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Abstract

The purpose of this paper is to present a general method to estimate
the probability law of the transitions between phases of a system. The
system must be represented by vectorial variables depending on the time,
satisfying some conditions which are usually met. It addresses models in
Physics, Economics or Finances.

Quite often, in Economics or physical sciences, one meets systems which,
during their evolution, are in distinct types of states, usually called phases.
The evolution, which is otherwise continuous, is marked by a discontinuity, a
transition between phases. This can be an economic crisis, a rupture in �nancial
markets, an earth-quake, the breakdown of a component in engineering,..The
processes which lead to the existence of phases and the passage from one phase
to another are various, but usually di¢ cult to model, and the prediction of
the transition time, which is usually of paramount importance, cannot be done
exactly. So it is common to use probabilist models. The purpose of this paper is
to provide a general method to deal with the estimation of such probability laws.
It can be implemented for a large class of quantitative models, in economics as
well as physical sciences.
In previous papers it has been proven that in quantitative models, using

variables X which belong to in�nite dimensional vector space - such as scalar
functions depending on time - the state of the system can be represented by a
vector in a Hilbert space, and as a consequence, this induces many properties
of theoretical as well as practical interest. In particular when the variables have
time among their parameters and when the process governing the evolution of
the system is determinist, it entails that the set fX(t); t 2 Rg of values taken
by the variables can also be endowed with the structure of a Hilbert space F,
and that the map which goes from an initial value X(0) to X(t) is an unitary
operator. Phases can be characterized by disconnected subsets of the Hilbert
space F, and the probability of a phase transition can be legitimately assumed
to depend on the distance of a given state to the next phase, distance which
has a precise meaning in Hilbert spaces. From there a non parametric method
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of estimation of the probability law can be deduced, from the knowledge of a
past observation of the system.
In a �rst section the main results of previous papers ("Hilbert spaces in mod-

elling of systems" denoted JCD) are presented. It �xes the general background
of the models which are concerned, and notably the conditions under which the
results hold.
In the second section we consider the successive steps required to estimate

the probability law :
- estimation of the scalar product hi in the Hilbert space of values fX(t); t 2 Rg
- the algorithm to de�ne the phases of the system
- computation of the distance of any observation to a phase
- non parametric estimation of the probability law for a phase transition at

a given time

1 HILBERT SPACES IN MODELS

1.1 Models

In most scienti�c theories, quantitative models are used to deal with the analy-
sis of measures, formalization of laws, and computation of predictions. A model
comprises a system, the collection of objects which are considered, with their
properties represented by a �xed �nite number N of quantitative variables
(Xk)

N
k=1. Then the state of the system can be de�ned by the value of these

variables, that we will denote collectively X. These variables can be of di¤erent
kinds, however the results presented in this paper hold when they meet the
precise conditions :

Conditions 1:
i) Each variable Xk belongs to an open subset Ok of a separable Fréchet real

vector space Vk
ii) At least one of the vector spaces (Vk)

N
k=1 is in�nite dimensional

The key points are ;
i) the variables must be vectorial : any linear combination of such X must

have a meaning, thus models using qualitative variables (with discrete values)
or indices are excluded (but the variables can be smoothed by division by a
common constant).
ii) the variables are usually maps (or functions taking values in vector spaces)

depending on arguments � :
Xk : $k ! Ek :: Xk (�) =

P
i2Ik Xkieik (�) ;

the components Xki are �xed scalars, eik (�) are functions taking values in
Ek; Ik can be in�nite. What is considered is the map X, and not its value
X(�) for a given value � of the argument. This is why they belong to in�nite
dimensional vector spaces.
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The typical example is scalar functions depending on the time t :
Xk : [0; T ]! R :: Xk (t) =

P
i2Ik Xkieik (t)

such as : Xk (t) =
P

n2Z an cos
$nt
2� + bn sin

$nt
2�

So the state of the system is de�ned as the maps Xk : the state is de�ned
all over the domain of the arguments, it is the way the system behave.

The condition i) is quite technical, so let us give some usual examples where
the conditions are met :
i) the variables Xk are maps : Xk : R ! E where R is an open subset of

R and E a �nite dimensional vector space, and
R
R
kXk (t)k2 dt < 1 with any

norm kkon E (then Vk is itself a separable Hilbert space). This addresses :
- all models in analytical Mechanics
- most of the models in �uid mechanics (the variable X can depend on other

parameters than t)
- seismic studies (the variables Xk are the waves)
- almost all the models in Economics, representing the evolution of a system :

values of bonds, currencies or equities, macroeconomic models, markets studies
such as the consumption Xk (r) of products k = 1...N with respect to the income
r of a household....
ii) Xk are scalar continuous functions on a compact domain of a topological

space
iii) Xk are complex p integrable maps on Rn : Vk = Lp (Rn; dx;C) with 1

� p <1; which addresses most of the models in electromagnetism
A variableXk and its derivative dXk

dt are considered as independant variables.
There is no distinction between "internal" and "external" variables : when-

ever some phenomenon is deemed to have an in�uence on the state of the sys-
tem, it is assumed that it can be measured and should be accounted for. If it is
external, its value is known beforehand but anyway it can be measured.
A scienti�c law will usually be expressed by some relation between the vari-

ables Xk: The purpose of an experiment, or a test in Economics, is to �nd or
prove a relation between the values of the variables in di¤erent speci�c realisa-
tion of the model. Here we stands before the consideration of such laws.

