Fitzhugh-Nagumo neuron 
model. To introduce stochasticity, a white noise term was added to the time derivative of 
the potential. In the case of no sinusoidal excitation, a skewed density function 
(resembling lognormal) of the time intervals between firing events can be seen. However, 
this fact was not commented because it was considered only as the base line of 
observations and the paper was focusing on the induced periodicity and stochastic 
resonance at sinusoidal driving in the presence of noise.  
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