1.2 Hilbert spaces

The �rst result is the following theorem (see JCD propositions 1 and 2)

Theorem 1 For any system represented by a model meeting the conditions 1 :
i) there is a separable, in�nite dimensional, Hilbert space H, de�ned up to

isomorphism, such that S = O1 � ::: � ON can be embedded as an open subset

 � H which contains 0 and a convex subset.
ii) Each state X is associated to a vector  of H and there is a linear isometry

: � : S ! 
 ::  = �(X)
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So we have the striking result that most models, whatever their �eld, their
objects and hypotheses, have a common mathematical representation. The re-
sult stands whatever the domain or the laws which are considered. In particular
it does not matter if these laws are determinist or probabilist. For instance if X is
a scalar function de�ned over a period of time [0,T] the function X, if it is square
integrable (which is usually the case), belongs to a Hilbert space, whatever the
process considered or assumed. The theorem above is just a generalization of
this fact.
The theorem seems abstract, but this representation provides powerful tools.
Each variable Xk is itself associated to a Hilbert space Hk and H = H1 �

:::�HN

On the real Hilbert space H there are a scalar product denoted hi ; which is
a bilinear symmetric form and Hilbertian bases (e"n)n2N such that :
he"n; e"mi = �mn;  =

P
n2N  ne"n; k k2F = h ; i =Pn2N  

2
n

The norm kkH provides the distance between two states : k �  0kH
The vector space V has also bases (en)n2N , not necessarily orthonormal, such

that : 8X 2 V : X =
P

n2J Xnen where only a �nite number of components
Xn : n 2 J � N is non null. But the basis itself has a countably in�nite number
of vectors.
For any basis (en)n2N of V there are unique families ("n)n2N ; (�n)n2N of

independant vectors of H (which depend on (en)n2N and are not necessarily
Hilbertian) such that :
8m;n 2 N : h�n; "miH = �nm
and there is a linear bijective map � such that X and �(X) have the same

components respectively in (en)n2N ; ("n)n2N :
8n 2 N : "n = �(en)
8X 2 O : X =

P
n2N h�n;�(X)i en ! �(X) =

P
n2N h�n;�(X)i "n 2 


It is clear that in practical experiments variables belonging to in�nite dimen-
sional vector spaces cannot be precisely measured (this would require an in�nite
number of data). So one uses simpli�ed speci�cations : a variable X is replaced
by another Y, which depends on a �nite (usually small) number of parameters.
For instance a trajectory X(t) is represented by a family of straight lines, or
circles, or parabola, depending on a few parameters. More generally an observ-
able is a linear map � : V ! V :: Y = �(X) (not necessarily continuous) such
that its range is a �nite dimensional vector subspace of V and 8X 2 O;� (X)
is an admissible value, that is � (O) � O: Notice that this has nothing to do
with the precision of the measures : whatever this precision, the scientist gives
up the impossible task to estimate X, which is replaced by Y. There are several
important results about the values of the observables � (X) with respect to the
value of the state X, which are signi�cant mostly in Quantum Mechanics, but
they will not be used here.
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1.3 The evolution of a system

1.3.1 Change of variable in a model

What happens when a given system is represented by di¤erent variables ? It
depends of course of the nature of the change of variables. As they characterize
the system itself, through both the measures which are done and the laws which
are tested, a change of variables usually means that one considers a di¤erent
system (perhaps by focusing the attention to another set of phenomena). But
in other cases a change of variable is just a mathematical artefact. For instance
this happens when one uses di¤erent units. More generally in Physics it hap-
pens when the variables are vectorial quantities de�ned in a frame or are maps
depending themselves of coordinates expressed in a frame. A change of frame is
mathematically represented by some relation, and one can assume that the use
of the new variables should have a distinct impact on the vector  representing
the state of the system.

We have the general result (JCD proposition 12) :

Theorem 2 Whenever a system is represented by the variables X belonging to
an open subset O of the vector space V, and by the variables X�belonging to an
open subset O�of the same vector space V, and there is a continuous, bijective
map U : V ! V such that X and X�=U(X) represent the same state of the
system then the map U is necessarily linear, there is a unitary, linear, bijective
map bU 2 L (H;H) such that : 8X 2 O : bU (� (X)) = � (U (X)) where � is the
linear map : � : V ! H associated to X.

The map U is a part of the model itself, and the assumption that X�= U(X)
and X represent the same system is of course crucial. In Physics this assumption
is usually deduced from more fundamental principles (notably the principle of
relativity which says that the laws should not depend on the observer). In
Economics there is nothing similar. However a general consequence of this
theorem is that the quantities should be represented in the same units : if X�
= kX represent the same system, because U is necessarily unitary, then k = 1.
If economic data are expressed in di¤erent currencies they do not represent the
same system.
This result is important, because it helps to �nd the Hilbert space H : in

many cases it belongs to a category linked to the structural de�nitions of the
variables. However for us this result will be implemented in the study of the
evolution of a system.

1.3.2 Fundamental theorems

So far we have not been concerned with the laws which are assumed in a model,
just by the way it is represented. But when considering the evolution of a system
we need to go a bit further. When the time t (it can be any continuous scalar
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parameter) is one of the arguments of the maps X, t can be seen with di¤erent
meanings.
A) t is a parameter used to measure the duration of a phenomenon, usually

the time elapsed since some speci�c event. For instance the fuel left in a tank,
the life of an equipment, the elapsed time since the eruption of a volcano,...
It is assumed that there are continuous processes at work, with respect to t,
whose e¤ects are accounted for by the variables. So obviously X(t) and X�(t) =
X�(t+k) with a �xed parameter k do not represent the same phenomenon.
B) t is just a parameter used to identify a state of the system : t gives its

temporal location. This is a usual assumption in theoretical physics. The laws
do not change with time, all the external factors are accounted for, thus the
origin of the time t does not matter. X(t) and X�(t) = X�(t+k) represent the
same phenomena.
C) t is still a parameter used to identify each state encountered by the system,

but it is not sure that all the phenomena have been accounted for by the model.
This is a common case in Economics : that t is expressed by the number of
weeks from the beginning of the year, or from the beginning of the last year,
should not matter, however usually the week itself matters, because external
events may happen which makes that the date itself is signi�cant. Anyway one
can assume that since the origin of the time t the processes at work have been
continuous, there has been no critical event, and t acquires the meaning of an
elapsed time, and we are actually in the case A.

In the case A), B) or C) the purpose of a model is to check or estimate some
law : the scientist hopes to �nd a relation between t and the values X(t) of the
variables, which holds whatever the initial values X(0). In the best dream the
law would be fully determinist, or at least good enough for the applications.
Of course this will not usually be the case, or at least the law will not be
fully determinist. It would be impossible to study all the evolution laws that
are encountered. So we will proceed the other way around, and look at what
happens when the law is determinist. Then one can show that the evolution
laws must follow some precise characteristics, from which one can deduce a
general method to estimate the transition times. And the discrepancy between
what should be if the model was determinist, and what is measured, brings in
any case a useful result : it helps to sort out the signi�cant variables. If the
measures do not meet the characteristics one can deduce that the variables are
either incomplete, or not signi�cant.

Theorem 3 Whenever in a model :
i) the variables (Xk)

N
k=1 are maps : (Xk)

N
k=1 :: R ! E where R is an open

subset of R (whith origin 0) and E a normed vector space
ii) The map X = (Xk)

N
k=1 belongs to an open subset O of an in�nite dimen-

sional Fréchet space V
iii) 8t 2 R the evaluation map : E (t) : O ! E : E (t)X = X (t) is continuous
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iv) if for any X,X� the set $ = ft 2 R : X(t) = X 0(t)g has a non null
Lebesgue measure then X = X�
then there is a Hilbert space F, an open eO � F such that :
8X 2 O � V; t 2 R : X (0) 2 eO � F ;X (t) 2 F
8t 2 R the map : �(t) = E (t) � E (0)�1 2 L (F ;F ) is unitary
8t 2 R the map : bE (t) = E (t) � E (0)�1 ���1 2 L (H;F ) is an isometry
This theorem (JCD 13,14) corresponds to the cases A) and C). The condition

iv) is the most important : it states that the laws governing the evolution of
the system are semi-determinist. They provide a solution, unique up to a non
null set of values of t. One cannot have, for the same initial conditions, two
signi�cantly di¤erent solutions.
As a consequence :
- for any u 2 eO then 8t : X (t) = � (t) (u) is well de�ned and X(t) depends

continuously on u : one says that the problem is well posed
- for any value u 2 F; t0 > 0 2 R there is a unique map X 2 V such that

X (t0) = u de�ned by X = � � E (t0) � E (0)�1 ���1 (u) : there is a unique map
X which goes to a given point. More precisely if there were two such maps they
would take the same values almost everywhere in R.
Notice that the theorem (as well as the previous ones) does not require

any continuity conditions on the maps X, and there is no probability involved.
The conditions i) and ii) are similar to the conditions 1, but E must be a
normed vector space (possibly in�nite dimensional). So X(t) can itself be a
map, depending of other arguments. The condition iii) is rather technical, and
is usually met.

The cases of type B can be speci�ed by the condition that the variables
X 0 (t) = X (t+ �) and X (t) represent the same state of the system, and we
have the stronger result (JCD 15,16) :

Theorem 4 Whenever in a model :
i) the variables (Xk)

N
k=1 are maps : (Xk)

N
k=1 :: R! E where E is a normed

vector space
ii) The map X = (Xk)

N
k=1 belongs to an open subset O of an in�nite dimen-

sional Fréchet space V
iii) 8t 2 R the evaluation map : E (t) : O ! E : E (t)X = X (t) is continuous
iiv) for any �xed � 2 R; the variables X 0

k (t) = Xk (t+ �) and Xk (t) repre-
sent the same state of the system
then :
there is a Hilbert space F, an open eO � F; a continuous anti-hermitian mapeS 2 L (F ;F ) such that :
8X 2 O � V : X (0) 2 eO � F

8t : X (t) =
�
exp teS� (X (0)) 2 F
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The maps X are smooth and d
dsX (s) js=t = eSX (t)

There is a continuous map S 2 L (V ;V ) such that :
�(t) = E (t) � E (0)�1 = exp tS
8t 2 R : X (t) = (exp tS �X) (0) =

�P1
n=0

tn

n!S
nX
�
(0)

and the operator bS = � � S ���1 associated to S is anti-hermitian
Actually it is easy to see that this is a special case of the previous theorem,

and � is then de�ned by the exponential of a unique operator. So, not only the
model is determinist, we have a generalized exponential law. This is intuitive
: if the system is in a steady environment, it should have a simple evolution,
with some constant law. This law is given by a single anti-hermitian map eS
which is directly related to the derivative d

dsX (s). Notice that, even if X was
not assumed to be continuous, smoothness is a necessary result. This is the
starting point for the Schrodinger equation of Quantum Mechanics.

1.3.3 Phases

So, when the model is determinist, the evolution laws shall meet some precise
conditions, in particular in the case B), whatever the processes at work. There
is a large class of problems where the maps X belong to the same family but
the states X(t), for some periods, take signi�cantly di¤erent values in the same
vector space E : the system meets a phase transition. The conditions in which
these transitions happen are of special interest. Common cases in Physics are
change of phases for solid or liquid bodies, the desintegration of a particle, an
earthquake,..., in Economics a crisis or a recession, in Finances a �ip in the
markets,...The questions which arise are then : what are the conditions, about
the initial conditions or the maps X, for the occurence of such an event ? Can
we forecast the time at which such event takes place ?

The states of the system are represented by vectors of E, and so it is legit-
imate to characterize the phases as connected components of the set E. Con-
nectedness has a precise de�nition in Mathematics, and it can be applied in E.
Roughly two di¤erent phases are sets which have no common point.

With this de�nition, as a �rst consequence, the map X cannot be continuous
(if it were, then the set of values fX(t); t 2 Rg would also be connected) and
one cannot be in the case B : phases transitions can exist only if there is a
discontinuity somewhere, either in the laws governing the evolution or if there
is a change in the environment of the system. This is in itself an important
result : one cannot expect to represent discontinuous processes with models of
the type B). One needs either additional variables, for instance accounting for
external events, or assume that the laws are themselves discontinuous, which is
always a di¢ cult issue, at least at the theoretical level.

Totally discontinuous maps exist, but they are strange mathematical objects.
Usually discontinuities happen at isolated points : the existence of a singularity
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is what makes interesting a change of phase. If the transition points are isolated,
then there are only at most a countable number of them. A given map X is
then continuous (with respect to t) except in a set of points tp, which is �nite
over any �nite period, and we have a series of phases separated by transitions
occurring at precise times. So one can safely say that any scienti�c sensible
model depicts either continuous evolutions or a �nite number of phases, each
one corresponding to a continuous evolution, separated by precise instantaneous
transitions.

From this it is legitimate to estimate the law of evolution X(t) by a family

of maps Xn (t) =
�
exp teSn� (Xn (0)) with di¤erent, but constant, values eSn

during each phase. Each operator exp teSn is unitary, but this procedure is not
easy because they do not constitute either a vector space, or a subgroup. So to
study the transitions we will use another way.

Usually it is not possible to predict exactly a change of phase, and transitions
are formalized by a probability law. A sensible assumption is that the proba-
bility for a change of phase depends on the proximity of the state of the system
from each phase. If we are in the conditions of the theorem 3 it is possible to
address practically the problem.

Let us consider two phases, characterized by disjoint subsets E1; E2: Their
choice is somewhat arbitrary, and anyway would be adjusted from previous
data. So we have two disjoint subsets F1; F2 of the Hilbert space F. If F1; F2 are
closed convex subsets of F the distance of any point x of F to one of the set Fi
is de�ned by the projection �i : F ! Ei : there is a unique y = �i (x) 2 Ei such
that kx� ykF is minimum. The map �i is continuous, �2i = �i and �i (x) = x
when x 2 Fi. So when we are in the phase F1 we can relate the probability of a
transition 1 -> 2 to kX (t)� �2 (X (t))kF : And more generally the probability
of any transition can be related to the quantity r (t) = kX (t)� �1 (X (t))kF +
kX (t)� �2 (X (t))kF :
The result holds if F1; F2 are closed vector subspaces of F such that F1\F2 =

f0g : Then
X (t) = �1 (X (t)) + �2 (X (t))

and kX (t)k2 = k�1 (X (t))k2 + k�2 (X (t))k2
k�1(X(t))k2
kX(t)k2 can be interpreted as the probability that the system at t is in

the phase F1.
We have now the material to proceed to the core of this paper : if we assume

that the probability of a transition at a time t is a function f of r(t) then there
is a general method to estimate f. The key step is to compute the function
d : F � F ! R which gives the distance between two points of F, using the
metric induced by the scalar product in the Hilbert space F.
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2 ESTIMATION OF THE PROBABILITY OF
A TRANSITION

2.1 Distance between states

The map X : [0; T ] ! E : X(t) takes its value in the normed space E, which
can be in�nite dimensional. Due to the evolution laws X(t) belongs to a vector
subspace E0 of E, which is completed to get the Hilbert space F. So F itself is not
necessarily included in E, but any realisation X(t) can be seen as belonging to E
and F. F is endowed with a scalar product, denoted hi usually unknown. Even
if E is a normed vector space, and if it is possible to deduce (by polarization) a
scalar product from its norm (which is not always possible), there is no guarantee
that it would be the same as hi : So the goal is to estimate this scalar product,
from where the function d is computed :

d : F � F ! R :: d(X;X 0) =
p
hX �X 0; X �X 0i

from a set of observations on a past period.
A key point in the demonstration of the theorem 3 is that, because any point

X(t) can be identi�ed with a map X, the scalar product on F can be de�ned by
:
hX(t); X 0(t0)iF = h�X;�X 0iH
so that for any observations at tp; tq :
8p; q � N : hX(tp); X(tq)iF = h�X;�XiH = Ct = K
for a given state X of the system.

The theorem 3 holds when E is an in�nite dimensional vector space, which
happens if t is not the only parameter, and other parameters, denoted �; are
considered. But then, from a �nite set of observations at given times (tp)

N
p=1

it is usually impossible to have an e¢ cient estimate of the maps X (t; �) : the
parameters (�p)

N
p=1 take �xed values which are not su¢ cient to approximate the

maps X (t; :) : So we will limite ourselves to the case, which should be the most
usual, when the vector space E (and then F which is the completion of one of its
vector subspace) has the �nite dimension m. Then the general form of the maps
X is : X (t) =

Pm
p=1Xp (t) ep where (ep)

m
n=1 are �xed vectors and Xp are scalar

functions, depending on t only. These functions belong themselves to a in�nite
dimensional vector space : Xp (t) =

P
i2I xpiEi (t) where (Ei)i2I de�nes a basis

of V.
It is assumed that one has a set fX (tn)gNn=1 of observations, on a past

period, for the system.
The realisations X(t) always belong to F and E, so that we will take E as a

proxy for F itself. Then the scalar product hiF is represented in any basis of E
by a symmetric, de�nite positive, m�m matrix B, and, in matricial notations :
8p; q : hX(tp); X(tq)iF = [X (tp)]

t
[B] [X (tq)] = K

Which reads:
[X]

t
[B] [X] = K [U ]
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where [X] is the m�N matrix of the measures, and [U] is the N�N matrix
comprised of 1. K is an unknown quantity, but it is clear that B, K are de�ned up
to a scalar positive constant so, for the time being, let us keep K as a parameter.
The vector space of square matrices is normed, with the norm :

kMk2 = Tr [M ]
t
[M ] =

P
ij

�
[M ]

i
j

�2
We choose as estimation of B the matrix bB such that the distance between

K [U ] and [X]t [B] [X] is minimum :bB : minB [X]t [B] [X]�K [U ]2
Because [X]t [B] [X] ;K [U ] are symmetric it reads :[X]t [B] [X]�K [U ]2 =
= Tr

�
[X]

t
[B] [X]�K [U ]

�2
= Tr

�
[X]

t
[B] [X] [X]

t
[B] [X]

�
�KTr

�
[X]

t
[B] [X] [U ]

�
�KTr

�
[U ] [X]

t
[B] [X]

�
+K2Tr [U ]

2

= Tr
�
[X] [X]

t
[B] [X] [X]

t
[B]
�
�KTr

�
[X] [U ] [X]

t
[B]
�

�KTr
�
[X] [U ] [X]

t
[B]
�
+K2N2

= Tr ([P ] [B] [P ] [B])� 2KTr ([Q] [B]) +K2N2

where [P ] = [X] [X]
t
= [P ]

t
; [Q] = [X] [U ] [X]

t
= [Q]

t are m�m known
symmetric matrices.
B is a symmetric, de�nite positive, matrix, which reads : B = AtA where A

is a m�m matrix. [A] [X (tq)] is the matrix column of the components of X (tq)
in an orthonormal basis :
[X (tp)]

t
[B] [X (tq)] = [X (tp)]

t
[A]

t
[A] [X (tq)] = K

In components :[X]t [B] [X]� bK [U ]2
=
Pm

ijklpq=1 [P ]
i
j [A]

k
j [A]

k
l [P ]

l
p [A]

q
p [A]

q
i�2K

PN
p;q=1

Pm
i;j;k=1X

j (tq) [A]
k
j [A]

k
i X

i (tp)

The derivative with respect to [A]�� is:Pm
ijklpq=1 [P ]

i
� [A]

�
l [P ]

l
p [A]

q
p [A]

q
i + [P ]

i
j [A]

�
j [P ]

�
p [A]

q
p [A]

q
i

+ [P ]
i
j [A]

k
j [A]

k
l [P ]

l
� [A]

�
i + [P ]

�
j [A]

k
j [A]

k
l [P ]

l
p [A]

�
p

�2K
PN

p;q=1

Pm
i;j;k=1

�
X� (tq) [A]

�
i X

i (tp) +X
j (tq) [A]

�
ij X

� (tp)
�

=
Pm

ijklpq=1 [A]
�
l [P ]

l
p [A]

q
p [A]

q
i [P ]

i
� + [A]

�
j [P ]

i
j [A]

q
p [A]

q
i [P ]

�
p

+ [A]
�
i [P ]

i
j [A]

k
j [A]

k
l [P ]

l
� + [A]

�
p [P ]

l
p [A]

k
l [A]

k
j [P ]

�
j

�2K
PN

p;q=1

Pm
i;j;k=1

�
[A]

�
i X

i (tp)X
� (tq) + [A]

�
j X

j (tq)X
� (tp)

�
= 4

�
[A] [P ] [A]

t
[A] [P ]

��
�
� 4K

PN
p;q=1 [A] [X (tp)] [X (tq)]

t

The scalar product must be non degenerate, so detB 6= 0) detA 6= 0 and
by multiplication with A�1 the condition for the minimum reads in matricial
notation :
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[P ] [A]
t
[A] [P ] = K

PN
p;q=1 [X (tp)] [X (tq)]

t

[P ] [B] [P ] = K
PN

p;q=1 [X (tp)] [X (tq)]
t

For any
h bBi meeting this condition :[X]t h bBi [X]�K [U ]2

= Tr
�
[P ]
h bBi [P ] h bBi�� 2KTr �[Q] h bBi�+K2N2

= KTr
�PN

p;q=1 [X (tp)] [X (tq)]
t
h bBi�� 2KTr �[Q] h bBi�+K2N2

Tr
�PN

p;q=1 [X (tp)] [X (tq)]
t
h bBi�

=
PN

p;q=1 Tr
�
[X (tp)] [X (tq)]

t
h bBi�

=
PN

p;q=1

�Pm
i;j=1 [X (tp)]

i
[X (tq)]

j
h bBij

i

�
=
PN

p;q=1

�Pm
i;j=1 [X (tp)]

i
h bBii

j
[X (tq)]

j

�
=
PN

p;q=1 [X (tp)]
t
h bBi [X (tq)]

[Q]
i
j =

�
[X] [U ] [X]

t
�i
j
=
PN

p;q=1 [X]
i
p [U ]

p
q [X]

q
j =

PN
p;q=1X

i (tp)X
j (tq)

Tr
�
[Q]
h bBi� =Pm

i;j=1

PN
p;q=1X

i (tp)X
j (tq)

h bBij
i

=
PN

p;q=1

Pm
i;j=1X

j (tq)
h bBij

i
Xi (tp) =

PN
p;q=1 [X (tq)]

t
h bBi [X (tp)][X]t h bBi [X]�K [U ]2

= K
PN

p;q=1 [X (tp)]
t
h bBi [X (tq)]� 2KPN

p;q=1 [X (tq)]
t
h bBi [X (tp)] +N2

= N2 �K
PN

p;q=1 [X (tq)]
t
h bBi [X (tp)]

If we have, as expected, [X (tq)]
t
h bBi [X (tp)] = K[X]t h bBi [X]� bK [U ]2 = N2 �KN2

The minimum is 0 for : K = 1
Thus the estimate of B is, if [P ] = [X] [X]t is invertible :

h bBi = �[X] [X]t��1 NX
p;q=1

[X (tp)] [X (tq)]
t

!�
[X] [X]

t
��1

(1)

This is a symmetric matrix. Moreover�
[X] [X]

t
�i
j
=
PN

p;q=1 [X (tp)]
i
[Xq]

j

thus
h bBi does not depend on the time ordering.

2.2 De�ning the phases

Usually the periods characteristic of the phases are de�ned, up to one or two
fringe observations. A principal component analysis of the set of points given
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by X may help to de�ne the subsets corresponding to the di¤erent phases (see
Kendall III chap.44). But here we have two tools to proceed to a clustering of
the data : the distance given by B, and the time ordering. Indeed we expect
from the phases that they provide data that are both close in distance, and
successive in time. The method suggested below, sequential clustering, is one
among others that can be considered.

A cluster C is a set of successive observations. The clusters are indexed by
two scalars r and k, and C(r,k) is a table with the �rst �1 and the last �2 of
the ordered times of the observations in the cluster : all observations such that
�1 � tp � �2 belong to C(r,k), and �1 � �2: Initially r = 1 and C(1; n) = [tn; tn]
with n = 1 ... N.
We consider the N�N matrix : D = [d (X (tp) ; X (tq))]

N
p;q=1 and the set

f�pgPp=1 of ordered values of d (X (tp) ; X (tq)) :
�1 = minp;q=1::N d (X (tp) ; X (tq))
�1 � �2 � ::: � �P
The distance between two clusters C(r,i), C(r,j) is de�ned as :
�(C (r; i) ; C (r; j)) = mintp2C(r;i);tq2C(r;j) d (X (tp) ; X (tq))
One proceeds by steps denoted r.
Fix � = �1
Review X (tn) from n = 1 to n = N
Merge t2 in the cluster C (1; 1) = [t1; t2] if d (X (t1) ; X (t2)) � �; and put

C (1; 2) = C (1; 1)
Merge t3 in the cluster C (1; 2) if �(C (1; 3) ; C (1; 2)) � �; and put C (1; 3) =

C (1; 2)
...
Then on the next step put � = �2; reinitiate C (2; i) = C (1; i) and proceeds

similalrly.
Thus, in a �nite number of steps, all the observations are clustered.

One can choose the clustering provided at any step r : the clusters comprise
successive data, which are such that the distance between them is at most �r:
Of course it is possible that some points are closer but do not belong to the
same cluster, this case should occur normally if the same phase appears more
than once. And some points may stay isolated : they should be either discarded
or incorporated in one of the existing clusters. The phases are then chosen from
clusters which have values which are close. With this procedure one can keep
a control of the clustering, and check that the initial assumptions - that there
exist phases - is grounded.

A phase is a convex, closed, subset of points in F. So if we have a family of
points fxpgnp=1 it de�nes the convex set as all the points :

x =
Pn

p=1 �pxp; 0 � �p � 1
In the phases de�ned by the clustering there can be interior points (which

are a linear combination of the others) and they can be removed. However if
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the dimension m of E is large this is not easy, and anyway to keep them entails
only a waste of computation time.

2.3 Computing the distance to a phase

From general theorems about Hilbert space, any point y as a unique projection
� (y) on a closed convex subset C, de�ned by :

d (y; � (y)) = minx2C d (y; x)
and the distance from y to C is de�ned as :
�(y; C) = d (y; � (y))
It is null if y 2 C:
So for any point y its projection onto a phase de�ned by the family fxpgnp=1

is computed by looking for the minimum of the function :

d
�
y;
Pn

p=1 �pxp

�
for 0 � �p � 1

We know that there is a unique solution.

d
�
y;
Pn

p=1 �pxp

�
=

rh
y �

Pn
p=1 �pxp

it
B
h
y �

Pn
p=1 �pxp

i
=

rPm
i;j=1

h
yi �

Pn
p=1 �px

i
p

i
Bij

h
yj �

Pn
p=1 �px

j
p

i
The derivative of d2 with respect to �p is :Pm

i;j=1

�
�xip

�
Bij

h
yj �

Pn
q=1 �qx

j
q

i
+
h
yi �

Pn
q=1 �qx

i
q

i
Bij
�
xjp
�

= � [xp]tB
h
y �

Pn
q=1 �qxq

i
�
h
y �

Pn
q=1 �qxq

it
B [xp]

which provides the set of n linear equations :Pn
q=1 �q [xp]

t
B [xq] = [xp]

t
B [y]

and the minimum is :h
y �

Pn
p=1 �pxp

it
B
h
y �

Pn
p=1 �pxp

i
= [y]

t
B [y]�

Pn
p=1 [�pxp]

t
B [y]�

Pn
p=1 [y]

t
B [�pxp]+

Pn
p;q=1 �p�q [xp]

t
B [xq]

= [y]
t
B [y]� 2

Pn
p;q=1 �p�q [xp]

t
B [xq] +

Pn
p;q=1 �p�q [xp]

t
B [xq]

(d (y; � (y)))
2
= [y]

t
B [y]�

Pn
p;q=1 �p�q [xp]

t
B [xq]

If the projection is an interior point then 0 < �p < 1; p = 1::n: The proba-
bility that the projection is on some edge is low, however if there is no interior
solution one must check with the extremal values �p = 0; 1 as in any linear
programming problem. The computation must be done for each phase. If y
belongs to the phase then d (y; � (y)) = 0:

2.4 Estimation of the probability of a transition

Let us consider a system with two phases, de�ned by the convex subsets C1; C2:
The assumptions are the following :
i) At any given time the state X(t) of the system is either in C1 or in C2
ii) The probability that a transition occurs at t is a function of :
r(t) = � (X (t) ; C1) + � (X (t) ; C2)

14



Because of i) one of the two quantities �(X (t) ; C1) ;�(X (t) ; C2) is null,
so r(t) is the distance from X(t) to the other phase.
The density of probability of a transition at any given time t is :
Pr(transition at t j r (t) = r) = f (r) so it does not depend on t, only on the

value of r(t)

We assume as above that the system has been followed on a period of time
[0,T] during which some transitions have been observed. This is of course a
critical condition, and the quality of the estimation depends of the number of
observed transitions. As above there are N observations, and we assume that
they ere evenly spaced.
For each observation at tp one can compute r (tp) as above, and the number

� (tp) (it is 0 or 1) of transitions which have occured in the following period
[tp; tp+1] : The total number of transitions over [0,T] is �T :
The probability that a transition occurs during the next period is then es-

timated by � (r (tp)) = � (tp) =�T : The graph of the points (r (tp) ; � (r (tp)))
gives a curve, from which the density f can be estimated. Because the number
of transition is usually low, it is more accurate to estimate the probability of a
transition if r (t) � r : take all the observations such that r (tp) � r for di¤erent
values of r, and add the corresponding � (r (tp)) :
The curve (r; � (r)) should be decreasing (even if this condition is not used

in the computation above). Anyway the simple view of the curve (t, r(t)) should
show the discontinuities happening at the transition points.

2.5 Comments and conclusion

1. The computation and estimation above are based on the theorem 3 and
several assumptions, whose validity can be checked from the data.
i) If the clustering does not show de�nite phases, one can legitimately assume

that the model is not accurate. The variables used are not pertinent to determine
the states of the system, at least in what is considered as signi�cant periods.
ii) If the clustering provides signi�cant phases, but the graph of the curve (t,

r(t)) shows no discontinuities between the phases, then the assumption about
the probability of transition does not hold. The prospect of �nding a predictive
model with these variables is not good : usually the discontinuities come from
external events, which are not accounted for.
iii) If the clustering and the curve (t, r(t)) shows clear discontinuities then

the estimate of f(r) is a sensible choice. But of course its quality depends greatly
of the number of transitions which have been observed, and of their similarities.
So, overall the method is valid as long as one has some continuity in the

processes at work, and that their impact is well represented by the variables X.
But it helps to sort out the potential variables.

2. This raises an issue : is it ever possible to be in a situation where all
these conditions are met ? One can extend a model, add other variables, re�ne
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their de�nitions so that they account more accurately for all kinds of initial
conditions. But one can expect that, in all practical cases, there will be variables
which have been omitted. Usually their impact is summarized by probabilist
laws. The method exposed here holds in this case : the unknown variables Y
are such that the set (X,Y) gives a determinist law. The evaluation of B should
account for Y, for which a distribution law is assumed. As a consequence bB
follows a probability law, depending on Y and the usual stattistical methods
can be implemented to precise the characteristics of the estimator.

3. Using the results exposed in the section 1 on can shows that interacting
systems take speci�c states : this is not only their measures which show a
de�nite pattern, the interactions constrain the systems to stay all together in
some coherent states. The interactions do not bring chaos, they bring order. And
this is usually the processes which are at the root of the existence of phases.
Because these processes occur at an elementary level, and imply a great number
of interacting systems, it is di¢ cult or impossible to formalize explicitely what
happens at a macroscopic level. And this motivates the search for non fully
determinist laws, involving only measurable quantities at the observable level.
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